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Abstract: The creation of effective catalytic systems for cross-coupling reactions, reduction, etc.,
capable of working in water-organic or pure aqueous media is in great demand. The article presents
the synthesis of NHC-palladium complexes of the PEPPSI type based on monoimidazolium deriva-
tives of thiacalix[4]arene. The structure of the imidazolium precursors, obtained in 81–88% yields
and the complexes themselves, obtained in 40–50% yields, is established using modern methods,
including X-ray structural analysis and high-resolution mass spectrometry. It is shown that the
obtained complex with bulk substituents near the palladium atom is not inferior to the well-known
PEPPSI-type Organ’s catalyst in the catalysis of Suzuki-Miyaura coupling and is four times superior
to the latter in the p-nitrophenol reduction reaction. Given the presence of free phenolic hydroxyl
groups in the macrocycle, the obtained complexes are of interest for further post-modification or for
immobilization on a carrier.

Keywords: thiacalix[4]arene; NHC; palladium; cross-coupling; PEPPSI complex

1. Introduction

Palladium-catalyzed cross-coupling reactions allow the creation of new carbon-carbon
or carbon-heteroatom bonds under mild conditions [1]. The reliability and reproducibility
of these reactions are particularly attractive in fine organic synthesis [2], pharmaceuticals [3]
or materials chemistry [4]. Palladium(II) complexes based on N-heterocyclic carbene [NHC]
ligands used as catalysts have several advantages, the most important of which are their
resistance to moisture and air oxygen [5–7] and the pronounced σ-donating ability of NHC.
NHCs increase the electron density at the metal center by attaching an unshared electron
pair to the d-orbital of the metal via a σ-bond [8]. The steric factor also has a significant
effect. There is a tendency to increase the selectivity of the catalyst action in the presence of
bulk substituents, while the availability of the active center decreases [9]. Modern NHC
complexes of transition metals, in particular palladium, have great catalytic activity and
potential for the further adjustment of properties [10]. The so-called PEPPSI (Pyridine-
Enhanced Precatalyst: Preparation, Stabilization and Initiation) complexes of palladium
(II), introduced into practice by an Organ’s group, have recently become popular among
catalysts of NHC type [11–13]. The latter Pd-PEPPSI complexes show high catalytic activity,
with no need for an inert atmosphere and require a low catalyst load [14,15].

Combining Pd(II) NHC complexes and calix[4]arene platforms can significantly ex-
pand the application of catalysts [16]. Large macrocycles can act as bulky ligands, which
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facilitate the formation of monoligated intermediates [17] and can promote the final re-
ductive elimination step in coupling reactions [18]. A number of successfully obtained
NHC complexes based on the classical calixarene are presented in the literature [19],
including PEPPSI-type complexes [20–23]. However, all presented structures require a non-
convenient multistage step-by-step modification of the upper rim to introduce imidazolium
fragments. We proposed the use of the thiacalix[4]arene platform for the construction of
bis-NHC palladium complexes in a different way. In this case, the desired NHC complexes
were obtained in only four reaction steps by modifying the lower rim of the macrocycle
to give final complexes in the 1,3-alternate stereoisomeric form [24]. Recently [25], we
discovered the unique ability of thiacalix[4]arenes to form monoimidzolium derivatives
when distally disubstituted bromopropyl macrocycle is introduced into reaction with im-
idazoles. In the present work, the synthesis and catalytic activities of thiacalix[4]arene
PEPPSI-type palladium complexes are discussed. The resulting complexes are charac-
terized by ease of synthesis and can also be post-modified or immobilized onto cationic
carriers for heterogeneous catalysis

2. Results and Discussion
2.1. Synthesis

To obtain precursors of NHC complexes based on thiacalix[4]arene in the cone stere-
osomeric form, the reaction between bromo derivative 1 and N-methylimidazole was
performed (Scheme 1). The spectral characteristics of compound 2 correspond to the litera-
ture data [25]. The derivative 3 with bulky 2′,6′ di-isopropylphenyl fragment was obtained
by a similar technique. Due to steric hindrance of N-2′,6′ di-isopropylphenyl imidazole, it
took 65 h of heating to fully complete the reaction.
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Scheme 1. Synthesis of imidazolium salts 2 and 3.

