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Abstract: In this work, amorphous and crystalline novel products based on Zr, Mg, and Mn were
facilely fabricated through the Pechini sol–gel procedure using inexpensive chemicals and an uncom-
plicated apparatus. Also, these products showed high efficiency as novel adsorbents in getting rid of
basic fuchsin dye from aqueous solutions. The adsorbent, which was fabricated before calcination,
was abbreviated as KE. In addition, the adsorbents, which were created at 500 and 700 ◦C, were
designated as KE500 and KE700, respectively. The created adsorbents were characterized using
high-level transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), energy dispersive
X-ray spectroscopy (EDS), N2 adsorption/desorption analyzer, and field emission scanning electron
microscope (FE-SEM). The XRD showed that the KE adsorbent is amorphous, whereas the KE500 and
KE700 adsorbents are mixtures of ZrO2, MgMn2O4, and Mg(Mg0.333Mn1.333)O4 nanostructures. The
HR-TEM exhibited that the KE adsorbent consists of very fine irregular shapes, whereas the KE500
adsorbent contains quasi-spherical particles with a mean diameter of 45.16 nm. Furthermore, the
HR-TEM exhibited that the KE700 adsorbent consists of polyhedral shapes with a mean diameter
of 76.28 nm. Furthermore, the BET surface area of the KE, KE500, and KE700 adsorbents is 67.85,
20.15, and 13.60 m2/g, respectively. Additionally, the elimination of basic fuchsin dye by the KE,
KE500, and KE700 adsorbents is exothermic, physical in nature, and follows the pseudo-first-order as
well as Langmuir equations. Further, the maximum uptake capabilities of the KE, KE500, and KE700
adsorbents toward basic fuchsin dye are 239.81, 174.83, and 93.19 mg/g, respectively.

Keywords: nanostructures; adsorption; basic fuchsin dye; analytical parameters

1. Introduction

In recent years, people have complained about the scarcity of natural water resources,
prompting experts to seek out secure alternatives. Some industries, such as textiles, paints,
and pigments, utilize large quantities of water. These large quantities of dye-bearing wa-
ter are dispersed into the environment in one way or another, leading to environmental
contamination and the spread of numerous diseases among the local population [1–5].
Utilizing advanced oxidation processes, photocatalytic degradation, membrane filtration,
enzyme degradation, coagulation/flocculation, and adsorption techniques [6–15], organic
dyes have been decontaminated. Among these approaches, the adsorption technique was
widely utilized as a cost-effective and simple procedure for water remediation [16–21].
Basic fuchsin dye (BFD), also known as basic violet 14, is a cationic dye exploited to color
textile, leather, and silk products. Moreover, it is anesthetic, fungicidal, and bactericidal.
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It is non-biodegradable and toxic, and hence this dye causes environmental pollution
when discharged into water [22]. Khan et al. synthesized iron-manganese-oxide-coated
kaolinite for the removal of BFD dye, where the uptake capability was 10.36 mg/g [23].
Ai et al. synthesized an activated carbon/ferrospinel composite for the removal of BFD
dye, where the uptake capability was 101mg/g [24]. Hinojosa-Reyes et al. synthesized
hydrogen titanate nanotubes for the elimination of BFD dye, where the uptake capabil-
ity was 183.2 mg/g [25]. Apostol et al. synthesized adsorbent based on xanthan and
a ferrite/lignin hybrid for the removal of BFD dye, where the uptake capability was
33.33 mg/g [26]. Nanomaterials, such as zinc oxide, aluminum oxide, Fe3O4, and MgO,
are highly efficient in removing pollutants owing to their small crystal size and great BET
surface area [27–30]. The Pechini sol–gel method has succeeded in obtaining many nano-
materials such as Li2B4O7/NiO/Ni3(BO3)2 nanocomposites, SiO2, MgO, Cu2O/Li3BO3
nanocomposites, Fe2O3, and MgO/Y2O3 [31–35]. In this method, chelates are formed
between cations and hydroxycarboxylic acids, such as citric acid. After that, esterification
occurs through the interaction of the carboxylic group of citric acid with the hydroxyl group
of ethylene glycol to produce a three-dimensional network. Moreover, the solvent is evapo-
rated, and the resulting gel is calcinated at a moderate temperature to get rid of the organic
part and obtain nanomaterials [16]. So, in the present work, amorphous and crystalline
novel adsorbents based on Zr, Mg, and Mn were facilely created using the Pechini sol–gel
procedure for the efficient disposal of basic fuchsin dye from aqueous solutions. The effects
of pH, contact time, temperature, and initial basic fuchsin dye concentration were also
investigated. The synthesis of the ZrO2/MgMn2O4/Mg(Mg0.333Mn1.333)O4 nanocomposite
presents numerous benefits, positioning it as a highly promising option for water treatment
applications. Through the strategic integration of these three constituents, a cooperative
phenomenon arises that amplifies the nanocomposite’s overall functionality. The inclusion
of ZrO2, MgMn2O4, and Mg(Mg0.333Mn1.333)O4 within the nanocomposite structure results
in an increased availability of active sites for adsorption. This amalgamation leads to an
elevated adsorption capacity, consequently enabling a more effective extraction of basic
fuchsin dye from aqueous environments. The collaborative influence among these elements
serves to augment the comprehensive adsorption performance of the nanocomposite.

