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Abstract: An excessive accumulation of crystal violet dye in the human body results in an accelerated
heart rate, tetraplegia, eye irritation, and long-term damage to the transparent mucous membrane
that protects the eyeballs. Accordingly, in this paper, sodium manganese silicate/sodium manganese
silicate hydroxide hydrate was easily fabricated as a novel type of nanostructures for the successful
disposal of crystal violet dye from aqueous solutions. The formed sodium manganese silicate/sodium
manganese silicate hydroxide hydrate nanostructures after the hydrothermal treatment of the gel
produced from the interaction of Mn(II) ions with Si(IV) ions at 180 ◦C for 6, 12, 18, and 24 h were
abbreviated as MS1, MS2, MS3, and MS4, respectively. The XRD showed that the average crystallite
size of the MS1, MS2, MS3, and MS4 samples is 8.38, 7.43, 4.25, and 8.76 nm, respectively. The
BET surface area of the MS1, MS2, MS3, and MS4 samples is 41.58, 46.15, 58.25, and 39.69 m2/g,
respectively. The MS1, MS2, MS3, and MS4 samples consist of spherical and irregular shapes with
average grain sizes of 157.22, 88.06, 43.75, and 107.08 nm, respectively. The best adsorption conditions
of the crystal violet dye employing the MS1, MS2, MS3, and MS4 products were achieved at pH = 8,
contact time = 140 min, and solution temperature = 298 kelvin. The linear pseudo-2nd-order model
as well as the linear Langmuir isotherm better describe the disposal of the crystal violet dye using the
MS1, MS2, MS3, and MS4 adsorbents. The studied thermodynamic parameters indicated that the
disposal of the crystal violet dye employing the MS1, MS2, MS3, and MS4 adsorbents is spontaneous,
exothermic, and chemical. The maximum disposal capacities of the MS1, MS2, MS3, and MS4
adsorbents towards crystal violet dye are 342.47, 362.32, 411.52, and 310.56 mg/g, respectively.

Keywords: nanoadsorbents; adsorption; water treatment; crystal violet dye

1. Introduction

The expansion of the science, industrial, and technology sectors improves the quality
of human life. It had a similar effect to the increased environmental pollution caused by the
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release of pollutants into water bodies [1–4]. Contaminated water is without a doubt one
of the most attention-grabbing issues that influences the environment, humans, wildlife,
and aquatic flora. Dangerous constituents causing water contamination include medicinal
components, organic dyes, industrial chemicals, and agricultural effluents [5–9]. Due to
their antagonistic and harmful influences on the environment, dyes have attracted special
attention in wastewater treatment [10–14]. The dyes have made significant contributions
to the improvement of human life in the fields of paints, leather industries, fabrics, food
processing industries, etc. On the other hand, the pollutants from these industries have
a severe impact on the environment and are therefore hazardous to humans and other
species. Due to their toxicity, carcinogenicity, and mutagenicity, organic dyes have be-
come the leading cause of water contamination [15,16]. Crystal violet is a widely used
organic cationic dye belonging to the triphenylmethane family. It is used extensively in
leather processing, commercial fabric dyeing, biological stains, veterinary medicines, and
the food industry [17–19]. Increased heart rate, tetraplegia, eye irritation, and long-term
damage to the transparent mucous membrane protecting the eyeballs are caused by an
excessive accumulation of crystal violet dye in the human body [20]. Consequently, the
removal of crystal violet dye from toxic wastewater is important. Various techniques for
the decontamination of crystal violet dye have been described in the literature. These
include electrolysis, biological treatment, flocculation, membrane filtration, adsorption,
advanced oxidation, and photocatalytic degradation [21–24]. Among these, the adsorption
method has been regarded as a flexible procedure for wastewater management. It offers
significant advantages, including affordability, low cost, profitability, performance, and
service simplicity, compared to other conventional techniques [25–30]. There are a lot of
adsorbents for the removal of crystal violet dye such as natural zeolite (177.75 mg/g), acti-
vated carbon/chitosan composite (2.38 mg/g), pyrophyllite (9.58 mg/g), Fe3O4/sodium
dodecyl sulphate (166.70 mg/g), multi-walled carbon nanotubes (90.52 mg/g), aromatic
polyimides (303.03 mg/g), polyacrylonitrile (5.46 mg/g), and activated carbon/Fe3O4
composite (35.30 mg/g) [20,31–37]. However, there is a need for more effective adsorbents.
Recently, manganese-based materials have important uses in several fields such as super-
capacitors and water treatment [38,39]. Consequently, the principal objective of this work
was to hydrothermally synthesize sodium manganese silicate/sodium manganese silicate
hydroxide hydrate as novel nanostructures for the effective disposal of crystal violet dye
from the aqueous solutions. In the crystal lattice of nanostructures, some of Mn(II) ions re-
place some Si(IV) ions, creating a negative charge that is chemically neutralized by the Na(I)
ions, which have the ability to do ion exchange with positive ions such as crystal violet dye.
Other objectives of this work included the study of experimental effects on the disposal of
crystal violet dye, such as pH, contact time, initial concentration of crystal violet dye, and
temperature. Also, the synthesized nanostructures were characterized using several tools
such as X-ray diffraction (XRD), Energy dispersive X-ray (EDX), Fourier-transform infrared
spectroscopy (FT-IR), and scanning electron microscopy (SEM).