Crystals suitable for X-ray diffraction analysis were obtained for compound 2. In
the resulting crystal, compound 2 is presented in zwitter-ionic form as a dimer (Figure 1)
formed due to electrostatic interactions between the phenolate anion of one macrocycle
and the imidazolium fragment of another macrocycle. The phenolate ion is stabilized by
strong hydrogen bonding with neighboring phenolic hydroxyl groups (Figure S1). The
asymmetric unit comprises two thiacalixarene molecules. The thiacalix[4]arene molecules
themselves are in a pinched cone configuration; the distance between the opposing carbon
atoms in the para-position (C43 and C86) is 5.756 Å and for (C46 and C60)—10.171 Å for
one molecule and 5.762 (C13 and C122)/10.407 Å (C6 and C116)—for another. The cavity
distortion occurs because the substituted phenolic hydroxyl group does not participate
in hydrogen bonding and is directed outside the lower rim of thiacalix[4]arene. This
structural motif is typical of the crystal structures of monosubstituted thiacalix[4]arene
derivatives [26,27], including the only example in the literature of a zwitter-ion salt [28],
which, unlike compound 2, is an internal zwitter-ion in the solid phase.



Inorganics 2023, 11, 326 3 of 12

Inorganics 2023, 11, x FOR PEER REVIEW 3 of 13 
 

 

tural motif is typical of the crystal structures of monosubstituted thiaсalix[4]arene deriv-
atives [26,27], including the only example in the literature of a zwitter-ion salt [28], which, 
unlike compound 2, is an internal zwitter-ion in the solid phase. 

 
Figure 1. ORTEP representation of 2 showing 50% probability thermal ellipsoids. C atoms—grey, N 
atoms—blue, O atoms—red, S atoms—yellow. 

The structure of compound 3 was also proved by a complex of physical methods. 
Thus, in the NMR 1H spectrum (Figure S2), after quaternization, an acidic proton signal 
appears at 10.01 ppm, as well as an imidazole proton signal as a broad singlet at 8.66 ppm. 
According to the two-dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) 1H-
1H spectrum, a series of cross-peaks of protons of the imidazolium fragment with meth-
ylene protons of the propyl linker are presented (Figure S2). Proton signals of phenolic 
hydroxyl groups do not appear in the NMR 1Н spectrum due to rapid exchange, as previ-
ously shown for compound 2 [25], but in the IR spectrum, there is a broad band at 3388 
cm−1 corresponding to the valent vibrations of hydrogen-bonded OH groups. The [M+H]+ 
quasimolecular ion with m/z 989.4551 (calculated for [C58H73N2O4S4]+ 989.4448) was found 
in the high-resolution electrospray ionization mass spectrometry (HR ESIMS) spectrum 
(Figure S2). 

Monosubstituted thiaсalix[4]arenes 2 and 3 were used to create PEPPSI-type NHC 
complexes. The reaction was performed in pyridine at 80 °C using palladium acetate as a 
metal source and potassium carbonate as a base with the addition of KI as a source of 
halogen ligands (Scheme 2). The reaction was carried out for 50 h of heating in an inert 
atmosphere, and the target complexes were isolated by column chromatography. 

The disappearance of the signal of the acidic C-N-C proton in the NMR spectra, as 
well as the appearance of a series of signals of the pyridine ring protons in the downfield 
region, testify to the successful formation of complexes 4 and 5. In the 13C NMR spectra, 
signals corresponding to the carbene carbon atom appear at 157.8 ppm (for 3) and 155.5 
ppm (for 4). In the 2D (1H-1H) NMR NOESY spectrum of compound 4 (Figure S3), the 
cross-peaks between signals of pyridine protons (δH = 9.11 ppm) and N-methyl protons 
(δH = 4.04 ppm) unequivocally prove the structure of compound 4. The composition of 
complexes 4 and 5 was confirmed by HR ESIMS. Thus, the quasimolecular ion [M-I-Py]+ 
with m/z 1075.1354 (calculated for [C47H58IN2O4PdS4]+ 1075.1354) is present in the mass 
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The structure of compound 3 was also proved by a complex of physical methods. Thus,
in the NMR 1H spectrum (Figure S2), after quaternization, an acidic proton signal appears at
10.01 ppm, as well as an imidazole proton signal as a broad singlet at 8.66 ppm. According
to the two-dimensional Nuclear Overhauser Effect Spectroscopy (NOESY) 1H-1H spectrum,
a series of cross-peaks of protons of the imidazolium fragment with methylene protons of
the propyl linker are presented (Figure S2). Proton signals of phenolic hydroxyl groups
do not appear in the NMR 1H spectrum due to rapid exchange, as previously shown for
compound 2 [25], but in the IR spectrum, there is a broad band at 3388 cm−1 corresponding
to the valent vibrations of hydrogen-bonded OH groups. The [M+H]+ quasimolecular
ion with m/z 989.4551 (calculated for [C58H73N2O4S4]+ 989.4448) was found in the high-
resolution electrospray ionization mass spectrometry (HR ESIMS) spectrum (Figure S2).

