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Abstract: MIL-88B(Cr) is a prototypical flexible chromium-based metal-organic framework (MOF),
which possesses extremely strong water/thermal stability and excellent “swelling/breathing” ability.
However, in previous studies, there have been very few reports on MIL-88B(Cr) due to unclear
synthesis details. Here, we found that the pure MIL-88B(Cr) can be facile synthesized through a
hydrothermal method with the co-use of nitric acid and acetic acid (molar ratio = 1:15). The obtained
MIL-88B(Cr) was sufficiently characterized by diverse techniques to assure its high-level quality. This
work emphasizes a future valuable approach to expanding the production of flexible Cr-based MOF.

Keywords: MIL-88B(Cr); flexible Cr-based MOF; co-modulator; green synthesis

1. Introduction

Metal organic frameworks (MOFs) are porous crystal coordination networks formed
by connecting metal ions or their clusters through organic ligands [1–3]. In recent years, this
type of material has received widespread attention due to its high porosity, demonstrating
its enormous application potential in gas storage, separation, catalysis, thermal conversion,
drug transportation, and other fields [3–10].

Flexible MOFs are unique in that they have the capacity to “breathe” or “ swell” in
response to different stimuli without causing permanent and irreversible damage to the
frame structure [11]. This feature broadens the range of applications for MOFs in storage,
sensing, and separation [12–17].

MIL-88 type MOFs have an acs network topology structure. It is reported that this
type of material is mainly composed of metal elements (such as Fe, V, Cr, and NiIII/II)
and a serial of terephthalate derivatives/analogues [18]. MIL-88 has an unparalleled
“swelling/breathing” capability of up to 270% with 2,6-naphthalenedicarboxylic acid as
the ligand in MIL-88C(Fe) [18]. This “ swelling/breathing” ability is mainly caused by the
introduction of the guest molecule, and the strong “ swelling/breathing” ability enables
MIL-88 MOFs to be used for important applications in separation/enrichment [19], sens-
ing/analytical assays [20,21], drug delivery [22,23], and catalysis [24]. However, among
all these applications related to MIL-88, only MIL-88(Fe) is widely used for application
research, while MIL-88B(Cr) is rarely mentioned (where B specifically refers to its ligand
being terephthalic acid, and its structure is shown in Figure 1) [25,26]. The main reason
may be that the detailed experimental steps regarding MIL-88B(Cr) synthesis were not
mentioned in the early original report [26], which makes the reports on MIL-88B(Cr) ex-
tremely scarce. It may seem like an oversight, but the implications are far-reaching. It is
noteworthy that pyridine appears as a guest molecule in the molecular formula of MIL-88
regardless of the type of MIL-88 synthesis, which proves that pyridine was used in the
original synthesis method. Thus, although it can be assumed that the conditions for the
synthesis of MIL-88(Cr) are generally known, the actual absence of references to this com-
pound in the literature indicates the urgent need for a simple and reproducible synthetic

Inorganics 2023, 11, 292. https://doi.org/10.3390/inorganics11070292 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics11070292
https://doi.org/10.3390/inorganics11070292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://orcid.org/0000-0003-0745-1405
https://doi.org/10.3390/inorganics11070292
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics11070292?type=check_update&version=1


Inorganics 2023, 11, 292 2 of 8

method, preferably without the use of toxic pyridine. The potential interest in MIL-88 (Cr)
stems from its high chemical stability, typical for chromium compounds, which would
allow the use of the compound over a wider range of conditions. Therefore, it becomes
useful and necessary to develop a simple and effective synthetic method that does not
require the use of toxic pyridine to prepare MIL-88B(Cr).
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Figure 1. Schematic drawing of structure of the MIL-88(Cr) with the ‘opened’ form: (a) view along
100 direction, (b) view along 001 direction. The guest solvent molecules were not shown for clarity.
(CSD-Refcode: YEDKOI) [26].

In our previous research, we were able to obtain pure MIL-88B(Cr) at 220 ◦C using a
high concentration of benzoic acid as an additive, and chromium nitrate and terephthalic
acid as raw materials by the conventional hydrothermal synthesis method [27]. Never-
theless, the residual benzoic acid in the structural pores of MIL-88B(Cr) synthesized with
benzoic acid is difficult to remove, which limits its application. Here, we present a facile
synthetic method for the preparation of pure MIL-88B(Cr) by co-using nitric acid and acetic
acid with the appropriate molar ratio. The residual guest molecules (mainly HNO3 and
CH3COOH) in the pores of MIL-88B(Cr) can be removed through simple treatment to
achieve the ‘close’ structure.