2. Experimental
2.1. Chemicals

Zirconyl chloride octahydrate (ZrOCl2·8H2O), sodium hydroxide (NaOH), man-
ganese(II) acetate tetrahydrate (Mn(CH3COO)2·4H2O), citric acid (C6H8O7), magnesium
nitrate hexahydrate (Mg(NO3)2·6H2O), hydrochloric acid (HCl), potassium chloride (KCl),
ethylene glycol (C2H6O2), and basic fuchsin dye (C20H19N3·HCl) were of high purity
(analytical grade) and acquired from Sigma Aldrich, then utilized without undergoing any
purification processes.

2.2. Synthesis of Zr/Mg/Mn/O Adsorbents

In total, 10.00 g of ZrOCl2·8H2O was dissolved in about 50 mL of deionized water.
Also, 7.61 g of Mn(CH3COO)2·4H2O was dissolved in about 50 mL of deionized water.
Moreover, 7.96 g of Mg(NO3)2·6H2O was also dissolved in about 50 mL of deionized water.
The three metallic solutions were then combined and magnetically agitated at 550 rpm for
15 min. Moreover, the citric acid solution, which was freshly prepared through dissolving
17.89 g of citric acid in about 50 mL of deionized water, was slowly added and then the
produced mixture was subjected to magnetic stirring at 550 rpm for 15 min. Furthermore,
12 mL of ethylene glycol was slowly added, and then the produced mixture was subjected
to magnetic stirring at 550 rpm at 150 ◦C till dryness. Additionally, the generated powder
was then calcined in a muffle at 500 and 700 ◦C for 5 h. The samples that were obtained at
500 and 700 ◦C were designated as KE500 and KE700, respectively. In addition, the sample
that was obtained before calcination was abbreviated as KE.



Inorganics 2023, 11, 363 3 of 21

2.3. Characterization of the Synthesized Adsorbents

Patterns of X-ray diffraction (XRD) of the KE, KE500, and KE700 samples were obtained
at room temperature, applying a Bruker D8 Advance diffractometer (Billerica, MA, United
States) with CuKα radiation (wavelength = 1.54 Å), a step rate of 0.4 1/min, and a 2
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range of 5◦–70◦. A field emission scanning electron microscope (FE-SEM) of the JSM-
IT800 Schottky model (Akishima, Tokyo, Japan) with coupled energy dispersive X-ray
spectroscopy (EDS) was used to acquire images of the surface morphology of the KE,
KE500, and KE700 products as well as qualitative and quantitative information on the
composition of the synthesized samples. A transmission electron microscope (TEM, Model:
Talos F200iS, Waltham, MA, United States) was used to acquire images of the particle
morphology of the KE, KE500, and KE700 samples. Through applying a BET surface
area analyzer (Quantachrome, Model: TouchWin, Boynton Beach, FL, United States), the
pore features in addition to the BET surface areas of the KE, KE500, and KE700 samples
were determined.

2.4. Removal of BFD Dye from Aqueous Solutions

For investigating the influence of solution pH in the range of 2.5–8.5, batch removal
experiments were accomplished by shaking 50 mg of KE, KE500, or KE700 samples with
100 mL of about 200 mg/L aqueous BFD solution for 180 min. After that, the adsorbent was
retracted from the mixture by centrifugation for 3 min at 3500 rpm. After centrifugation,
the yielded filtrate was examined at 544 nm, applying a UV–Vis spectrophotometer (Model:
Shimadzu 1800) to estimate the equilibrium BFD dye concentration. In addition, the
influences of interaction time (5–40 min), interaction temperature (298–328 kelvin), and
primary BFD concentration (150–300 mg/L) were also investigated.

