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Abstract: Cobalt blue ceramic pigments mainly consisting of CoAl2O4 are subject to the difficulty
of color control. Here, a perspective is reported regarding research on the reasons for color change
based on the control of the heat treatment and ratio of components. Macroscopically, the composition
of pigment powders determines the color. Microscopically, the crystallite characters including size,
cation distribution, and structure have an important effect on the color. The ingredient, structural,
and color properties of the pigment powders are analyzed using thermo gravimetry–differential
scanning calorimetry (TG–DSC), X-ray diffraction (XRD) measurement, Rietveld refinement, energy
dispersive spectrometer (EDS), and colorimetry analysis. The color is proven to be associated with
cation distribution, such as that of Co2+ and Co3+. It is indicated that high heating temperature, long
heating time, and a large proportion of Al3+ can, respectively, induce the Co2+ and Al3+ in tetrahedral
and octahedral sites.

Keywords: cobalt blue; ceramics pigment; CoAl2O4; cation distribution; coloration

1. Introduction

Spinel, a class of cubic crystal structure, is widely researched and applied in many
fields related to thermal and chemical stability [1–3] such as catalysts [4,5], pigments [6,7],
and refractories. The general formula of spinel could be described as AB2O4 (shown in
Figure 1), in which ions A and B occupy the tetrahedral and octahedral fully or partly [8,9].
Ions A and B are usually divalent, trivalent, or quadrivalent transitional cations, including
zinc, magnesium, titanium, iron, chromium, cobalt, and aluminum, etc.

CoAl2O4 powders acting as the main composition of cobalt blue ceramic pigments are
widely used in the ceramics industry [1,10–14]. Cobalt blue pigment is an excellent choice
for use in underglaze ceramic products because it possesses high stability in coloration and
phase at a high temperature, even above 1360 ◦C [15]. Thus, it can be utilized in under-
glazed ceramic products, which should have physicochemical and colorimetry stability
under a high temperature, over 1300 ◦C. In recent years, many preparations of CoAl2O4
have been introduced, including the co-precipitation method [16–18], solution combus-
tion [19,20], grinding and calcining method, molten salt decomposition method, sol–gel
method [21], hydrothermal method [22], etc. Among these methods, co-precipitation and
sol–gel methods prove helpful for a tiny crystallite size, high purity, and few side reactions.

Pigments mainly composed of CoAl2O4 are reported to exhibit different colors, not
only sky-blue or Thenard’s blue. From the research of Gaudon et al., the pigments present
blue and cyan colors after doping Zn2+ and Ni2+ in the spinel structure [23]. Even the
CoAl2O4 can show the color change from a pink to pale violet color when certain numbers
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of Co2+ substitute the Al3+ in octahedral sites and the crystallite size is little enough [24].
Apart from the key reason, cation distribution and coloration also change with the crystallite
scale from 0.1 to 10 nm [25,26].
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With the large scale and sophisticated development of the ceramics industry, pig-
ments with a high stability, fine particle size, and an easily controlled color have lots of
advantages, but nowadays many factories are suffering from the color inconsistency of
different batches of pigments. The main shortcoming of the current CoAl2O4 pigments is
that the coloration [27], including hue and saturation, is hard to control; even the discipline
of color based on the crystal structures is indistinct. If this problem is solved effectively,
not only color accuracy will be improved, but also the cost of raw materials and ther-
mal treatment [11,13,28–30] during aluminum over-stoichiometric spinel synthesis can be
cut down.

The reason for color differences consists of two main parts. On the macro-level, related
impurities from side reactions are generated during the preparation process. The impurities
are associated with the selection of raw materials, the temperature of heat-treatment, pH
value, etc. On the micro-level, the free Co2+ and Al3+ cannot stay in the tetrahedral and
octahedral sites fully and respectively. In addition, Co2+ can transform into Co3+ and then
occupy both the tetrahedral and octahedral sites partly, which will cause changes in the
crystal structure including lattice parameter, bond length, ion radii, etc.

In this paper, CoAl2O4 powders are elaborated by the co-precipitation method and
sintered under different temperatures (250, 500, 800, 1200, 1400 ◦C). The macroscopical
and microscopical factors are deeply discussed including composition, cation distribution,
and cation transfer trend related to the increasing ratio and heating temperatures and time.
Based on these, the color effects and changing trends corresponding to the ratio and heating
condition are obviously reported. These can be a color prediction of the high-temperature
CoAl2O4 pigments and a reference for the doped, cobalt blue pigments through controlling
the preparation condition during the fabrication process.

