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Abstract: As a potential negative electrode material for lithium-ion batteries (LIBs), silicon has a
relatively high specific lithium storage capacity. However, the large volume change during the
cycle may result in the isolation with the current collector and therefore the rapid capacity decay
during cycling. The poor electric conductivity of the silicon limits the high-power density application
in LIBs. To meet the above challenges, a stable Si/Ti3C2Tx composite material was designed. Si
nanoparticles are bonded with -NH2 group so that the silicon surface has a positive charge, which
can then be electrostatic self-assembly with negatively charged MXene nanosheets in a facile freeze-
drying method. Silicon nanoparticles were anchored on the surface or inside the interspace of the
MXene nanosheets, which could improve the conductivity of the composites. The composite material
(NH2-Si/MXene) presented a stable and porous structure with extra room for silicon expansion and
plentiful channels for carrier transportation. Benefiting from the improved structural stability and
enhanced charge storage dynamics, the discharge capacity of NH2-Si/MXene is 1203.3 mAh g−1 after
100 cycles at 200 mA g−1. These results provide new insights for the application of silicon-based
negative electrode materials in high-energy-density LIBs.

Keywords: Liion batteries; Ti3C2Tx MXene; silicon negative electrode; electrostatic self-assembly

1. Introduction

To meet the demand for energy storage devices with higher energy density, the de-
velopment of lithium-ion battery (LIB) electrode materials has gained much attention.
At present, the specific capacity of commercial graphite negative electrode materials is
close to the theoretical value (372 mAh g−1), and silicon (Si) has attracted the attention of
researchers because of its high theoretical specific capacity [1]. However, during the lithia-
tion/delithiation process, the large expansion of the silicon may cause severe mechanical
stress, leading to the pulverization of the silicon and further the continuous worsening of
the cycling capacity [2,3]. In addition, due to the crack of silicon, an unstable solid elec-
trolyte interface (SEI) is prone to form consistently and therefore the extra and irreversible
consumption of Li-ion in electrolytes [4,5].

Several solutions have been proposed to address these challenges, such as reducing
the size of Si to the nanoscale [6,7], coating Si with a protective layer [8,9], and constructing
silicon/carbon composites [10,11]. The dispersion of silicon into the carbon material can
buffer the volume change of silicon during charging/discharging and to improve elec-
trical conductivity simultaneously is demonstrated to be effective due to the moderate
mechanical property and excellent electrical conductivity of carbon. To improve the ca-
pacity retention performance of silicon-based materials, various carbon materials were
used as buffer layers, including graphene [12,13], graphite [14], carbon nanofibers [15,16],
carbon nanotubes [17,18] and mesoporous carbon [19]. Recently, MXene, a new type of
two-dimensional transition metal carbide or carbonitride, has attracted wide attention
in energy storage applications because of its special structure and chemical properties.
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MXene, whose molecular formula is Mn+1XnTx, has good conductivity, electrochemical
performance and structural stability. Ti3C2Tx, as the most representative material in the
Mxene family, has been widely used in supercapacitors [20], electrochemical sensors [21],
and LIBs [22]. Benefiting from the structural and functional advantages, Mxene can act as a
buffer matrix for silicon-based electrode materials in LIBs [23,24]. Jiang et al. [25] prepared a
Si/Mxene@CNFs composite material by a simple electrospinning method. Zhang et al. [26]
prepared sandwich-like silicon/Ti3C2Tx composites with silicon nanoparticles (SiNPs) and
multi-layered Ti3C2Tx nanosheets by electrostatic self-assembly. After 100 cycles at the spe-
cific current of 300 mA g−1, the composite showed an excellent capacity of 643.8 mAh g−1.
Mxene nanosheets have also been used as a matrix to hold silicon and other 1-dimentional
materials to achieve better charge transfer. For instance, the Si/Mxene@CNFs composite
still maintained the excellent capacity of 440.3 mAh g−1 after 200 cycles at the specific
current of 1 A g−1. Although the electrochemical performance of Si could be improved
by the combination with Mxene, the exposed SiNPs on the surface of Mxene are prone to
easily crush or exfoliate during the cycling due to the difference in volume expansion rates
and the weak force between the two materials [27,28].