The uptake capability of the KE, KE500, and KE700 adsorbents (U, mg/g) and the
uptake efficacy of BFD dye (% R) were calculated by applying Equations (2) and (1),
respectively [36].

% R =
Eo − Ee

Eo
× 100 (1)

U = (Eo − Ee)×
V
W

(2)

Eo and Ee are the original and equilibrium BFD dye concentrations (mg/L), respectively.
In addition, W and V are the quantity of adsorbent sample (g) and the volume of BFD dye
solution (L), respectively.

The procedure described by Khalifa et al. [12] was employed to determine the point
of zero charge (pHPZC) for the KE, KE500, and KE700 adsorbents. The process involved
introducing 0.20 g of either KE, KE500, or KE700 adsorbents into separate 0.05 L solutions
of 0.026 M KCl. Additionally, the initial pH (pHInitial) of the utilized KCl solutions was
systematically adapted within the 2.50–11.50 range. Each mixture of adsorbent and KCl
was continuously stirred for 6 hrs. Subsequently, the resulting pH values (pHFinal) were
ascertained and plotted against their corresponding initial pH values (pHInitial). The pHFinal
value corresponding to the point on the plot where a clear plateau emerged was designated
as the pHpzc.

3. Results and Discussion
3.1. Characterization of the Fabricated Products
3.1.1. XRD

Figure 1A–C illustrates the XRD patterns of the KE, KE500, and KE700 samples, respec-
tively. Additionally, the obtained results exhibited that the KE product is amorphous due
to the broad peaks at 2
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= 28◦ and 50◦. In addition, the KE500 and KE700 samples consist
of zirconium oxide (ZrO2), magnesium manganese oxide (MgMn2O4), and magnesium
manganese oxide (Mg(Mg0.333Mn1.333)O4)), as obtained from JCPDS Nos. 00-065-0729,
00-023-0392, and 00-062-0483, respectively. The crystal system, space group, and lattice
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volume of ZrO2 are tetragonal, P42/nmc (137), and 67.12 Å3, respectively. Also, the crystal
system, space group, and lattice volume of MgMn2O4 are tetragonal, I41/amd (141), and
306.64 Å3, respectively. Moreover, the crystal system, space group, and lattice volume
of Mg(Mg0.333Mn1.333)O4 are cubic, Fd-3m (227), and 570.20 Å3, respectively. The peaks
at 2

Inorganics 2023, 11, x FOR PEER REVIEW 3 of 22 
 

 

was then calcined in a muffle at 500 and 700 °C for 5 h. The samples that were obtained at 

500 and 700 °C were designated as KE500 and KE700, respectively. In addition, the sample 

that was obtained before calcination was abbreviated as KE.  

2.3. Characterization of the Synthesized Adsorbents 

Pa�erns of X-ray diffraction (XRD) of the KE, KE500, and KE700 samples were ob-

tained at room temperature, applying a Bruker D8 Advance diffractometer (Billerica, MA, 

United States) with CuKα radiation (wavelength = 1.54 Å), a step rate of 0.4 1/min, and a 

2Ɵ range of 5°–70°. A field emission scanning electron microscope (FE-SEM) of the JSM-

IT800 Scho�ky model (Akishima, Tokyo, Japan) with coupled energy dispersive X-ray 

spectroscopy (EDS) was used to acquire images of the surface morphology of the KE, 

KE500, and KE700 products as well as qualitative and quantitative information on the 

composition of the synthesized samples. A transmission electron microscope (TEM, 

Model: Talos F200iS, Waltham, MA, United States) was used to acquire images of the par-

ticle morphology of the KE, KE500, and KE700 samples. Through applying a BET surface 

area analyzer (Quantachrome, Model: TouchWin, Boynton Beach, FL, United States), the 

pore features in addition to the BET surface areas of the KE, KE500, and KE700 samples 

were determined. 

2.4. Removal of BFD Dye from Aqueous Solutions 

For investigating the influence of solution pH in the range of 2.5–8.5, batch removal 

experiments were accomplished by shaking 50 mg of KE, KE500, or KE700 samples with 

100 mL of about 200 mg/L aqueous BFD solution for 180 min. After that, the adsorbent 

was retracted from the mixture by centrifugation for 3 min at 3500 rpm. After centrifuga-

tion, the yielded filtrate was examined at 544 nm, applying a UV–Vis spectrophotometer 

(Model: Shimadzu 1800) to estimate the equilibrium BFD dye concentration. In addition, 

the influences of interaction time (5–40 min), interaction temperature (298–328 kelvin), 

and primary BFD concentration (150–300 mg/L) were also investigated.  