2. Experimental
2.1. Chemicals

Hydrochloric acid (HCl), Manganese acetate tetrahydrate (Mn(CH3COO)2··4H2O),
sodium metasilicate pentahydrate (Na2SiO3·5H2O), crystal violet dye (C25H30ClN3), and
sodium hydroxide (NaOH) were supplied from Sigma Aldrich Company and utilized
without additional chemical refining.

2.2. Synthesis of Sodium Manganese Silicate/Sodium Manganese Silicate Hydroxide Hydrate

The Si(IV) solution was freshly prepared by dissolving 15 g of Na2SiO3·5H2O in 60 mL
of bi-distilled water. In addition, the Mn(II) solution was freshly prepared via dissolving
4.42 g of Mn(CH3COO)2·4H2O in 60 mL of bi-distilled water. After that, the Mn(II) solution
was carefully added using a burette to the Si(IV) solution drop by drop with vigorous
stirring for 30 min. Additionally, the yielded gel was carefully charged into a 180 mL
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Teflon-lined stainless-steel autoclave then treated hydrothermally at 180 ◦C for 6, 12, 18,
and 24 h. Moreover, the formed sodium manganese silicate/sodium manganese silicate
hydroxide hydrate nanostructures after 6, 12, 18, and 24 h were filtered using a centrifuge,
washed several times with hot bi-distilled water, oven dried at 65 ◦C, and encoded as MS1,
MS2, MS3, and MS4, respectively.

2.3. Characterization

Using an X-ray diffraction (XRD) apparatus (Model: Bruker D8 Advance (Billerica,
MA, USA)), the chemical structures of the MS1, MS2, MS3, and MS4 nanostructures were
examined. Operating a Fourier transform infrared (FT-IR) instrument (Model: Nicolet iS50
(Waltham, MA, USA)), the chemical functional groups of the MS1, MS2, MS3, and MS4
samples were recognized. The surface morphology and chemical elements of the MS1,
MS2, MS3, and MS4 products were precisely recognized by scanning electron microscopy
(Model: SEM-JEOL 6510LA (Akishima, Japan)) coupled to an energy-dispersive X-ray (EDX)
unit. Furthermore, the surface properties of the MS1, MS2, MS3, and MS4 products were
investigated operating N2 adsorption/desorption analysis at −196 ◦C on a Quantachrome
instrument (Model: NOVA Touch LX2 (Kiev, Ukraine)). Using a Jasco V-670 ultraviolet–
visible spectrometer (Hachioji-shi, Japan), the concentration change of the crystal violet dye
was measured.

2.4. Disposal of Crystal Violet Dye from Aqueous Media

The adsorption of crystal violet dye was conducted using a batch experiment. In this
regard, 0.05 g of the MS1, MS2, MS3, or MS4 adsorbent was carefully added to about 100
mL of a 250 mg/L crystal violet dye solution. After that, the mixture was magnetically
stirred for the specified time then the adsorbent was removed by centrifugation technique.
At a maximum absorbance wavelength of 590 nm, the concentration of crystal violet dye
in the filtrate was determined using a Jasco V-670 ultraviolet-visible spectrophotometer.
The effect of pH on crystal violet dye removal at room temperature was accomplished
in the range from 2 to 8, where the contact time equals 3 h. The pH was adapted using
0.1 M NaOH and HCl. The effect of contact time on crystal violet dye removal at room
temperature was accurately accomplished in the range from 20 min to 180 min, where the
pH equals 8. The effect of temperature on crystal violet dye removal after 140 min was
accurately accomplished in the range from 298 kelvin to 180 kelvin, where the pH equals 8.
The effect of concentration on crystal violet dye removal after 140 min was accomplished in
the range from 150 mg/L to 300 mg/L, where the pH equals 8.