Monosubstituted thiacalix[4]arenes 2 and 3 were used to create PEPPSI-type NHC
complexes. The reaction was performed in pyridine at 80 ◦C using palladium acetate as
a metal source and potassium carbonate as a base with the addition of KI as a source of
halogen ligands (Scheme 2). The reaction was carried out for 50 h of heating in an inert
atmosphere, and the target complexes were isolated by column chromatography.
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The disappearance of the signal of the acidic C-N-C proton in the NMR spectra, as
well as the appearance of a series of signals of the pyridine ring protons in the downfield
region, testify to the successful formation of complexes 4 and 5. In the 13C NMR spec-
tra, signals corresponding to the carbene carbon atom appear at 157.8 ppm (for 3) and
155.5 ppm (for 4). In the 2D (1H-1H) NMR NOESY spectrum of compound 4 (Figure S3),
the cross-peaks between signals of pyridine protons (δH = 9.11 ppm) and N-methyl protons
(δH = 4.04 ppm) unequivocally prove the structure of compound 4. The composition of
complexes 4 and 5 was confirmed by HR ESIMS. Thus, the quasimolecular ion [M-I-Py]+

with m/z 1075.1354 (calculated for [C47H58IN2O4PdS4]+ 1075.1354) is present in the mass
spectrum of compound 4, and the quasimolecular ion [M-I-Py]+ with m/z 1221.2458 (cal-
culated for [C58H72IN2O4PdS4]+ 1221.2449) is present in the spectrum of compound 5
(Figures S3 and S4).

The structure of 4 was also established by X-ray diffraction analysis (Figure 2). Ac-
cording to the data obtained, the carbene and pyridine ligands are coordinated at the
palladium atom in the trans position. The bond lengths between the palladium and the
NHC fragment/pyridine are 1.963 Å and 2.102 Å, respectively, which closely correspond
to the values of the PEPPSI-type complex obtained by Organ [29] (1.969 Å and 2.137 Å).
The small N46-C47-N43 angle (106.16◦) is typical of singlet carbenes. The angle between
the NHC-Pd-Py bonds (177.99◦) is also consistent with the literature data on PEPPSI com-
plexes [30,31]. It is noteworthy that the macrocyclic platform does not undergo severe
distortions—the distances between the opposing oxygen atoms are 4.481 (O23–O39) and
3.707 (O31–O55) Å. The reason for this is the cyclic hydrogen bond with the incorporation
of all four oxygen atoms, which fixes the cone configuration.
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2.2. Catalytic Activities

The obtained complexes were used in the catalysis of the Suzuki-Miyaura cross-
coupling reaction [32]. To compare the catalytic activity of the synthesized NHC palladium
complexes of the PEPPSI type, a well-known Organ’s PEPPSI palladium, complex 6, was
obtained according to the known literature procedure [29] (Scheme 3).
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Scheme 3. Model Suzuki-Miyaura cross-coupling reaction and studied catalytic systems.

The catalytic activity of palladium NHC complexes 4–6 was studied in Suzuki-Miyaura
cross-coupling reactions between phenylboronic acid and various aryl halide derivatives
(p-iodoanisole, p-bromoanisole, p-iodonitrobenzene, p-bromotoluene, 2-bromomesitylene,
p-bromoacetophenone) in degassed, dry DMF (Table 1) in the presence of 1 mol % pre-
catalyst. Conversion in the reaction was determined by halogenarene intake using gas
chromatography-mass spectrometry (GCMS) with the absolute calibration method; selec-
tivity was determined by the ratio of the target product to the homo-coupling products. In
some cases (entries 1, 5, 9, 13, 15, 17, 19, 21 and 23 in Table 1), the product was preparatively
isolated to estimate the isolated yield.