Herein, a three-dimensional porous composite material is prepared by a simple electro-
static self-assembly method. NH2-Si/Mxene composites were formed by electrostatic self-
assembly of Mxene nanosheets prepared by chemical etching and aminated SiNPs. NH2-
Si/Mxene composite as a LIB negative electrode has the following advantages: SiNPs are
dispersed in the structural frame formed by Mxene nanosheets. SiNPs with amino-group
on the surface could maintain the strong electrostatic interaction with Mxene nanosheets to
prevent exfoliation and lose connection with the current collector, while Mxene nanosheets
could act as a matrix and provide extra space for volume change of silicon. According to the
mass ratio of NH2-Si to Mxene (1:1, 3:1 and 5:1), they are labeled as NH2-Si1/Mxene1, NH2-
Si3/Mxene1 and NH2-Si5/Mxene1, respectively. The rational-designed composites could
deliver a high specific discharge capacity of 1203.3 mAh g−1 after 100 cycles at 200 mA g−1.
The impact of the mass ratio of MXene in the composites has also been compared, and the
active material containing 25 wt.% exhibits the most stable cyclic capacity.

2. Materials and Methods
2.1. Preparation of Ti3C2Tx MXene

1.6 g LiF was added to 20 mL HCl (12 M) solution and agitated for 10 min at 30 ◦C in
a Teflon container. Thereafter, 1 g Ti3AlC2 (MAX, 400 mesh) was slowly added to the above
mixture and kept at 30 ◦C under magnetic stirring for 24 h. After etching, the precipitate
was washed with deionized water, and black slurry-like precipitation was collected by
centrifugation (3500 rpm) until the solution is neutral. The precipitation was then ultrasonic
for 2 h with an inert gas argon atmosphere. Finally, the supernatant was collected after
centrifugation at 3500 rpm for 1 h to obtain MXene solution. MXene colloidal solution
consists of both multilayer and few-layer Ti3C2Tx nanosheets.

2.2. Fabrication of NH2-Si/MXene Composite

An amount of 100 mg of silicon nanoparticles (~100 nm, Shanghai Naiou Nano
Technology Co., Shanghai, China) were ultrasonically dispersed in 60 mL ethanol for
1 h, and then 1 mL of (3-aminopropyl) triethoxysilane (APTES) was added and stirred
magnetically for 6 h at 30 ◦C to obtain SiNPs decorated with an amino group (NH2-Si).
NH2-Si was then washed in ethanol to remove the excess APTES and dried overnight.
The collected NH2-Si was added to the prepared MXene aqueous solution slowly. After
stirring for 1 h, the mixed solution of NH2-Si and MXene was freeze-dried to obtain the
columnar porous structure (NH2-Si/MXene). According to the mass ratio of NH2-Si to
MXene (1:1, 3:1 and 5:1), they were labeled as NH2-Si1/MXene1, NH2-Si3/MXene1 and
NH2-Si5/MXene1, respectively.
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2.3. Material Characterization

The micromorphology of NH2-Si/MXene was observed by scanning electron micro-
scope (SEM) (PHILIPS XL30TMP). The element distribution of the sample was analyzed by
means of energy dispersion X-ray spectrometer (EDS, OXFORD IET200). X-ray powder
diffraction (XRD) patterns with a scanning range of 5–90◦ were obtained using Xpert Pro
MPD. The transmission electron microscopy (TEM) tests were executed on FEI Tecnai G20.
X-ray photoelectron spectroscopy (XPS) was performed on AXIS SUPRA+. The specific
surface area and pore size were analyzed by Brunner−Emmet−Teller (BET) measurement,
which was performed using the Micromeritics ASAP 2460 test instrument from Mack
Instruments. N2 was adsorbed by the static volumetric method.

2.4. Electrochemical Measurement

The above synthesized NH2-Si/MXene composites were mixed with carboxymethyl
cellulose (CMC) binders and Super P carbon at a weight ratio of 7:1.5:1.5 in deionized water
and stirred for 8 h to form a uniform slurry. After coating the slurry of active materials, the
copper foil was then dried under 80 ◦C in vacuum for 16 h. For comparison, pure silicon
was used as a reference sample to prepare electrodes in the same process. To investigate the
electrochemical performance, the CR2032 coin cells were assembled in a glove box filled
with argon gas. Li foil was used as the counter electrode and reference electrode, while
the copper foil with active material served as the working electrode. The separator was
Celgard 2500 polypropylene. The electrolyte used was 1 M LiPF6, the volume ratio of 1:1
diethyl carbonate (DEC) and ethylene carbonate (EC), and 5% fluoroethylene carbonate
(FEC) and 1% vinyl carbonate (VC) was added.

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) investiga-
tions were performed on the Bio-Logic VMP3. The CV test voltage range was 0.01–1.5 V,
and the frequency range in EIS was 10 mHz–100 kHz. Galvanostatic charging and discharg-
ing were performed by the NEWARE BTS (5 V, 50 mA) test system with a voltage range of
0.01–1.5 V.