The disposal percentage (%R) of crystal violet dye utilizing the MS1, MS2, MS3, and
MS4 adsorbents was expressed using Equation (1) [40].

% R =
Co − Ce

Co
× 100 (1)

where, Co is the initial concentration of crystal violet dye (mg/L) and Ce is the equilibrium
concentration of crystal violet dye (mg/L).

The disposal capability (Q, mg/g) of the MS1, MS2, MS3, and MS4 adsorbents towards
crystal violet dye was expressed using Equation (2) [40].

Q = (Co − Ce)×
V
W

(2)

where, W is the weight of the MS1, MS2, MS3, and MS4 adsorbents (g). V is the solution
volume of the crystal violet dye (L). The characteristics of crystal violet dye are clarified in
Table 1.
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Table 1. Characteristics of crystal violet dye.

Structure formula
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Chemical formula C25H30ClN3
Molar mass 407.99 g/mol
Solubility Soluble in water

Maximum Wavelength 590 nm

The point of zero charge (pHPZC) of the MS1, MS2, MS3, and MS4 adsorbents was
determined following the procedure outlined by Khalifa et al. [40]. The method involved
the addition of 0.20 g of each adsorbent to separate 50 mL solutions of 0.02 M KCl. The
initial pH (pHinitial) of the KCl solutions ranged from 2.5 to 11.5. After stirring each mixture
of KCl and adsorbent for 5 h, the subsequent pH values (pHfinal) were measured and
plotted against the corresponding primary pH values (pHinitial). The pH at which a distinct
plateau was observed in the plot was identified as the pHpzc.

3. Results and Discussion
3.1. Discussion of Characterization of the Synthesized Samples

Figure 1A–D represents the XRD patterns of the MS1, MS2, MS3, and MS4 samples, re-
spectively. All the samples consist of sodium manganese silicate (Na5(Mn0.67Na0.33)3MnSi6O18)
and sodium manganese silicate hydroxide hydrate (Na4Mn5Si10O24(OH)6·6H2O) as indi-
cated by JCPDS Nos. 01-072-2251 and 00-039-0405, respectively. The peaks of the sodium
manganese silicate at 2 θ = 21.79◦, 25.15◦, 56.67◦, and 66.26◦ are due to the (012), (120), (340),
and (136) miller indices, respectively. Furthermore, the peaks of the sodium manganese
silicate hydroxide hydrate at 2 θ = 6.09◦, 12.44◦, and 32.84◦ are due to the (010), (112), and
(143) miller indices, respectively. Additionally, the average crystallite size of the MS1, MS2,
MS3, and MS4 samples is 8.38, 7.43, 4.25, and 8.76 nm, respectively. Hence, we can conclude
that the MS1, MS2, MS3, and MS4 samples consist of the same phases (sodium manganese
silicate and sodium manganese silicate hydroxide hydrate) but they differ in intensities
of XRD peaks and hence they have different average crystallite sizes and surface textures.
The consequent surface textures such as surface area, which will be discussed later. Hence,
increasing the hydrothermal time from 6 h to 18 h reduces the average crystallite size of the
products. Besides, increasing the hydrothermal time from 18 h to 24 h increases the average
crystallite size of the synthesized products.

Figure 2A–D displays the EDX patterns of the MS1, MS2, MS3, and MS4 nanostructures,
respectively. All the products consist of Mn, Si, Na, and O, as displayed in Table 2.

Figure 3A–D displays the adsorption/desorption curves of N2 on the MS1, MS2, MS3,
and MS4 products, respectively. In addition, the obtained curves of all the synthesized
nanostructures belong to the IV types [41]. Moreover, the surface properties, for example,
total pore volume, BET surface area as well as average pore size of the MS1, MS2, MS3,
and MS4 samples are displayed in Table 3. The determined BET surface area increased
according to the following order; MS4 < MS1 < MS2 < MS3 because the average crystallite
size improved according to the reverse sequence.
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Table 2. The EDX analysis of the MS1, MS2, MS3, and MS4 nanostructures.

Samples % Mn % Si % Na % O

MS1 28.97 32.04 9.20 29.79

MS2 35.03 30.44 8.08 26.45

MS3 31.07 28.26 11.53 29.14

MS4 27.17 28.06 11.95 32.82
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(D) samples.
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Table 3. The obtained BET surface area, average pore size as well as total pore volume of the MS1,
MS2, MS3, and MS4 products.