According to the data obtained, donor substituents decrease the halogen mobility
at the stage of oxidative addition, which is observed when using p-iodoanisole (positive
mesomeric (+M) effect) as a reagent in the cross-coupling reaction (entries 1, 5 and 9 in
Table 1). On the contrary, the acceptor nitro group (negative mesomeric (-M) and inductive
(-I) effects) activates the halogen mobility (entries 13, 15 and 18 in Table 1) [33,34]. Halogens
directly bonded to an aromatic ring have low reaction activity through conjugation of
their electron pair with the benzene ring. Therefore, the transition to less active bromine
in comparison with iodine results in a decrease in conversion (entries 19, 21 and 23 in
Table 1). A slight change in the structure of the organic NHC-ligand leads to the different
activity of the NHC complexes, which is clearly demonstrated by the reaction with the
less active p-bromoanisole. The difference in catalytic activity is associated with different
rates of formation of active catalytic particles. The bulkier ligand (in the case of 5) stabilizes
the formed particles more efficiently [35,36]. The cross-coupling reaction was also carried
out in an aqueous-organic medium DMF-water with different water contents (20, 50 and
80% of water). When water is added to the reaction mixture with p-iodoanisole, the
conversion reaches 99%, with a slight decrease in selectivity, as shown when using 4 and
5 as catalytic systems (entries 2–4, 6–8 and 10–12 in Table 1). This change is due to the
better solubility of the K2CO3 in the water-organic system. At the same time, the addition
of water leads to a decrease in selectivity due to the transition of phenylboronic acid to
the more reactive form of phenylborate anion, which leads to an increase in the yield of
the homocoupling product [37]. An increase in conversion is also observed when water
is added to the reaction mixture with p-bromoanisole (entries 20, 22 and 24 in Table 1). A
slight decrease in selectivity is observed when the reaction is carried out with the addition
of water and in the case of p-iodonitrobenzene (entries 14, 16 and 18 in Table 1). The
influence of substituents is well observed in the series of bromo derivatives (entries 25–27
in Table 1). Thus, when the reaction is carried out with p-bromotoluene (+I effect), the
conversion only reaches 56%, significantly increasing when the reaction is carried out with
bromacetophenone with an acceptor (-M and -I effects) acetyl substituent. In the case of the
reaction with 2-bromomesitylene, both conversion and selectivity are drastically reduced
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(biphenyl-product of phenylbonic acid coupling is mainly observed), which is due to the
essential steric hindrances of this substrate.

Table 1. Conversion and selectivity of different Pd-containing catalytic systems in Suzuki-Miyaura
cross-coupling 1.

Entry Complex Hal R Conversion,
%

Isolated yield,
%

Selectivity,
%

1 6

-I p-OCH3

66 53 85
2 6 * 99 71
3 6 ** 99 65
4 6 *** 99 69
5 5 75 61 91
6 5 * 99 82
7 5 ** 99 85
8 5 *** 99 84
9 4 27 14 96

10 4 * 99 91
11 4 ** 99 88
12 4 *** 99 78

13 6

-I p-NO2

99 65 99
14 6 * 99 72
15 5 93 35 99
16 5 * 99 95
17 4 75 35 99
18 4 * 95 80

19 6

-Br p-OCH3

70 48 71
20 6 * 94 56 71
21 5 54 37 75
22 5 * 62 42 76
23 4 6 3 99
24 4 * 18 12 99

25 5 *
-Br

p-CH3 56 71
26 5 * -Mesityl 23 30
27 5 * p-COCH3 99 98

1 Conversion and selectivity were determined by GCMS. C(haloarene) = 100 mM, C(phenylboronic acid) = 120 mM,
C(K2CO3) = 200 mM, V = 0.5 mL, DMF, 85 ◦C, 21 h. * 20% H2O, ** 50% H2O, *** 80% H2O.

As for the isolated yield, it mainly corresponds to the observed conversion taking
into account the selectivity. In the case of p-iodonitrobenzene, the isolated yield is rather
strongly reduced (entries 13, 15 and 17 in Table 1), which is probably due to losses during
the extraction of the reaction mixture.

The obtained complexes dissolved in THF were used in the catalysis of the model
reduction reaction of p-nitrophenol and more hydrophobic p-ethylnitrobenzene [38]. The
reaction is easily controlled by UV-visible spectroscopy and carried out at an excess of
sodium borohydride in aqueous medium at 21 ◦C in the presence of 5 nmol (2 mol% to
p-nitrophenol) complexes (Table 2, Figure 3). This reaction does not proceed in the absence
of the catalyst.
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Table 2. Catalytic activity of 4-6 for the reduction of p-nitrophenol and p-ethylnitrobenzene 1.