2. Results and Discussion
2.1. Crystal Phases after Heat Treatment at Different Temperatures

The precursors of cobalt blue pigments are analyzed to figure out the thermal influ-
ences on pigments using TG–DSC, which can describe the thermodynamic changes during
the heat treatment. Figure 2 demonstrates the TG–DSC curve of the precursor sample
sintered in an air atmosphere. Two ranges of room temperature—240 ◦C and 310–430 ◦C
present obvious weight loss, which could represent the loss of free and bound water, re-
spectively [31]. At the same ranges, the DSC curve does not show any endothermic peaks.
In the range from 240 to 310 ◦C, the stair of weight loss indicates the transformation of
precursors to the crystal phase [32]. From the relative DSC curve, a specific exothermic
peak occurs at 282 ◦C, probably related to the burning of ethanol [33]. The weight loss in
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the TG curve turns to be stable when the temperature is above 480 ◦C, which also indicates
the gradually stable phase and the formation of a solid solution with cobalt and aluminum
ions. The reaction rate declines as the temperature increases, and the exothermal maximum
in the DSC curve occurs at 943 ◦C, while the reaction does not stop completely. Combined
with the TG results, it demonstrates that the sample transforms from amorphous phases
to relatively stable phases gradually [34]. The loss of weight during the heat-treatment
is 20.75%, and the low weight loss (2.82%) in the range of 1000–1400 ◦C reveals the high
thermal stability of the underglaze pigments.
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The XRD spectra of cobalt blue pigment powders after the heat treatment at different
temperatures are presented in Figure 3. According to JCPDS-ICDD cards [35], the as-
fabricated CoAl2O4 powders are composed with a relatively pure spinel structure (Fd-3m
space group) at 1400 ◦C. Obviously, the higher the temperature the powders sinter at, the
sharper the peaks it will present in the patterns, which means the formation of purer spinel
structural phases and a larger particle scale. The peaks on the XRD pattern of the material
heat-treated at 250 ◦C indicate the beginning of the transformation to the spinel structure.
In the temperature range of 800–1200 ◦C, substantial spinel phases form but the phase
transformation is not obvious, corresponding with the decrease in the reaction rate seen in
the DSC curve (Figure 2).

As represented in Figure 4, the EDS spectrum also confirms the composition of the
as-prepared powders at 1400 ◦C. The EDS spectrum and elemental composition (Table 1)
present the composition and the ratio of the pigment powders, agreeing with the XRD
results. The ratio of Co and Al still remains as about 1:2, which is in accordance with the
experimental design. According to JCPDS-ICDD cards [35,36], the peaks (220), (311), (400),
(331), (422), (511), and (440) mainly correspond to a cubic spinel structure. Beginning from
1200 ◦C, the peak (331) occurs and becomes distinct at 1400 ◦C, which reveals the formation
of the main phase, CoAl2O4. The powders heated at 250 ◦C, 500 ◦C, and 800 ◦C are mainly
with a spinel phase, with ions occupying the tetrahedral and octahedral positions. However,
it seems to be hard to determine the specific phase for diverse cation types. As the heat
temperature rises, the main phase transfers to a concrete phase, CoAl2O4, gradually. The
ratio of the second strongest to the strongest peak is introduced to distinguish two possible
phases, Co3O4 and Co2AlO4, because they have similar XRD spectra, and the same Miller
index but different intensities [36]. The former I(220)/I(311) is 0.7 and the latter one is 0.309.
Different phases after heat treatment at different temperatures make the pigment powders
present different colors. Essentially, the hue is influenced by the cation distribution of
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Co2+ and Co3+ in the spinel framework with a Fd-3m space group. Both the existence of
Co3O4 (one Co2+ ion in the tetrahedral site and two Co3+ ions in the octahedral site) and
Co2AlO4 (one Co2+ ion in tetrahedral site and one Co3+ ions in octahedral site) can affect
the purity and coloration of cobalt blue pigments. Co3O4 and Co2AlO4 will make the color
of pigments darker and greener, respectively. The XRD spectra show that the fabrication
temperature of pure CoAl2O4 pigment powders should be 1200 ◦C or more. Because of the
low diffusion rate, many Co2+ and Co3+ ions are in tetrahedral and octahedral positions,
respectively, at temperatures below 1200 ◦C, opposite to the ideal phase structure.
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Table 1. Composition parameters of the CoAl2O4 sample heated at 1400 ◦C.