Surface Properties
Sample

MS1 MS2 MS3 MS4

BET surface area (m2/g) 41.58 46.15 58.25 39.69

Average pore size (nm) 2.81 3.27 3.24 3.09

Total pore volume (cc/g) 0.0584 0.0755 0.0945 0.0714

Figure 4A–D displays the SEM images of the MS1, MS2, MS3, and MS4 nanostructures,
respectively. The MS1, MS2, MS3, and MS4 nanostructures consist of spherical and irregular
shapes with average grain sizes of 157.22, 88.06, 43.75, and 107.08 nm, respectively. There is
inconsistency between the average crystallite size and the grain size of the samples. X-ray
diffraction (XRD) and scanning electron microscopy (SEM) are two different techniques
used to characterize materials, and they provide information on different aspects of the
sample microstructure, including crystallite size and grain size, respectively. The main
difference between the crystallite size obtained from XRD and the grain size obtained from
SEM is the level of structural information they provide. XRD gives information about
the size of the individual crystalline domains within the material, while SEM provides
information about the size and shape of the individual grains of surface that make up the
material, which may include multiple crystalline domains.

Figure 5A–D displays the FT-IR spectra of the MS1, MS2, MS3, and MS4 nanostructures,
respectively. In addition, the apparent absorption bands in the range 450–465 cm−1 are
related to the bending vibration of the E-O-E (E = Si and/or Mn). The apparent absorption
bands in the range 610–668 cm−1 are related to the internal symmetric stretching of the
E-O-E (E = Si and/or Mn). The apparent absorption bands in the range 775–784 cm−1 are
related to the external symmetric stretching of the E-O-E (E = Si and/or Mn). The apparent
absorption bands in the range 1006–1016 cm−1 are related to the internal asymmetric
stretching of the E-O-E (E = Si and/or Mn). The apparent absorption bands in the range
1413–1422 cm−1 are related to the external asymmetric stretching of the E-O-E (E = Si
and/or Mn). The apparent absorption bands in the range 1559–1655 cm−1 are related to the
bending vibration of the OH. The apparent absorption bands in the range 3446–3462 cm−1

are related to the stretching vibration of the OH [41,42].