System

p-Nitrophenol p-Ethylnitrobenzene

Apparent
Rate Constant,

k, s−1

Specific Catalytic
Activity, Ka, × 105

mol1s−1

Apparent
Rate Constant,

k, s−1

Specific Catalytic
Activity, Ka, × 105

mol1s−1

6 2.1 × 10−3 4.2 2.2 × 10−3 4.4
5 4.2 × 10−3 8.4 2.4 × 10−3 4.8
4 1.2 × 10−3 2.4 2.7 × 10−3 5.4

1 C (p-nitrophenol) = C (p-ethylnitrobenzene) = 0.1 mM, C (NaBH4) = 5 mM, C (4–6) = 0.02 mM, 0.1% THF-H2O,
21 ◦C, V = 2.5 mL, l = 10 mm.
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(C) p-ethylnitrobenzene in the presence of 5; dependence of ln(Ct/C0) vs t in the presence of
different complexes: (B) for p-nitrophenol and (D) p-ethylnitrobenzene. C (p-nitrophenol) = C
(p-ethylnitrobenzene) = 0.1 mM, C (NaBH4) = 5 mM, C (4–6) = 0.002 mM, 0.1% THF-H2O, 21 ◦C,
V = 2.5 mL, l = 10 mm.

As an example, Figure 3A,C shows changes in the UV-VIS spectra of a mixture of
sodium borohydride and nitrobenzene derivatives after the addition of complex 5. The
absorption band of p-nitrophenol at 400 nm decreases and the absorption band of p-
aminophenol at 300 nm appears. In the case of p-ethylnitrobenzene, the absorption band
disappears at 290 nm and appears at 240 nm, which indicates the progress of the reaction.
Due to the use of a 50-fold excess of NaBH4, the reduction process is a pseudo-first-order
reaction and is described by the equation −kt = ln(Ct/C0), where C0 and Ct are the initial
concentration of nitroarene and its concentration at time t, respectively. A linear time
dependence of ln(Ct/C0) is observed starting from ~400 s after the initial induction period
of the reaction (Figure 3B,D). The rate constants and specific catalytic activity of the synthe-
sized complexes are shown in Table 2. As in the cross-coupling reaction, the most effective
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catalyst is 5, where the bulkier ligand is more effective in stabilizing the resulting palla-
dium particles. However, upon switching to the more hydrophobic p-ethylnitrobenzene,
the difference between the complexes is erased and the activity decreases. This differ-
ence can be explained by the different orientations of the reagents: more hydrophobic
p-ethylnitrobenzene can be absorbed by the hydrophobic cavity of the macrocycle, and
thereby separated from the active palladium center. This conclusion can also be made by
considering the rate constants of the reduction reactions of nitrobenzene derivatives in the
presence of 6, where its activity does not change when switching to a more hydrophobic
substrate.

To demonstrate the preparative use of complex 5 in the reduction reaction of ni-
troarenes, the reduction products were isolated after the reaction was complete. The
isolated yields of p-aminophenol and p-ethylaniline were found to be 81 and 83%, respec-
tively.

3. Materials and Methods

Chemicals were purchased from commercial suppliers and used as received. The
synthesis of 5,11,17,23-tetra-tert-butyl-25,27-dibromopropyloxy-26,28-dihydroxy-2,8,14,20-
tetrathiacalix[4]arene 1 and N-(2′,6′-diisopropylphenyl)imidazole was performed according
to the literature procedures [39,40].

5,11,17,23-Tetra-tert-butyl-25, 27-dihydroxy-26-oxido-28-(3-(3-N-methylimidazolium)
propoxy)-2,8,14,20-tetrathiacalix[4]arene (2) was synthesized according to the previously
published method [25].

1H and 13C NMR spectra, as well as 2D 1H-1H NOESY, were recorded on a Bruker
Avance 400 Nanobay (Bruker Corporation, Billerica, MA, USA) with signals from residual
protons of CDCl3 as the internal standard.

The melting points were measured using an OIptimelt MPA100 melting point appara-
tus (Stanford Research Systems, Sunnyvale, CA, USA).

IR spectra in KBr pellets were recorded on a Bruker Vector-22 spectrometer (Bruker
Corporation, MA, USA).

High-resolution mass spectra with electrospray ionization (HRESI MS) were obtained
on an Agilent iFunnel 6550 Q-TOF LC/MS (Agilent Technologies, Santa Clara, CA, USA)
in positive mode: carrier gas Cnitrogen, temperature 300 ◦C, carrier flow rate 12 L·min−1,
nebulizer pressure 275 kPa, funnel voltage 3500 V, capillary voltage 500 V, total ion current
recording mode, 100–3000 m/z mass range, scanning speed 7 spectra·s−1.