The uptake capability of the KE, KE500, and KE700 adsorbents (U, mg/g) and the 

uptake efficacy of BFD dye (% R) were calculated by applying Equations (2) and (1), re-

spectively [36]. 

% � =
�� − ��

��

× 100 (1)

� = (�� − ��) ×
�

�
 (2)

Eo and Ee are the original and equilibrium BFD dye concentrations (mg/L), respec-

tively. In addition, W and V are the quantity of adsorbent sample (g) and the volume of 

BFD dye solution (L), respectively. 

The procedure described by Khalifa et al. [12] was employed to determine the point 

of zero charge (pHPZC) for the KE, KE500, and KE700 adsorbents. The process involved 

introducing 0.20 g of either KE, KE500, or KE700 adsorbents into separate 0.05 L solutions 

of 0.026 M KCl. Additionally, the initial pH (pHInitial) of the utilized KCl solutions was 

systematically adapted within the 2.50–11.50 range. Each mixture of adsorbent and KCl 

was continuously stirred for 6 hrs. Subsequently, the resulting pH values (pHFinal) were 

ascertained and plo�ed against their corresponding initial pH values (pHInitial). The pHFinal 

value corresponding to the point on the plot where a clear plateau emerged was desig-

nated as the pHpzc. 

3. Results and Discussion 

3.1. Characterization of the Fabricated Products 

3.1.1. XRD  
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miller planes of ZrO2, respectively. The peaks at 2

Inorganics 2023, 11, x FOR PEER REVIEW 3 of 22 
 

 

was then calcined in a muffle at 500 and 700 °C for 5 h. The samples that were obtained at 

500 and 700 °C were designated as KE500 and KE700, respectively. In addition, the sample 

that was obtained before calcination was abbreviated as KE.  

2.3. Characterization of the Synthesized Adsorbents 

Pa�erns of X-ray diffraction (XRD) of the KE, KE500, and KE700 samples were ob-

tained at room temperature, applying a Bruker D8 Advance diffractometer (Billerica, MA, 

United States) with CuKα radiation (wavelength = 1.54 Å), a step rate of 0.4 1/min, and a 

2Ɵ range of 5°–70°. A field emission scanning electron microscope (FE-SEM) of the JSM-

IT800 Scho�ky model (Akishima, Tokyo, Japan) with coupled energy dispersive X-ray 

spectroscopy (EDS) was used to acquire images of the surface morphology of the KE, 

KE500, and KE700 products as well as qualitative and quantitative information on the 

composition of the synthesized samples. A transmission electron microscope (TEM, 

Model: Talos F200iS, Waltham, MA, United States) was used to acquire images of the par-

ticle morphology of the KE, KE500, and KE700 samples. Through applying a BET surface 

area analyzer (Quantachrome, Model: TouchWin, Boynton Beach, FL, United States), the 

pore features in addition to the BET surface areas of the KE, KE500, and KE700 samples 

were determined. 

2.4. Removal of BFD Dye from Aqueous Solutions 

For investigating the influence of solution pH in the range of 2.5–8.5, batch removal 

experiments were accomplished by shaking 50 mg of KE, KE500, or KE700 samples with 

100 mL of about 200 mg/L aqueous BFD solution for 180 min. After that, the adsorbent 

was retracted from the mixture by centrifugation for 3 min at 3500 rpm. After centrifuga-

tion, the yielded filtrate was examined at 544 nm, applying a UV–Vis spectrophotometer 

(Model: Shimadzu 1800) to estimate the equilibrium BFD dye concentration. In addition, 

the influences of interaction time (5–40 min), interaction temperature (298–328 kelvin), 

and primary BFD concentration (150–300 mg/L) were also investigated.  

The uptake capability of the KE, KE500, and KE700 adsorbents (U, mg/g) and the 

uptake efficacy of BFD dye (% R) were calculated by applying Equations (2) and (1), re-

spectively [36]. 

% � =
�� − ��

��

× 100 (1)

� = (�� − ��) ×
�

�
 (2)

Eo and Ee are the original and equilibrium BFD dye concentrations (mg/L), respec-

tively. In addition, W and V are the quantity of adsorbent sample (g) and the volume of 

BFD dye solution (L), respectively. 