3.2. Disposal of Crystal Violet Dye from Aqueous Media
3.2.1. Effect of Solution pH

The pH of the organic dye solution has a major impact on the adsorption mechanism
and performance. The solution’s pH has a direct influence on the surface charge of the
adsorbent and the extent of ionization of the adsorbate molecules. Consequently, in the
adsorption process involving the surface charge of the adsorbent, the pH of the organic dye
solution will have a substantial effect on adsorption performance. This study investigated
the adsorption performance of the MS1, MS2, MS3, and MS4 adsorbents for crystal violet
dye removal at different pH values, ranging from 2 to 8, using an initial crystal violet dye
concentration of 250 mg/L for 3 h at room temperature. The adsorption of crystal violet dye
cannot be studied at pH greater than 8 due to the possibility of precipitation. Crystal violet
dye is a cationic dye, meaning it carries a positive charge. As the pH increases above 8, the
solution becomes more basic, and there is a higher concentration of hydroxide ions (OH−).
These hydroxide ions can interact with the positively charged dye molecules, leading to
charge neutralization and the formation of insoluble precipitates. The impact of initial
pH on the % disposal of crystal violet dye and the disposal capability of the MS1, MS2,
MS3, and MS4 adsorbents is depicted in Figure 6A,B, respectively. It is evident that the
% disposal of crystal violet dye and the disposal capability of the MS1, MS2, MS3, and
MS4 adsorbents were extremely sensitive to the initial pH of the crystal violet dye solution.
The higher the pH value, the higher the resulting % disposal or disposal capability. This
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result implies that the disposal process is primarily controlled by the electrostatic attraction
between the surface of the utilized adsorbent and the adsorbate molecules. At pH = 8, the
% disposal of the crystal violet dye using the MS1, MS2, MS3, and MS4 adsorbents is 67.96,
70.78, 81.89, and 61.87%, respectively. Besides, the maximum disposal capability of the
MS1, MS2, MS3, and MS4 adsorbents towards crystal violet dye is 339.82, 353.92, 409.44,
and 309.36 mg/g, respectively. The % disposal and disposal capability increased according
to the following order; MS4 < MS1 < MS2 < MS3 because the obtained BET surface area
increased in the same order.
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The point of zero charge (i.e., pHPZC) of the MS1, MS2, MS3, and MS4 adsorbents
is clarified in Figure 7. The pHPZC of the MS1, MS2, MS3, and MS4 adsorbents is 5.30,
5.52, 5.62, and 5.69, respectively. In dye solutions whose pH value is smaller than pHPZC,
H+ ions are easily available and compete with the cationic crystal violet dye to reach the
surface of the adsorbent, which then decreases the amount of the crystal violet dye that
can be adsorbed due to the repulsion. In dye solutions whose pH value is greater than
pHPZC, OH− ions are attracted to the adsorbent surface. The adsorbent’s surface was
dominated by a negative charge that can attract more positively charged crystal violet dye,
as depicted in Scheme 1 [42]. After that, the Na+ ions of the adsorbent were ion-exchanged
with cationic crystal violet dye. It is worth noting that the sodium ions in the adsorbent
material arise to neutralize the negative charge of the nanostructures resulting from the
chemical substitution of some divalent manganese ions for tetravalent silicon ions.
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To confirm the adsorption of crystal violet dye by the synthesized adsorbents, FT-
IR analysis was performed for MS1 (as an illustrative example) after the adsorption of
crystal violet dye, as shown in Figure 8A. The new bands at 1187 and 1364 cm−1 are due
to stretching vibrations of aliphatic and aromatic tertiary amine groups of crystal violet
dye, respectively. Also, the new band at 1470 cm−1 is due to the bending vibration of
the N-CH3 group of crystal violet dye. Besides, the new band at 1592 cm−1 is due to the
stretching vibration of C = C aromatic of crystal violet dye. In addition, the new bands
located at 2900 and 3107 cm−1 are due to the stretching vibrations of aliphatic and aromatic
CH of crystal violet dye, respectively [43]. The bands at 450, 614, 784, 1006, 1416, 1559,
1650, and 3446 cm−1 are due to the MS1 adsorbent. Besides, to confirm the adsorption of
crystal violet dye by the synthesized adsorbents, SEM analysis was performed for MS1 (as
an illustrative example) after the adsorption of crystal violet dye, as shown in Figure 8B.
Figure 8B presents a clear visual depiction of the transformation in the morphology of
the MS1 adsorbent, where the spherical and irregular shapes vanish as a result of the
aggregation of crystal violet dye on its surface.
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3.2.2. Effect of Contact Time

The contact adsorption time has a major impact on the adsorption mechanism and
performance. This study investigated the adsorption performance of the MS1, MS2, MS3,
and MS4 adsorbents for crystal violet dye removal at different contact times, ranging
from 20 min to 180 min, using an initial crystal violet dye concentration of 250 mg/L at
room temperature and pH 8. Furthermore, the impact of contact adsorption time on the
% disposal of crystal violet dye and the disposal capability of the MS1, MS2, MS3, and
MS4 adsorbents is depicted in Figure 9A,B, respectively. It is evident that the % disposal of
crystal violet dye and the disposal capability of the MS1, MS2, MS3, and MS4 adsorbents
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were extremely sensitive to the contact time in the range from 20 min to 140 min because
of the available active centers of adsorption. After that, the % disposal of crystal violet
dye and the disposal capability of the MS1, MS2, MS3, and MS4 adsorbents were almost
constant when the contact time of disposal increased from 140 min to 180 min because
of the saturation of active centers of adsorption. After 140 min, the % disposal of the
crystal violet dye using the MS1, MS2, MS3, and MS4 adsorbents is 67.56, 71.06, 81.41,
and 61.44%, respectively. Besides, the maximum disposal capability of the MS1, MS2,
MS3, and MS4 adsorbents towards crystal violet dye is 337.82, 355.28, 407.04, and 307.22
mg/g, respectively. A sudden increase in adsorption over a period of time (120–140 min)
is due to the activation of adsorption sites. Adsorption typically occurs on the surface of
the adsorbent material, which contains specific sites where adsorption can take place. If
these adsorption sites are not immediately available for interaction with the adsorbate,
the adsorption rate may initially be slow. However, with increasing time, these sites may
become activated or exposed, leading to a sudden increase in adsorption.
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Adsorption kinetics is a basic property for evaluating the effectiveness of an adsorption
process. To describe the kinetics of the adsorption process, the linear forms of pseudo-
2nd-order and pseudo-1st-order kinetic models have been utilized. The pseudo-1st-order
model suggests that the rate of solute adsorption is directly proportional to the amount
of adsorbate with time and difference between the saturation concentration. This kinetic
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model is extremely appropriate during the starting step of the adsorption process. Using
Equation (3), the linear form of the pseudo-1st-order equation is expressed [42].