Data sets for single crystals 2 and 4 were collected on a Rigaku XtaLab Synergy
S instrument with a HyPix detector and a PhotonJet microfocus X-ray tube using Cu
Kα (1.54184 Å) radiation at a low temperature. Images were indexed and integrated
using the CrysAlisPro data reduction package. Data were corrected for systematic errors
and absorption using the ABSPACK module: numerical absorption correction based on
Gaussian integration over a multifaceted crystal model and empirical absorption correction
based on spherical harmonics according to the point group symmetry using equivalent
reflections. The GRAL module was used for the analysis of systematic absences and space
group determination. The structure was solved by direct methods using SHELXT [41]
and refined using the full-matrix least-squares on F2 using SHELXL [42]. Non-hydrogen
atoms were anisotropically refined. The hydrogen atoms were inserted at the calculated
positions and refined as riding atoms. The figures were generated using the Mercury
4.1 [43] program. Crystals were obtained using the slow evaporation method.

GCMS was performed on a GCMS-QP2010 Ultra gas chromatography-mass spectrome-
ter (Shimadzu, Kyoto, Japan) equipped with an HP-5MS column (the internal diameter was
0.32 mm and the length was 30 m). The parameters were as follows: helium 99.995% purity
was the carrier gas; the temperature of an injector was 250 ◦C; the flow rate through the
column was 2 mL/min; the thermostat temperature program was a gradient temperature
increase from 70 to 250 ◦C with a step of 10 ◦C/min. The range of scanned masses was m/z
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35–400. The absolute calibration method using known quantities of haloarene was used for
the quantitative analysis.

UV-vis spectra were recorded in a 1-cm quartz cuvette using a Shimadzu UV-2600
spectrophotometer equipped with a Shimadzu TCC-100 thermostat (Shimadzu Corporation,
Kyoto, Japan).

Crystal data for 2: C94H116N4O8S8 (M = 1686.38 g/mol): monoclinic, space group
P21/n (no. 14), a = 19.1157(2) Å, b = 14.1120(3) Å, c = 40.4978(6) Å, β = 96.7749(14)◦,
V = 10,848.4(3) Å3, Z = 4, T = 100.00(10) K, µ(Cu Kα) = 1.896 mm−1, Dcalc = 1.033 g/cm3,
82183 reflections measured (4.394◦ ≤ 2Θ ≤ 152.436◦), 21919 unique (Rint = 0.0644,
Rsigma = 0.0569), which were used in all calculations. The final R1 was 0.1015 (I > 2σ(I)) and
wR2 was 0.2886 (all data). CCDC refcode: 2276991.

5,11,17,23-Tetra-tert-butyl-25, 27-dihydroxy-26-oxido-28-(3-(3-N-(2′,6′ di-isopropyl
phenyl)limidazolium)propoxy)-2,8,14,20-tetrathiacalix[4]arene (3)

An amount of 0.093 mmol of 5,11,17,23-tetra-tert-butyl-25,27-dibromopropyloxy-26,28-
dihydroxy-2,8,14,20-tetrathiacalix[4]arene 1, a 20-fold excess of N-substituted imidazole
and 3 mL absolute acetonitrile were added into a glass autoclave. The reaction was carried
at 130 ◦C for 30–50 h. For isolation, the reaction mixture was evaporated to dryness on a
rotary evaporator and the final product was isolated by column chromatography on silica
gel (eluent- ethanol). The yield was 81%. Rf 0.7 (ethanol). M.p. 170 ◦C. HR ESIMS: found
m/z: 989.4451 [M+H]+; calculated for C58H73N2O4S4

+ 989.4448. IR (KBr) νmax cm−1: 1460
(CAr-O), 1562 (C=N), 2965 (C-H), 3388 (CAr-H). 1H NMR (400 MHz, CDCl3, 25 ◦C): δH, ppm:
1.22–1.48 m (48H, -C(CH3)3, CH3), 2.22–2.29 m (2H, CH2), 3.16–3.28 m (2H, CH), 5.00 br.t
(4H, CH2N+CH2O), 7.03–7.59 m (11H, HAr), 8.66 br.s (2H, HImd), 10.01 s (1H, HImd). 13C
NMR (100.6 MHz, CDCl3, 25 ◦C): δC, ppm: 24.4, 28.8, 31.5, 32.9, 47.2, 58.6, 74.0, 123.4, 124.1,
124.1, 124.8, 124.8, 129.3, 130.2, 130.6, 131.7, 132.0, 134.0, 136.2, 137.6, 137.7, 139.2, 142.1,
142.5, 145.4, 145.5.

General methodology for the preparation of NHC-palladium complexes of the PEPPSI
types 4 and 5.