The procedure described by Khalifa et al. [12] was employed to determine the point 

of zero charge (pHPZC) for the KE, KE500, and KE700 adsorbents. The process involved 

introducing 0.20 g of either KE, KE500, or KE700 adsorbents into separate 0.05 L solutions 

of 0.026 M KCl. Additionally, the initial pH (pHInitial) of the utilized KCl solutions was 

systematically adapted within the 2.50–11.50 range. Each mixture of adsorbent and KCl 

was continuously stirred for 6 hrs. Subsequently, the resulting pH values (pHFinal) were 

ascertained and plo�ed against their corresponding initial pH values (pHInitial). The pHFinal 

value corresponding to the point on the plot where a clear plateau emerged was desig-

nated as the pHpzc. 

3. Results and Discussion 

3.1. Characterization of the Fabricated Products 

3.1.1. XRD  

= 18.29◦, 32.71◦, 38.70◦, 44.72◦, 60.54◦,
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MgMn2O4, respectively. The peaks at 2
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% � =
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� = (�� − ��) ×
�

�
 (2)

Eo and Ee are the original and equilibrium BFD dye concentrations (mg/L), respec-

tively. In addition, W and V are the quantity of adsorbent sample (g) and the volume of 

BFD dye solution (L), respectively. 

The procedure described by Khalifa et al. [12] was employed to determine the point 

of zero charge (pHPZC) for the KE, KE500, and KE700 adsorbents. The process involved 

introducing 0.20 g of either KE, KE500, or KE700 adsorbents into separate 0.05 L solutions 

of 0.026 M KCl. Additionally, the initial pH (pHInitial) of the utilized KCl solutions was 

systematically adapted within the 2.50–11.50 range. Each mixture of adsorbent and KCl 

was continuously stirred for 6 hrs. Subsequently, the resulting pH values (pHFinal) were 

ascertained and plo�ed against their corresponding initial pH values (pHInitial). The pHFinal 

value corresponding to the point on the plot where a clear plateau emerged was desig-

nated as the pHpzc. 

3. Results and Discussion 

3.1. Characterization of the Fabricated Products 

3.1.1. XRD  

= 43.77◦, 57.54◦, and 63.12◦ correspond to the
(400), (511), and (440) miller planes of Mg(Mg0.333Mn1.333)O4, respectively. The average
crystallite size, which was estimated using the Scherrer equation, of the KE500 and KE700
samples was 38.27 and 70.45 nm, respectively.
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3.1.2. EDS

Figure 2A–C illustrates the EDS patterns of the KE, KE500, and KE700 products,
respectively. Furthermore, the obtained findings exhibited that the KE and KE500 products
are composed of C, Mg, Zr, Mn, and O, as revealed in Table 1. Moreover, the presence
of carbon in those samples was due to the incomplete burning of citric acid. In addition,
the KE700 sample was composed of Mg, Zr, Mn, and O, as revealed in Table 1. Therefore,
700 ◦C was sufficient to make the citric acid burn completely.
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Table 1. Elements and their percentages in the KE, KE500, and KE700 samples.

Samples % C % O % Mg % Mn % Zr

KE 36.25 28.47 4.70 11.78 18.80

KE500 33.96 23.84 5.98 13.77 22.45

KE700 ---- 18.22 9.28 14.14 58.36

3.1.3. FE-SEM and HR-TEM

Figure 3A–C illustrates the FE-SEM pictures of the KE, KE500, and KE700 samples,
respectively. Additionally, the findings exhibited that the KE product consists of very fine
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irregular shapes. In addition, the KE500 product contains quasi-spherical particles with a
mean grain size of 90.26 nm. Further, the KE700 product is composed of polyhedral shapes
with a mean grain size of 650 nm. Figure 4A–C represents the high-resolution transmission
electron microscopy (HR-TEM) pictures of the KE, KE500, and KE700 products, respectively.
In addition, the findings exhibited that the KE product consists of very fine irregular shapes.
Additionally, the KE500 product contains quasi-spherical particles with a mean diameter
of 45.16 nm. Furthermore, the KE700 product consists of polyhedral shapes with a mean
diameter of 76.28 nm.
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3.1.4. Nitrogen Adsorption/Desorption

Figure 5A–C illustrates the nitrogen adsorption/desorption curves of the KE, KE500,
and KE700 products, respectively. Furthermore, the obtained findings confirmed that the
isotherms correspond to the IV-type isotherm, which shows the mesoporous nature of
the products [16]. The surface textures, for example, BET surface area, average pore size,
and total pore volume, are listed in Table 2. It was found that the BET surface area rises
according to the following order, KE > KE500 > KE700, owing to the inverse relationship
between surface area and crystalline size.
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Table 2. Surface characteristics of the KE, KE500, and KE700 products.