log (Qe −Qt) = logQe −
kF

2.303
t (3)

where, Qt represents the disposal capability of the MS1, MS2, MS3, or MS4 adsorbent
at time t (mg/g), Qe represents the quantity of the crystal violet dye adsorbed at the
equilibrium (mg/g), and kF represents the equilibrium rate constant of the pseudo-1st-
order kinetic model (1/min). The pseudo-2nd-order kinetic model is based on the concept
that chemical adsorption is the rate-limiting step. This kinetic model suggests that the
adsorption rate is entirely dependent on the disposal capability and is independent of
the adsorbate concentration. Using Equation (4), the linear form of the pseudo-2nd-order
equation is expressed [42].

t
Qt

=
1

kSQ2
e
+

1
Qe

t (4)

where, kS is the equilibrium rate constant of the pseudo-2nd-order kinetic model (g/mg.min).
Figure 10A,B displays the pseudo-1st-order and pseudo-2nd-order linear kinetic models,
respectively. Besides, Table 4 summarizes the corresponding kinetic constants.
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Table 4. The kinetic constants of the linear pseudo-1st-order and pseudo-2nd-order models for the
disposal of crystal violet dye using the MS1, MS2, MS3, and MS4 adsorbents.

Adsorbent
QExp

(mg/g)

Qe (mg/g) Rate Constants R2 RSS

First
Order

Second
Order

kF
(1/min)

kS
(g/mg.min)

First
Order

Second
Order

First
Order

Second
Order

MS1 337.82 280.56 348.43 0.0087 5.05 × 10−5 0.9763 0.9981 0.0019 8.95 × 10−5

MS2 355.28 281.27 350.88 0.0088 6.10 × 10−5 0.9799 0.9992 0.0017 3.72 × 10−5

MS3 407.04 304.53 416.67 0.0106 6.29 × 10−5 0.9849 0.9992 0.0018 2.71 × 10−5

MS4 307.22 267.77 302.11 0.0069 4.49 × 10−5 0.9782 0.9981 0.0011 1.18 × 10−4

Moreover, the nonlinear forms of pseudo-1st-order and pseudo-2nd-order kinetic
models have been utilized as shown in Equations (5) and (6), respectively [1].

Qt = Qe (1− e−kFt) (5)

Qt =
Q2

e kSt
1 + QekSt

(6)

Figure 11A,B shows the nonlinear pseudo-1st-order and pseudo-2nd-order kinetic
models, respectively. Besides, Table 5 summarizes the corresponding kinetic constants. By
comparing linear models with nonlinear ones, it can be concluded that nonlinear models
are not suitable for describing adsorption processes because Reduced Chi-squared values
(χ2) are much larger than 1. Besides, linear models are suitable for describing adsorption
processes because the values of the residual sum of squares (RSS) are very small. By
comparing the linear pseudo-2nd-order model with the linear pseudo-1st-order model, it
can be concluded that the linear pseudo-2nd-order model had the highest R2 (correlation
co-efficient) values and the lowest RSS (residual sum of squares) values. Hence, the linear
pseudo-2nd-order model better describes the disposal of the crystal violet dye using the
MS1, MS2, MS3, and MS4 adsorbents than does the linear pseudo-1st-order. Also, the
calculated theoretical disposal capability (Qe) values from the pseudo-2nd-order linear
model closely matched with the experimental disposal capability (QExp) values.

3.2.3. Effect of Temperature

The temperature has a major impact on the adsorption mechanism and performance.
This study investigated the adsorption performance of the MS1, MS2, MS3, and MS4 adsor-
bents for crystal violet dye removal at different temperatures, ranging from 298 kelvin to
328 kelvin, using an initial crystal violet dye concentration of 250 mg/L at pH 8 and 140 min.
The effect of temperature on the % disposal of crystal violet dye and the disposal capability
of the MS1, MS2, MS3, and MS4 adsorbents is depicted in Figure 12A,B, respectively. It
is evident that the % disposal of crystal violet dye and the disposal capability of the MS1,
MS2, MS3, and MS4 adsorbents were extremely decreased as the temperature increased.
Higher temperatures can lead to desorption, where previously adsorbed molecules gain
enough energy to break free from the surface. This process becomes more significant at
higher temperatures, contributing to the decrease in adsorption.