Amounts of 0.2 mmol of imidazolium salt 2 or 3 and 6 mL of absolute pyridine were
added to a glass autoclave under vigorous stirring in an inert atmosphere. Then, 64 mmol
Pd(AcO)2, 78 mmol KI and 81 mmol K2CO3 were added. The reaction mixture was stirred at
40 ◦C for 1 h, and then at 80 ◦C for 50 h. For isolation, the reaction mixture was evaporated
and dissolved in chloroform (20 mL). The resulting solution was passed through Celite®

and evaporated to dryness using the rotary evaporator, yielding a dark orange precipitate.
The product was reprecipitated from chloroform with hexane and further purified by
column chromatography (eluent-ethyl acetate).

Trans-{5,11,17,23-tetra-tert-butyl-25, 26, 27-trihydroxy-28-(3-(3-N-methylimidazolin-
2-ylidene)propoxy)-2,8,14,20-tetrathiacalix[4]arene }{pyridine} palladium(II) diiodide (4).

The yield was 60%. Rf 0.90 (ethyl acetate). M.P.(decomp.) 232 ◦C. HR ESIMS: found
m/z 1075.1354 [M-I-Py]+; calculated for C47H58IN2O4PdS4

+ 1075.1354. IR (KBr) νmax cm−1:
2960 (CH3), 1453 (CAr=CAr), 1260 (CAr-O). 1H NMR (400 MHz, CDCl3, 25 ◦C): δH, ppm:
1.05–1.35 m (36H, -C(CH3)3), 3.19–3.24 m (2H, CH2), 4.04 s (3H, CH3), 4.36 t (2H, NCH2,
J = 5.6 Hz), 5.05 t (2H, NCH2, J = 6.1 Hz), 6.98 br.t (1H, HImd), 7.36 t (2H, HPy, J = 5.6 Hz),
7.61 br.t (2H, HAr), 7.64 br.s (2H, HAr), 7.65 br.s (2H, HAr), 7.68 br.d (2H, HAr), 7.74 t (1H,
HPy, J = 5.6 Hz), 7.94 br.d (1H, HImd), 9.11 d (2H, HPy, J = 5.3 Hz), 9.40–9.43 br.s (3H,
OH). 13C NMR (100.6 MHz, CDCl3, 25 ◦C): δC, ppm: 30.4, 31.2, 31.4, 31.5, 34.3, 34.4, 34.6,
39.59, 48.2, 75.1, 120.3, 120.8, 121.0, 122.8, 124.6, 125.4, 128.6, 136.3, 136.3, 137.2, 137.7, 144.0,
144.33, 144.7, 149.7, 154.0, 156.2, 156.8, 157.8. Crystal Data for 4: C53H63Cl3I2N3O4PdS4
(M = 1400.85 g/mol): triclinic, space group P-1 (no. 2), a = 13.3095(3) Å, b = 14.0556(3) Å,
c = 19.7452(3) Å, α = 81.0478(15)◦, β = 78.2544(15)◦, γ = 67.9938(18)◦, V = 3340.15(12) Å3,
Z = 2, T = 99.98(16) K, µ(Cu Kα) = 12.080 mm−1, Dcalc = 1.393 g/cm3, 44854 reflections
measured (4.588◦ ≤ 2Θ ≤ 152.346◦), 13422 unique (Rint = 0.0875, Rsigma = 0.0566), which
were used in all calculations. The final R1 was 0.0779 (I > 2σ(I)) and wR2 was 0.2244 (all
data). CCDC refcode: 2276992.
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Trans-{5,11,17,23-tetra-tert-butyl-25, 26, 27-trihydroxy-28-(3-(3-N-(2′,6′ di-isopropylphenyl)
imidazolin-2-ylidene)propoxy)-2,8,14,20-tetrathiacalix[4]arene}{pyridine} palladium(II)
diiodide (5).

The yield was 40%. Rf 0.81 (ethyl acetate). M.P.(decomp.) 202 ◦C. HR ESIMS: found
m/z 1221.2458 [M-I-Py]+; calculated for C58H72IN2O4PdS4

+ 1221.2449. IR (KBr) νmax cm−1:
2922 (CH3), 1445 (CAr=CAr), 1268 (CAr-O). 1H NMR (400 MHz, CDCl3, 25 ◦C): δH, ppm:
0.83–1.62 M (48H, -C(CH3)3, CH3), 3.06–3.24 M (4H, CH2+OCH2), 3.47–3.49 M (2H, CH), 4.97
br.t (2H, NCH2), 7.03 br.d (1H, HImd), 7.21–7.26 m (5H, HAr), 7.33 br.s (2H, HAr), 7.35 br.s
(4H, HAr), 7.48 br.d (1H, HImd), 7.51 br.t (1H, HPy), 7.65 br.t (2H, HPy), 8.77 d (2H, HPy, J
= 5.3 Hz). 13C NMR (100.6 MHz, CDCl3, 25 ◦C): δC, ppm: 24.0, 26.8, 29.1, 29.8, 29.9, 31.4,
50.8, 77.2, 121.6, 124.0, 124.2, 124.4, 127.2, 128.9, 130.6, 131.0, 134.6, 136.2, 136.4, 136.5, 137.5,
143.1, 143.8, 147.1, 149.7, 153.7, 155.5.