Element Weight% Atomic%

O K 37.46 58.05
Al K 31.39 28.85
Co K 31.15 13.10
Totals 100.00

2.2. Influence Factors of Structural Properties

Composite pigments primarily consist of transition metals from the d-block of the pe-
riodic table and the molecules or ions (ligands) that bind to these metals. The fundamental
source of its color is the absorption of visible light to produce d–d electronic transitions.
The coloration of CoAl2O4 is mainly determined by the central ions in the tetrahedral and
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octahedral coordination fields. Concerning the CoAl2O4 spinel, they are Co2+ and Al3+,
but Al3+ is colorless because of the completely empty d electron shell. The main reason for
the coloration of CoAl2O4 is Co2+.

The appearance of peaks (331) reveals the formation of CoAl2O4, and the purity
of CoAl2O4 rises as the sintering temperature increases. Thus, the main reason for the
coloration is related to the crystallite structure.

2.2.1. Crystallite Size

Table 2 presents the crystallite size, Xs, of the pigment powders of different batches.
The error of the size estimation is 6%. Over 1200 ◦C, the crystallite size grows with the
temperature and time increasing. As is known from previous research, the crystallite size
of pigments can affect the optical performance if the scale is between 0.1 and 10 nm [25,26].
From the analysis data, the scale of the crystallite is not enough to influence the coloration.

Table 2. Crystallite size of CoAl2O4 pigment powders after heat treatment at different temperatures
and times.

Sample Temperature (◦C) Time (h) Xs (Å)

1 1200 1 553
2 1200 1 596
1 1200 3 580
1 1400 1 624
2 1400 1 721

2.2.2. Cation Distribution

The formation of a cobalt blue pigment spinel structure for the (CoxAl1−x)[Al1+xCo1−x]O4
(0 ≤ x ≤ 1) system was confirmed by XRD patterns in Figure 5. The fitting profiles and
R-factor of the samples are shown as an example in Figure 6. The result is obtained from
Retvield refinement using the program Jade. The cation distribution data, including cation
position and lattice parameter, are shown in Table 3. Other structural parameters are
included in Table 4 for reference. The ratio of cobalt and aluminum is 1:2 in the sample,
and the prescription of Sample 2 contains excessive aluminum.
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after 1200 ◦C heat treatment for 1 h, (c) sample 1 after 1200 ◦C heat treatment for 3 h, (d) sample 1
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For the normal ratio part, a high heating temperature and long heating time are
both related to the increase in the lattice parameter. Compared with the normal ratio
samples, the amount of Co3+ transferring from the octahedral site to the tetrahedral site
enlarges in the crystallite of sample 2. At the same time, the Co3+ converts into divalent Co,
but the quantity of Co3+ in octahedral sites grows correspondingly. Compared with the
sample heated at 1400 ◦C, the stoichiometric ratio, cation position, and lattice parameter
of sample 1 at 1200 ◦C are all close to those of Co2AlO4 because the Co2AlO4 (described
as (Co)[CoAl]O4) has one Co2+ in the tetrahedral site and one Co3+ and one Al3+ in the
octahedral site, with a smaller lattice parameter than CoAl2O4. Moreover, whether the
heating time or temperature increases, the main phase can change into CoAl2O4 in line
with cation distribution. The result confirms the analysis of Figure 3 which indicates
the formation of CoAl2O4 for the first time at 1200 ◦C, becoming purer and purer as the
temperature rises. Focusing on the cation distribution of sample 1 heated at 1200 ◦C for 3 h
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and 1400 ◦C for 1 h, the data demonstrate the similar phase and structural properties of
them. Moreover, the increase in the aluminum ratio can also promote the occupation of
Co2+ in the tetrahedral site and Al3+ in the octahedral site. Throughout the increases in the
heating time, temperature, and Al element ratio, they all enhance the Al3+ substitution into
the Co3+ octahedral site, and “push” a part of the Co ions into tetrahedral sites, with the
preference of “pushing” the Co3+ toward the octahedral.

Table 3. Cation distribution data calculated from the Rietveld refinement of (CoxAl1−x)[Al1+xCo1−x]O4

(0 ≤ x ≤ 1) system after heat treatment at different temperatures and times.

Sample Temperature
(◦C)

Time (h) Chemical
Formula

Occupation of Cations
Lattice

ParameterTetrahedral
Site

Octahedral
Site

1 1200 1 Co1.91Al1.09O4 (Co 2+
0.75Al3+0.25

)
[Co 2+

0.25Co3+
0.91Al3+0.84

]
8.096

2 1200 1 Co1.46Al1.54O4 (Co 2+
0.85Al3+0.15

)
[Co 2+

0.46Co3+
0.15Al3+1.39

]
8.104

1 1200 3 Co1.39Al1.61O4 (Co 2+
0.90Al3+0.10

)
[Co 2+

0.39Co3+
0.1 Al3+1.51

]
8.110

1 1400 1 Co1.39Al1.61O4 (Co 2+
0.89Al3+0.11

)
[Co 2+

0.39Co3+
0.11Al3+1.50

]
8.111

2 1400 1 CoAl2O4 (Co 2+
0.94Al3+0.06

)
[Co 2+

0.06Al3+1.94

]
8.107

Table 4. Structural parameters CoAl2O4 pigment powders after heat treatment at different tempera-
tures and times.