The impact of temperature on the disposal of crystal violet dye using the MS1, MS2,
MS3, and MS4 nanostructures was evaluated using the thermodynamic parameters, for
example, ∆G◦ (change in free energy, kJ/mol), ∆H◦ (change in enthalpy, kJ/mol), and ∆S◦

(change in entropy, kJ/mol kelvin) which were evaluated using Equations Nos. (7)–(9) [42].

lnKd =
4So

R
− 4Ho

RT
(7)

4Go = 4Ho − T4 So (8)
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Kd =
Qe

Ce
(9)

where, R represents the universal gas constant (kJ/mol kelvin), T represents the absolute
temperature (kelvin), and Kd represents the distribution constant (L/g). The linear variation
of lnKd against 1/T is depicted in Figure 13, and the thermodynamic parameters can be
calculated using intercept and slope. The examined thermodynamic parameters for the
disposal of crystal violet dye by the MS1, MS2, MS3, and MS4 adsorbents are listed in
Table 6. Negative ∆G◦ values revealed that the disposal of crystal violet dye using the MS1,
MS2, MS3, and MS4 adsorbents is spontaneous. Besides, the negative ∆H◦ values revealed
that the disposal of crystal violet dye using the MS1, MS2, MS3, and MS4 adsorbents is
exothermic. Moreover, the positive ∆S◦ values indicated that the disposal of crystal violet
dye using the MS1, MS2, MS3, and MS4 adsorbents was accomplished in the direction of
increasing system randomness. Additionally, the disposal of the crystal violet dye using
the MS1, MS2, MS3, and MS4 adsorbents is chemical in nature because the ∆H◦ values
exceed 40 kJ/mol.
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Table 5. The kinetic constants of the nonlinear pseudo-1st-order and pseudo-2nd-order models for
the disposal of crystal violet dye using the MS1, MS2, MS3, and MS4 adsorbents.

Adsorbent
QExp

(mg/g)

Qe (mg/g) Rate Constants R2 χ2

First
Order

Second
Order

kF
(1/min)

kS
(g/mg.min)

First
Order

Second
Order

First
Order

Second
Order

MS1 337.82 253.39 347.07 0.0210 5.12 × 10−5 0.9974 0.9983 9.54 6.35

MS2 355.28 264.63 351.87 0.0236 6.04 × 10−5 0.9936 0.9991 24.32 3.53

MS3 407.04 322.83 416.23 0.0272 6.31 × 10−5 0.9879 0.9988 62.19 6.28

MS4 307.22 210.45 299.66 0.0176 4.61 × 10−5 0.9989 0.9992 2.71 2.21
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Table 6. The obtained thermodynamic parameters for the disposal of crystal violet dye utilizing the
MS1, MS2, MS3, and MS4 adsorbents.

Adsorbent
∆H◦

(kJ/mol)
∆S◦

(kJ/mol Kelvin)
∆G◦ (kJ/mol)

298 308 318 328

MS1 −42.85 0.1326 −82.37 −83.69 −85.02 −86.35

MS2 −43.57 0.1331 −83.22 −84.55 −85.88 −87.21

MS3 −45.66 0.1349 −85.85 −87.20 −88.55 −89.90

MS4 −43.90 0.1368 −84.68 −86.05 −87.42 −88.79

3.2.4. Effect of Concentration

The concentration has a major impact on the adsorption mechanism and performance.
This study investigated the adsorption performance of the MS1, MS2, MS3, and MS4
adsorbents for crystal violet dye removal at different concentrations, ranging from 150 mg/L
to 300 mg/L at pH 8 and 140 min. The impact of initial dye concentration on the % disposal
of crystal violet dye and the disposal capability of the MS1, MS2, MS3, and MS4 adsorbents
is depicted in Figure 14A,B, respectively. It is evident that the % disposal of crystal violet
dye using the MS1, MS2, MS3, and MS4 adsorbents was extremely decreased, whereas the
disposal capability increased as the concentration increased. As the initial concentration
of the contaminant increases, the absolute amount of contaminant being adsorbed also
increases. However, the disposal percentage may decrease because the same amount of
adsorption will result in a smaller relative reduction in the higher initial concentration.

The adsorption isotherm model illustrates the interaction between adsorbate and
adsorbent, providing a theoretical foundation for the development of the dye adsorption
mechanism. The maximum adsorption amount can be predicted using the linear Langmuir
isotherm (Equation (10)), which assumes single molecular layer surface adsorption and
uniform adsorption at each adsorption site [42].
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Ce

Qe
=

1
kLQmax

+
Ce

Qmax
(10)

where, kL is the constant of Langmuir (L/mg) and Qmax is the maximum disposal capability
of the MS1, MS2, MS3, and MS4 adsorbents (mg/g).