Sample BET Surface Area
(m2/g)

Total Pore Volume
(cc/g)

Average Pore Size
(nm)

KE 67.85 0.1077 3.17

KE500 20.15 0.0265 2.63

KE700 13.60 0.0305 4.49
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3.2. Removal of BFD Dye from Aqueous Media
3.2.1. Effect of pH

Figure 6A,B illustrates the effect of solution pH on the uptake efficacy of BFD dye as
well as the uptake capability of the KE, KE500, and KE700 products, respectively. It was
observed that the uptake efficacy of BFD dye and the uptake capability of the KE, KE500,
and KE700 products increased with rising pH from 2.50 to 8.50. The uptake efficacy of
BFD dye using the KE, KE500, and KE700 adsorbents at pH 8.5 is 56.36, 38.82, and 19.84%,
respectively. In addition, the uptake capability of the KE, KE500, and KE700 adsorbents at
pH 8.5 is 225.42, 155.26, and 79.36 mg/g, respectively.
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To clarify the adsorption process, the KE sample was photographed (as an illustrative
example) before and after adsorption at pH 8, as shown in Figure 7. As is clear from the
figure, the color intensity decreased significantly after adsorption.
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an adsorbent.

In addition, the point of zero charge (pHPZC) of the KE, KE500, and KE700 products is
represented in Figure 8. The point of zero charge (pHPZC) of the KE, KE500, and KE700
adsorbents is 5.10, 5.31, and 5.60, respectively. If pH < pHPZC, the medium works to
surround the surface of the KE, KE500, and KE700 adsorbents with positive hydrogen ions
that are repellent with positively charged BFD dye, as displayed in Scheme 1, and hence
reduce the uptake efficacy and uptake capability [16]. If pH > pHPZC, the medium works to
surround the surface of the KE, KE500, and KE700 adsorbents with negative hydroxide ions
that attract the positively charged BFD dye, as displayed in Scheme 1, and hence enhance
the uptake efficacy and uptake capability [16].
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Scheme 1. Removal mechanism of basic fuchsin dye using the KE, KE500, and KE700 adsorbents.

In order to study the stability of the KE, KE500, and KE700 samples at different
pH values (2.5–8.5), the XRD of the synthesized adsorbents was carried out at these pH
values (figures omitted for brevity). The results showed that there is no difference in the
intensity or locations of the XRD peaks, which confirms their stability. Additionally, the
inductively coupled plasma analysis revealed that there is no release of ions from the KE,
KE500, or KE700 adsorbents into the filtrate while undergoing adsorption. As a result,
the safety of the synthesized adsorbents is established, allowing their application in water
pollution treatment.

3.2.2. Effect of Interaction Time

Figure 9A,B illustrates the influence of interaction time on the uptake efficacy of
basic fuchsin dye as well as the uptake capability of the KE, KE500, and KE700 products,
respectively. It was observed that the uptake efficacy of basic fuchsin dye and the uptake
capability of the KE, KE500, and KE700 products increased with rising interaction time
from 5 to 30 min. In addition, stability was observed in these parameters when the time
was increased from 30 to 40 min due to the saturation of the adsorption sites. The uptake
efficacy of basic fuchsin dye using the KE, KE500, and KE700 adsorbents after 30 min was
57.36, 39.88, and 19.24%, respectively. In addition, the uptake capability of the KE, KE500,
and KE700 adsorbents after 30 min was 229.44, 159.50, and 76.96 mg/g, respectively.

The pseudo-second-order (Equation (4)) and the pseudo-first-order (Equation (3))
kinetic models [16] were operated to study the linear fitting of the obtained experimental
results owing to the elimination of BFD dye using the KE, KE500, and KE700 adsorbents,
as displayed in Figure 10A,B, respectively.

log(Ue −Ut) = logUe −
k1

2.303
t (3)

t
Ut

=
1

k2U2
e
+

1
Ue

t (4)

where k1 is the pseudo-first-order rate constant (1/min), Ut is the amount of BFD dye
adsorbed at time t (mg/g), k2 is the pseudo-second-order rate constant (g/mg.min), and
Ue is the quantity of BFD dye adsorbed at equilibrium (mg/g). The resulting constants
and the correlation coefficients (R2) are displayed in Table 3. In addition, the removal of
BFD dye using the KE, KE500, and KE700 products obeys the pseudo-first-order due to
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the following reasons: (1) The R2 values for the pseudo-first-order exhibit greater values
compared to the R2 values for the pseudo-second-order. (2) The calculated Ue values from
the pseudo-first-order closely align with the experimental Ue values.
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Table 3. Kinetic constants for the disposal of BFD dye by the KE, KE500, and KE700 adsorbents.