Sample Temperature (◦C) Time (h) Space Group a (Å) α (◦) V (Å3) Z Density

1 1200 1 Fd-3m 8.096 90 533.39 8 4.4053
2 1200 1 Fd-3m 8.104 90 532.37 8 4.4138
1 1200 3 Fd-3m 8.11 90 532.67 8 4.4113
1 1400 1 Fd-3m 8.111 90 533.58 8 4.4037
2 1400 1 Fd-3m 8.107 90 533.18 8 4.5219

Combined with Table 2, heating sample 1 at 1200 ◦C for 3 h and 1400 ◦C for 1 h presents
a similar phase. At a low temperature, sample 1, nevertheless, obtains a thinner crystallite
size, larger crystalline interfaces, and more curved grain boundaries which are unfavorable
for crack propagation and development, resulting in better strength and toughness [37,38].
And, increasing the ratio of aluminum can encourage the cation transfer to the normal
position in the crystallite to obtain high-quality cobalt blue pigments. Some researchers
also demonstrate that the Co/Al ratio should not exceed 0.3 to obtain pure CoAl2O4 [39].
Gaudon et al. report the same results and explain that the excessive Al3+ ratio prevents
the occurrence of Co ions in octahedral sites due to its higher octahedral site preference
energy [23].

Cation distribution is significant to the coloration of cobalt blue and many other kinds
of pigments. From our research, controlling the heat treatment and doping of excessive ions
in the formula prove effective. To fabricate other relational colors, some cations also have
effects on the coloration, such as Ni2+ and Mg2+. They can substitute the Co2+ in tetrahedral
sites and endow the crystallite with a cyan hue [23]. Hence, cation substitution should
be researched in the future to prepare various pigments, and cation distribution may be
helpful to control and predict the coloration of pigments. Alongside the factors mentioned
above, cation substitution should also be considered in the preparation of the solid solution,
not only for the color, but also for other properties like magnetic and catalytic performance.

2.3. Color Analysis

The selected colorimetry analysis system is CIE-L*a*b* value, and the test result is
shown in Table 5. L* represents the brightness, with a value from 0 to 100; a* stands for the
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component from green to red, with a value from −128 to 127; b* stands for the component
from blue to yellow, with a value from −128 to 127 [40].

Table 5. CIE-L*a*b* colorimetric analysis of CoAl2O4 pigment powders after heat treatment at
different temperatures and times.

Sample Temperature (◦C) Time (h) L* a* b* Color

1 500 1 22.52 −0.53 −11.24
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resulting in a reduction in the green shade. 
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the decline in absorption at about 380 nm shows the decrease in Co3+ in octahedral sites, 
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The colorimetric analysis of the samples after heat treatment at different temperatures
and time with different ratios are presented. The color of the samples heated at 500 and
800 ◦C appears close to black, owing to the Co3O4 acting as the main phase. Starting from
1200 ◦C, the coloration of samples turns from black to blue, which corresponds to the
formation of CoAl2O4. This is consistent with XRD patterns in Figure 2. Samples heated at
1200 ◦C for 3 h and 1400 ◦C for 1 h present analogous L*a*b* values, which can confirm the
results of XRD refinement data, i.e., the similar phases of the two samples. The increase
in the aluminum ratio proves effective in color because the value b* shifts obviously
toward blue, which is also in agreement with the report by Gaudon [41]. Throughout
all colorimetric values of rising temperature, high temperature and an appropriate ratio
provide the best conditions for the formation of CoAl2O4.

In essence, the cation distribution should combine with the color. Cobalt, the color
element in the spinel, decides on the coloration depending on the valence and site. The
distributions of Co2+ and Co3+ in tetrahedral or octahedral sites do not have an obvious
connection with the L* value. In another word, the cation distribution in the cobalt spinel
could have nothing to do with the brightness. The value of a* has a little bit of connection
with the position of Co3+, but this little influence is not specific to the naked eye in our
samples. The degree of blue is mainly related to the b* value. It proposed that if too many
Co2+ occupy the tetrahedral sites, the b* value can be smaller.