The linear Freundlich isotherm (Equation (11)) describes the adsorption of molecules
on heterogeneous surfaces [42].

lnQe = lnkFr +
1
n

lnCe (11)

where, kFr represents the constant of Freundlich ((mg/g) (L/mg)1/n) whereas n is the
strength factor of the adsorption process. The Freundlich isotherm can be applied to
estimate the Qmax applying Equation (12) [42].

Qmax = kFr

(
C1/n

o

)
(12)

Figure 15A,B displays the linear Langmuir and Freundlich equilibrium isotherms,
respectively. Besides, Table 7 summarizes the corresponding equilibrium constants.
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Table 7. The constants of the linear Langmuir and Freundlich equilibrium isotherms for the adsorp-
tion of crystal violet dye applying the MS1, MS2, MS3, and MS4 adsorbents.

Adsorbent

Langmuir Freundlich

Qmax (mg/g) kL (L/mg) RSS R2 Qmax (mg/g) kFr
(mg/g)(L/mg)1/n RSS R2

MS1 342.47 1.0069 2.11 × 10−6 0.9996 354.94 275.92 7.77 × 10−4 0.9533

MS2 362.32 0.7095 6.53 × 10−6 0.9998 380.34 273.46 3.97 × 10−4 0.9775

MS3 411.52 4.7178 6.65 × 10−7 0.9997 445.02 336.94 0.0224 0.5161

MS4 310.56 0.7541 2.72 × 10−5 0.9996 311.25 274.58 3.62 × 10−4 0.8394
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Moreover, the nonlinear forms of Langmuir and Freundlich equilibrium isotherms
have been utilized, as shown in Equations (13) and (14), respectively [1].

Qe =
QmaxkLCe

1 + kLCe
(13)

Qe = kFr × C1/n
e (14)

Figure 16A,B shows the nonlinear Langmuir and Freundlich equilibrium isotherms
for the disposal of crystal violet dye onto the synthesized adsorbents, respectively. Besides,
Table 8 summarizes the corresponding equilibrium constants.
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Table 8. The constants of the nonlinear Langmuir and Freundlich equilibrium isotherms for the
adsorption of crystal violet dye applying the MS1, MS2, MS3, and MS4 adsorbents.

Adsorbent

Langmuir Freundlich

Qmax (mg/g) kL (L/mg) R2 χ2 1/n kFr (mg/g)
(L/mg)1/n R2 χ2

MS1 339.76 1.5149 0.9880 9.06 0.0449 276.61 0.9661 25.67

MS2 356.73 1.2894 0.9642 49.75 0.0589 274.26 0.9831 23.51

MS3 414.40 5.4610 0.9753 104.57 0.0461 341.23 0.6708 1395.98

MS4 305.47 2.4586 0.7295 40.73 0.0229 274.38 0.8922 16.23

By comparing linear isotherms with nonlinear ones, it can be concluded that non-
linear isotherms are not suitable for describing adsorption processes because Reduced
Chi-squared values (χ2) are much larger than 1. Besides, linear isotherms are suitable for
describing adsorption processes because the values of the residual sum of squares (RSS)
are very small. By comparing the linear Langmuir isotherm with the linear Freundlich
isotherm, it can be concluded that the linear Langmuir isotherm had the highest R2 (corre-
lation co-efficient) values and the lowest RSS (residual sum of squares) values. Hence, the
linear Langmuir isotherm better describes the disposal of the crystal violet dye using the
MS1, MS2, MS3, and MS4 adsorbents than does the linear Freundlich isotherm. In addition,
the maximum disposal capabilities of the MS1, MS2, MS3, and MS4 adsorbents towards
crystal violet dye are 342.47, 362.32, 411.52, and 310.56 mg/g, respectively.

4. Conclusions

Sodium manganese silicate/sodium manganese silicate hydroxide hydrate nanostruc-
tures were synthesized using the hydrothermal treatment of Mn(II)/Si(IV) gel at 180 ◦C
for 6, 12, 18, and 24 h and abbreviated as MS1, MS2, MS3, and MS4, respectively. The syn-
thesized nanostructures were successfully used to remove crystal violet dye from aquatic
environments. The optimal crystal violet dye adsorption conditions were achieved at pH
8, 140 min, and 298 kelvin. In addition, the maximum disposal capabilities of the MS1,
MS2, MS3, and MS4 adsorbents towards crystal violet dye are 342.47, 362.32, 411.52, and
310.56 mg/g, respectively.
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