To perform the Suzuki-Miyaura reaction, in a 2 mL vial equipped with a septum
and stirrer bar haloarene (C = 100 mM), phenylboronic acid (C = 120 mM) and K2CO3
(C = 200 mM) were added into DMF or water-DMF mixture (0.5 mL) followed by 1 mM
of the catalyst. The solution was purged with nitrogen through a septum. The reaction
was heated on a hot plate at 85 ◦C for 21 h and then analyzed using GCMS. After cooling
to room temperature, the reaction mixture was extracted with hexane (3 × 5 mL) in the
presence of brine. The combined organic layer was concentrated in vacuo and the residue
was purified using flash chromatography on silica gel with hexane/ethyl acetate (4/1) as
eluent to afford target compounds (Table 1).

To perform the model reduction reaction, 0.002 mM of 4–6 in THF (2.8 mkL) and
nitroarene (C = 0.1 mM, V = 2.5 mL)was added in a quartz cuvette (l = 1 cm). Then, NaBH4
(C = 5 mM) was added and the reaction was monitored using a spectrophotometer. To
isolate the aminoarenes after reduction in the presence of 5, the reactions were carried out
in a similar manner with the use of 15 mL of the reaction mixture. The reaction mixture
was extracted with hexane (3 × 15 mL) in the presence of brine after the completion of the
reaction (UV-vis control). The combined organic layers were concentrated under a vacuum
to afford p-ethylaniline and p-aminophenol as a brine-yellow liquid (0.15 mg, 83%) and
solid (0.13 mg, 81%), respectively. Structure conformity was assessed by GCMS from the
NIST database (NIST # 228771 for p-ethylaniline and # 228504 for p-aminophenol).

4. Conclusions

Pd(II) NHC complexes of the PEPPSI type based on imidazolium derivatives of p-tert-
butylthiacalix[4]arene in the cone stereoisomeric form were synthesized for the first time.
The catalytic activity of NHC PEPPSI type Pd(II) complexes in model Suzuki-Miyaura
cross-coupling and the reduction reactions of nitrobenzene derivatives were studied. As a
result, it was found that macrocycle with a bulky 2′,6′ di-isopropylphenyl fragment was
not inferior and, in some cases, was superior to the activity of the known Organ’s PEPPSI
complex and presented 15–20% more selectivity in Suzuki-Miyaura coupling and was four
times superior to the latter in p-nitrophenol reduction reaction. Given that the structure
of the macrocyclic complex contains free phenolic hydroxyl groups that can be used for
further functionalization, including covalent attachment of the complex to the carrier, this
complex seems very promising for further studies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics11080326/s1, Figure S1: ORTEP representation of 2 showing 50%
probability thermal ellipsoids. C atoms—grey, N atoms—blue, O atoms—red, S atoms—yellow; Figure
S2: NMR 1H (a), 13C (b), FT IR (c), HR ESIMS (d) and NOESY (1H-1H) NMR spectra (e) of 5,11,17,23-
tetra-tert-butyl-25, 27-dihydroxy-26-oxido-28-(3-(3-N-(2′,6′ di-isopropylphenyl)limidazolium)propoxy)
-2,8,14,20-tetrathiacalix[4]arene (3); Figure S3: NMR 1H (a), 13C (b), FT IR (c), HR ESIMS (d) and
NOESY (1H-1H) NMR spectra (e) of trans-{5,11,17,23-tetra-tert-butyl-25, 26, 27-trihydroxy-28-(3-(3-N-
methylimidazolin-2-ylidene)propoxy)-2,8,14,20-tetrathiacalix[4]arene}{pyridine} palladium(II) diiodide
(4); Figure S4: NMR 1H (a), 13C (b), FT IR (c), HR ESIMS (d) and HSQC (1H-13C) spectra (e) of
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trans-{5,11,17,23-tetra-tert-butyl-25, 26, 27-trihydroxy-28-(3-(3-N-(2′,6′ di-isopropylphenyl)imidazolin-2-
ylidene)propoxy)-2,8,14,20-tetrathiacalix[4]arene}{pyri-dine} palladium(II) diiodide (5).
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