Diffuse absorbance spectra are an auxiliary approach to the colorimetry analysis of
spectroscopic data, and also the variation in the cobalt ions. Figure 7 presents the UV–vis
absorption spectra of cobalt blue pigments with diverse formulas, heat temperatures, and
heat times. All the spectra show the intensive absorption of visible light in the range of
500–700 nm, especially for the ones heated with high temperatures, which corresponds to
the blue color region. Moreover, the absorptions at about 380 and 590 nm represent Co3+ in
octahedral sites and Co2+ in tetrahedral sites, respectively [42]. This is also characterized as
a Co3O4 cluster due to two board bands at around 380 and 700 nm for the samples sintered
at 500 ◦C [43,44]. As the temperature increases, these absorptions turn out to be weak.
The maximal absorptions at near 540, 590, and 640 nm turn to become clear with the heat
temperature increase, which indicates the formation of CoAl2O4. Additionally, the decline
in absorption at about 380 nm shows the decrease in Co3+ in octahedral sites, resulting in a
reduction in the green shade.
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3. Experimental
3.1. Synthesis Process

Figure 8 illustrates the fabrication process of samples in this study. With a molar ratio
of 1:2, cobalt acetate (C4H6CoO4·4H2O, Aladdin Corp., Shanghai, China) and aluminum
nitrate (Al(NO3)3·9H2O, Aladdin Corp., Shanghai, China) were dissolved separately in
water, and then they were mixed together. Under magnetic stirring at 500 rpm, NH3·H2O
was added dropwise to reach a pH of about 9; however, the quantity of the NH3·H2O can be
a little more than needed. Then, we continued to stir for 2.5 h to mix them homogeneously.
The precursors were separated with a centrifugal machine, and then the precipitates were
washed with absolute ethanol to neutralize them in order to obtain cobalt and aluminum
hydroxide alcohol mixtures. Then, the jelly-like gel was subject to heat treatment and
sintering at 250 ◦C, 500 ◦C, 800 ◦C, 1200 ◦C, and 1400 ◦C for 1 h each. The fabrication
process was repeated with an excessive proportion of aluminum (ratio of cobalt and
aluminum is 1:3) to obtain another batch of precursors. Then, they were heated under
different temperatures.

3.2. Characterization

The as-prepared powders were characterized by thermo gravimetry–differential scan-
ning calorimetry (TG–DSC, STA 449 F5, Netzsch, Selb, Germany), X-ray diffraction (XRD,
D/MAX2500VL/PC, Rigaku, Tokyo, Japan), energy dispersive spectroscopy (EDS, Hi-
tachi S-800, Hitachi, Tokyo, Japan), and a spectrodensitometer (FD-5, Konica Minolta,
Tokyo, Japan). XRD measurements were carried out with a X-celerator detector, using
Cu(Kα1/Kα2) radiation. Diffractograms were analyzed via the Rietveld refinement method
with a software program named Jade 6.0. Debye Scherrer’s Equation (1) was used with the
widths of the peak to evaluate crystallite sizes [30].

D =
Kγ

Bcos θ
(1)

where D is the average thickness of the crystal grain perpendicular of the crystal plane, K is
the Scherrer constant, γ is the X-ray wavelength (generally 1.54056 Å), B is the half-height
width or integral width of the measured sample diffraction peak, and θ is the Bragg angle
in degrees.
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4. Conclusions

In this paper, we have prepared cobalt blue pigments using the coprecipitation method,
where the heating temperature, time, and ratio of cobalt and aluminum have been set as
the variables. The as-fabricated samples were investigated using TG–DSC, XRD, EDS,
and colorimetry analysis. Then, Rietveld refinement was implemented to obtain the
crystallite data, including the crystallite size, cation distribution, chemical formula, and
lattice parameter.

The color change is related to macro and micro perspectives. On the one hand, the
color is corresponding to the composition. When the heating temperature is under 800 ◦C,
Co3+ exists in the octahedral site of spinel, so the color appears to lack a blue hue. On
the other hand, when the sintering temperature comes to 1200 ◦C or more, the phase of
CoAl2O4 will become purer. Co2+ in the tetrahedral sites can make the b* value small,
which indicates that the color of the samples tends to be blue. The cation distribution
could be controlled by the heat treatment and stoichiometric ratio. High heat-treatment
temperature, long heat-treatment time, and excessive aluminum content play important
roles in controlling the cation positions for pure cobalt blue pigments. The results have the
potential for energy saving and color prediction in the fabrication process of cobalt blue
and other related Co-based pigments.
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