2. Results and Discussion

In order to prepare MIL-88B(Cr), varied ratios of nitric acid: acetic acid were involved
as modulators in the synthesis to obtain the optimal synthetic conditions. As the literature
reported [28], the addition of equimolar nitric acid with respect to Cr(NO3)3·9H2O in
Cr-benzenedicarboxylate synthesis could largely increase the yield of the product, and this
conclusion was proved multiple times to be correct by our group and others [29–32]. Thus,
in this work, experiments with a constant amount of nitric acid (1 mmol) and different
amounts of acetic acid (1 mmol, 5 mmol, 10 mmol and 15 mmol) were conducted, and they
were named as A-1, A-2, A-3, and A-4, respectively.

The addition of nitric acid and acetic acid would significantly affect the particle size
and the morphology of each sample. According to the scanning electron microscopic char-
acterization, the A-X samples revealed dramatic morphological differences and particle size
distributions (Figure 2). A-1 disclosed an octahedral shape (average particle size—400 nm)
that indicated the characteristic morphology for MIL-101(Cr). A-2 showed obvious smaller
crystals (~260 nm) compared with A-1, and its morphology mainly remained octahedral.
While A-3 revealed two kinds of crystalline shape, one had octahedral particles and their
average particle sizes further decreased to 140 nm, and the other had much bigger sharp-
tipped rod-like crystals. Thus, undoubtedly, there were two kinds of different products
that existed in A-3. Furthermore, when the ratio of nitric acid:acetic acid = 1:15 (A-4), all
the products were rod-like crystals, which was in line with the features of MIL-88 type
MOF [26,27]. Thus, the interesting effect of relatively drastic changes in crystallization
results depending on the ratio of acetic acid and nitric acid was observed, with higher
ratios of acetic acid and nitric acid favoring the MIL-88B(Cr) form.
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Figure 2. SEM images of (A) A-1, (B) A-2, (C) A-3, and (D) A-4, with the same scale bar. The insert
image depicts the related particle size distribution, which was calculated using a Gaussian model.

The powder X-ray diffractograms (PXRDs) of A1~A4 were displayed in Figure 3.
Apparently, the PXRDs of A-1 and A-2 showed very high consistency compared with
the simulated MIL-101(Cr) pattern, which confirmed A-1 and A-2 were highly crystalline
MIL-101(Cr) (Figure 3A). Although the PXRD of A-3 presented the characteristic peaks
of MIL-101(Cr), a serial of peaks not matching the MIL-101(Cr) appeared beyond 20◦

(Figure 3A), which suggested another kind of crystal, and this result was highly in line
with the microscopic characterization. While, for A-4, its PXRD was totally different from
the simulated MIL-101(Cr) pattern, in contrast, its PXRD matched the MIL-88B(Cr) very
well, which indicated that A-4 was a pure phase of MIL-88B(Cr) (Figure 3B).

The N2 adsorption/desorption curves of A-1, A-2, A-3, and A-4 were shown in
Figure 4, and the porosity information, including Brunauer–Emmett–Teller (BET) specific
surface area, Langmuir specific surface area, and pore volume, are listed in Table 1. A-1 and
A-2 revealed the typic Type I(b) N2 sorption isotherms [33], and the second inflection point
at relative pressure of P/P0 ≈ 0.2 referred to the two pore-cage sizes of MIL-101(Cr) [34].
Both A-1 and A-2 disclosed high porosity; their BET specific surface area could reach over
3300 m2 g−1, while the SBET of A-3 was much lower (only 1200 m2 g−1). This could be
attributed to the formation of MIL-88B(Cr) (Table 1). A-4 was pure MIL-88B(Cr), which
had a “breathing” characteristic, and it was difficult to encourage its pores to open com-
pletely during the test, resulting in a very low porosity. Additionally, the N2 sorption
isotherms of A-4 were typical of Type I(a) because the pores of MIL-88B(Cr) belonged
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to micropores, which was different from that of MIL-101(Cr) [33]. In summary, the N2
adsorption/desorption measurements further validated our previous results.
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Figure 4. Nitrogen sorption isotherms of A-1–A-4.

Table 1. The porosity information and yields for Cr-benzenedicarboxylate with the different ratio of
nitric acid:acetic acid (A1~A4).

Sample MOF Type Yield (%) a SBET (m2 g−1) b SLangmuir (m2 g−1) Vpore (cm3 g−1) c

A-1 MIL-101 ~74.3 3430 4620 2.03
A-2 MIL-101 ~70.8 3310 4460 1.97
A-3 MIL101/MIL-88 ~47.2 1200 1710 0.67
A-4 MIL-88 ~20.6 130 180 0.32

a The yield is based on Cr. b SBET is calculated by using N2 adsorption isotherms at 77 K in the region of
0.05 < P/P0 < 0.2 for data points with an estimated standard deviation of ±50 m2 g−1. c Vpore is calculated from
N2 sorption isotherms at 77 K (P/P0 = 0.99) for pores with ≤20 nm diameters.