Adsorbent
Pseudo-First-Order Pseudo-Second-Order

k1 (1/min) Ue (mg/g) R2 k2
(g/mg.min) Ue (mg/g) R2

KE 0.0685 222.36 0.9996 0.00018 323.62 0.9989

KE500 0.1192 159.33 0.9999 0.00052 209.64 0.9956

KE700 0.0431 78.79 0.9994 0.00014 147.71 0.9945

3.2.3. Effect of Interaction Temperature

Figure 11A,B illustrate the impact of interaction temperature on the uptake efficacy of
BFD dye as well as the uptake capability of the KE, KE500, and KE700 products, respectively.
It was observed that the uptake efficacy of BFD dye and the uptake capability of the KE,
KE500, and KE700 products decreased with rising temperatures from 298 to 328 kelvin.
The uptake efficacy of BFD dye using the KE, KE500, and KE700 adsorbents at 328 kelvin is
44.33, 23.52, and 13.55%, respectively. In addition, the uptake capability of the KE, KE500,
and KE700 adsorbents at 328 kelvin is 177.30, 94.08, and 54.18 mg/g, respectively.
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The impact of solution temperature on the elimination of BFD dye by the KE, KE500,
and KE700 adsorbents was investigated by exploiting the thermodynamic constants, for
instance, ∆G◦ (change in free energy, kJ/mol), ∆H◦ (change in enthalpy, kJ/mol), and ∆S◦

(change in entropy, kJ/mol kelvin) which were estimated using Equations (5)–(7) [16].

ln KT =
4S◦

R
− 4H◦

RT
(5)

4G◦ = 4H◦ − T4 S◦ (6)
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KT =
Ue

Ee
(7)

where R is the universal gas constant (kJ/mol kelvin). T is the absolute temperature (kelvin).
KT is the distribution constant (L/g). In addition, the linear alteration of lnKT versus 1/T
is displayed in Figure 12, and the thermodynamic constants can be estimated from the
intercept and slope. Additionally, the thermodynamic constants for the elimination of BFD
dye using the KE, KE500, and KE700 products are displayed in Table 4. Negative ∆G◦

values suggested that the elimination of BFD dye by the KE, KE500, and KE700 products is
spontaneous. Also, the negative ∆H◦ values suggested that the elimination of BFD dye by
the KE, KE500, and KE700 products is exothermic. Additionally, the positive ∆S◦ values
suggested that the elimination of BFD dye by the KE, KE500, and KE700 products was
conducted in the direction of growing system randomness. Moreover, the elimination of
BFD dye by the KE, KE500, and KE700 products is physical in nature because the ∆H◦

values are smaller than 40 kJ/mol [16].
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KE700 products.

Table 4. The thermodynamic constants for the elimination of BFD dye by the KE, KE500, and
KE700 products.

Adsorbent
∆H◦

(kJ/mol)
∆S◦

(kJ/mol Kelvin)
∆G◦ (kJ/mol)

298 308 318 328

KE −14.20 0.0394 −25.94 −26.34 −26.73 −27.12

KE500 −20.66 0.0669 −40.62 −41.29 −41.96 −42.63

KE700 −11.47 0.0445 −24.73 −25.17 −25.62 −26.06
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3.2.4. Effect of BFD Dye Concentration

Figure 13A,B illustrate the impact of the original dye concentration on the uptake
efficacy of BFD dye in addition to the uptake capability of the KE, KE500, and KE700
products, respectively. It was found that the uptake efficacy of BFD dye decreased, whereas
the uptake capability of the KE, KE500, and KE700 adsorbents increased with increasing
initial dye concentrations.
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The Langmuir (Equation (5)) in addition to the Freundlich (Equation (6)) equilibrium
equations [16,37–40] were operated to study the linear fitting of the obtained experimental
data owing to the disposal of BFD dye by the KE, KE500, and KE700 products, as displayed
in Figure 14A,B, respectively.

Ee

Ue
=

1
k3Umax

+
Ee

Umax
(8)
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ln Ue = ln k4 +
1
x

ln Ee (9)

where 1/x represents the heterogeneity constant. k3 represents the equilibrium constant of
the Langmuir isotherm (L/mg). Furthermore, k4 represents the equilibrium constant of the
Freundlich isotherm (mg/g) (L/mg)1/n. Umax represents the maximum uptake capability
of the Langmuir isotherm (mg/g). Further, Equation (7) can be used for determining the
Umax from the applied Freundlich equilibrium isotherm [16].

Umax = k4

(
E1/x

o

)
(10)
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The resulting constants and the correlation coefficients (R2) are displayed in Table 5.
In addition, the disposal of BFD dye by the KE, KE500, and KE700 products obeys the
Langmuir equation because the R2 values of the Langmuir equation are higher than
the R2 values of the Freundlich equation. Additionally, the maximum uptake capa-
bility of the KE, KE500, and KE700 products towards BFD dye is 239.81, 174.83, and
93.19 mg/g, respectively.

Table 5. The obtained equilibrium constants of the disposal of BFD dye by the KE, KE500, and
KE700 products.

Langmuir Isotherm Freundlich Isotherm

Adsorbent Umax
(mg/g)

k3
(L/mg) R2 Umax

(mg/g)
k4

(mg/g) (L/mg)1/n R2

KE 239.81 0.3064 0.9999 236.49 196.81 0.9979

KE500 174.83 0.0917 0.9996 165.81 110.75 0.9944

KE700 93.19 0.0311 0.9966 79.84 36.53 0.9495

Furthermore, the uptake capability of the KE, KE500, and KE700 samples for adsorbing
BFD dye surpassed that of other adsorbents, as evidenced in Table 6. The utilization of
ZrO2/MgMn2O4/Mg(Mg0.333Mn1.333)O4 as an adsorbent offers several advantages. The
combination of these components creates a synergistic influence that increases the overall
adsorption operation. This nanocomposite configuration imparts a larger number of active
uptake positions, leading to increased uptake capability. Consequently, this composite
exhibits a heightened efficiency in removing basic fuchsin dye from aqueous media. The
strategic integration of ZrO2, MgMn2O4, and Mg(Mg0.333Mn1.333)O4 enhances the adsorp-
tion potential, making it an excellent choice for water pollution treatment applications.

Table 6. Comparison study between maximum adsorption capabilities of the fabricated adsorbents
and those of other adsorbents in the literature for the disposal of BFD dye by the KE, KE500, and
KE700 adsorbents [23–26].

Adsorbent Maximum Uptake
Capability (mg/g) Ref

Iron-manganese-oxide-coated kaolinite 10.36 [23]

Activated carbon/ferrospinel composite 101.00 [24]

Hydrogen titanate nanotubes 183.20 [25]

Xanthan/ferrite/lignin hybrid 33.33 [26]

KE 239.81 This study

KE500 174.83 This study

KE700 93.19 This study

3.2.5. Impact of Desorption and Reusability

The KE, KE500, and KE700 products were renewed by exposure to stirring at 60 ◦C
for 20 min in 50 mL of 1 M HCl, which completely removed the BFD dye from them.
Afterward, the regenerated products were utilized for five repeated cycles to eliminate the
BFD dye, adhering to the previously outlined experimental steps. According to Figure 15, it
can be observed that the percentage of BFD dye removal using the synthesized adsorbents
remained relatively stable. This suggests that these products can be employed several times
without experiencing a substantial reduction in effectiveness.
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4. Conclusions

Using the Pechini chemical sol–gel procedure, amorphous and crystalline novel ad-
sorbents based on Zr, Mg, Mn, and O were facilely synthesized for the effective elimina-
tion of BFD dye from aqueous solutions. Further, the adsorbent, which was synthesized
before calcination, was abbreviated as KE. Moreover, the adsorbents, which were syn-
thesized at 500 and 700 ◦C, were abbreviated as KE500 and KE700, respectively. The KE
adsorbent is amorphous, whereas the KE500 and KE700 adsorbents are nanostructured
mixtures of ZrO2, MgMn2O4, and Mg(Mg0.333Mg1.333)O4. The elimination of BFD dye by
the KE, KE500, and KE700 products is exothermic, physical, and follows the pseudo-first-
order kinetic model and Langmuir equilibrium isotherm. Moreover, the maximum BFD
dye uptake capabilities of the KE, KE500, and KE700 adsorbents are 239.81, 174.83, and
93.19 mg/g, respectively.
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