In the previous work [27], though MIL-88B(Cr) could be formed by adding high doses
of benzoic acid as a modulator, the yield of MIL-88B(Cr) was quite low (<5%), as well
as the residual benzoic acid in the structural pores of MIL-88B(Cr) being hard to remove,
something that greatly limited the preparation and application of MIL-88B(Cr). While, in
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this work, the co-use of nitric acid and acetic acid in synthesis was significantly raised,
the yield of the MIL-88B(Cr) (>20%), and the additive molecular HNO3 and CH3COOH,
were quite easy to remove, which considerably reduced the difficulty of post-processing
the product.

Undoubtedly, the ratio of acetic acid and nitric acid played a decisive role in the
synthesis process. One possible explanation for this phenomenon was that the relatively
low ratio of acetic acid and nitric acid inhibited Oswald ripening, which resulted in the
generation of more nuclei and gave a smaller particle size MIL-101(Cr) (A-2) [4]. However,
the situation was different when the addition of acetic acid was significant (A-4), when a
large number of acetic acid molecules flooded the reaction system and acted as a templating
agent-like effect, resulting in the generation of specific MOF structures, such as MIL-88B(Cr).

MIL-88B(Cr) is well-known to “swell” when exposed to polar solvents (e.g., MeOH) [26],
which suggests that obvious PXRD pattern changes would occur when the polar solvents
are trapped in the pores of MIL-88B(Cr). Thus, the synthesized MIL-88B(Cr) was soaked
in MeOH to obtain a “swell” structure. And the incubation of the fabricated MIL-88B(Cr)
in MeOH generated similar diffraction peaks, demonstrating the stretching of the flexible
framework to introduce more solvent molecules, thus producing significant changes in
the PXRD pattern (Figure 5A). The MeOH molecular in the pores of the framework (A-4)
could be washed out when it was further incubated in water, and this obtained the same
diffraction pattern as the as-synthesized material, indicating that this process was indeed
reversible (Figure 5A). Our experimental outcomes were in good agreement with the results
reported by Férey’s group [18], which support our conclusion that pure MIL-88B(Cr) was
formed. MIL-101(Cr) and MIL-88B(Cr) both had relatively high, but not the same, thermal
stability and MIL-88B(Cr) had better thermal stability; we performed thermogravimetric
analysis on all samples, and the results are shown in Figure 5B.
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Figure 5. (A) The PXRD patterns of MIL-88B(Cr) (A-4) soaked in MeOH and H2O to present its
reversible breathing effect. (B) The TG curves of A-1–A-4.

3. Experimental
3.1. Materials and Reagents

Chromium(III) nitrate trihydrate (99.5%, AR), terephthalic acid (H2BDC, 99%, AR),
acetic acid (100%, AR), nitric acid (65 wt%, AR), and ethanol (99.7%, AR) were acquired
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

3.2. Synthesis of MIL-88B(Cr)

Cr(NO3)3·9H2O (400 mg, 1 mmol), H2BDC (166 mg, 1 mmol), HNO3 (1 mmol), and
CH3COOH (15 mmol) were stirred in deionized water and placed in a 20 mL autoclave.
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The suspension was heated to 200 ◦C for 8 h. After the reaction was completed, the product
was cooled naturally and washed twice with ethanol (1 h for each time). Then, the collected
green solid was dried in a vacuum drying oven at 120 ◦C for 2 h before use.

3.3. Characterization

Powder X-ray diffraction (PXRD), using Ultima IV diffractometer (Rigaku, Tokyo,
Japan), was conducted for sample analysis. The specific surface area and pore volume
were measured using the NOVA 4200e specific surface analyzer (Quantachrome, Boynton
Beach, FL, USA). Thermogravimetric analysis (TGA) was tested with a TGA/DSC 1/1100SF
instrument (Mettler Toledo, Zurich, Switzerland). The morphologies of the samples were
characterized using Zeiss Gemini 300 scanning electron microscopy (Zeiss, Jena, Germany).

4. Conclusions

MIL-101(Cr) and MIL-88B(Cr) could be flexibly synthesized using a hydrothermal
method with the addition of nitric acid and acetic acid as modifiers. When the molar ratio
of nitric acid and acetic acid added was 1:15, pure MIL-88B(Cr) could be obtained. This
is a remarkably useful complement to the synthetic study of MIL-88B(Cr), and we have
improved the methodology for the synthetic approach of forming MIL-88B(Cr) by avoiding
the use of toxic organic compounds (e.g., Pyridine) during synthesis and treatment, which
will lays the foundation for expanding the application of MIL-88B(Cr) in the future.

Author Contributions: Conceptualization, T.Z. and F.L.; methodology, F.L. and S.T.; formal analy-
sis, S.T., M.L. (Mingmin LI) and P.X.; investigation, S.T. and M.L. (Mingliang Luo); resources, T.Z.;
writing—original draft preparation, F.L., S.T. and T.Z.; writing—review and editing, T.Z.; supervi-
sion and funding acquisition, T.Z. All authors have read and agreed to the published version of
the manuscript.
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