3. Results and Discussion
3.1. Material Characterization

The synthetic process of the NH2-Si/MXene composites is shown in Figure 1. A large
number of groups such as -F, -OH, -O and -Cl exist on the surface of Ti3C2Tx MXene
prepared by the etching process [29]. The presence of these groups makes MXene negatively
charged and uniformly dispersed in water [30]. After modification by (3-aminopropyl)
triethoxysilane (APTES), the surface of SiNPs is decorated with a positively charged -
NH2 group [31]. Positively charged SiNPs decorated with an amino group (NH2-Si)
nanoparticles and negatively charged MXene could be tightly linked due to electrostatic
attraction. The stable porous structure of NH2-Si and MXene composites was then obtained
by freeze-drying.
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Figure 1. Schematic diagram of the synthesis process of NH2-Si/MXene composites.

Figure 2a shows the XRD patterns of the MAX, MXene, and NH2-Si3/MXene1, respec-
tively. After etching away the Al layers from Ti3AlC2, the (002) peak was shifted from 9.62◦
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to a smaller angle of 5.85◦, indicating the successful synthesis of Ti3C2Tx nanosheets [32].
After compositing with silicon, the diffraction peaks locate at 28.28◦, 47.16◦, 55.98◦, 69.15◦,
76.24◦, and 87.87◦, respectively, corresponding to the (111), (220), (311), (400), (331), and
(422) planes of the Si (JCPDS No. 27-1402) [33]. The peak at 25.11◦ belongs to the (101)
plane of TiO2 [34]. This is due to the partial oxidation reaction on the surface of MXene
during the composite processing. During synthesis, no other phases can be observed in
the prepared NH2-Si3/MXene1 composite. Composites with different Si weight ratios
(NH2-Si1/MXene and NH2-Si5/MXene1) exhibit similar XRD patterns, except for various
strength of MXene and TiO2 characteristic peaks.
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Figure 2. (a) The XRD patterns of MAX, MXene, and NH2-Si3/MXene1. (b) SEM image of MXene.
(c–e) SEM and (f,g) SEM−EDS elemental mapping of NH2-Si3/MXene1 composites.

The microstructure in the composite was characterized by SEM. As shown in Figure 2b,
the Ti3C2Tx MXene was etched into nanosheets with few layers. The morphology of the
NH2-Si3/MXene1 composites is shown in Figure 2c,d. MXene nanosheets stack and interact
with each other to form a porous network. NH2-Si nanoparticles are evenly dispersed
between the MXene to form a stable three-dimensional structure. The positively charged
SiNPs modified by APTES could attract the negatively charged Ti3C2Tx MXene nanosheets
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through electrostatic interaction and prevent aggregation and stacking of nanosheets.
Similar porous morphologies of NH2-Si1/MXene1 and NH2-Si5/MXene1 are shown in
Figure S2. Due to the large amount of MXene in NH2-Si1/MXene1, it can be seen that the
NH2-SiNPs are dispersed in the MXene layers, while MXene nanosheets are aggregated
and stacked. In NH2-Si5/MXene1 composites, a large number of SiNPs are agglomerated
and attached to the surface of MXene nanosheets. Therefore, NH2-Si3/MXene1 presents
the most uniform distribution of SiNPs and MXene nanosheets, and the moderate porous
structure. As evidenced by EDS mappings (Figure 2f,g), Si and Ti elements are evenly
distributed in the NH2-Si3/MXene1 composites, indicating the uniform distribution of
SiNPs in the MXene matrix. The aggregation of SiNPs or MXene nanosheets may result in
structure collapse and hinder the carrier transportation in the active materials.

TEM characterization of the NH2-Si3/MXene1 composites was further performed to
reveal the morphology and connection of the MXene and SiNPs (Figure 3). As shown in
Figure 3a,b, SiNPs with a diameter of 100 nm are anchored and coated on MXene in the
middle of the composite, and MXene sheets are wrapped around the Si particles, where the
tight binding of SiNPs to MXene can be clearly observed. There is a large amount of void in
the composite which could provide extra room for the volume expansion of Si. The lattice
fringe of SiNPs and MXene can be analyzed by high-resolution TEM (HRTEM) (Figure 3c).
The interplanar spacing of 0.32 nm and 1.1 nm correspond to Si (111) plane and Ti3C2Tx
(002) plane, respectively [35]. The pores of NH2-Si3/MXene1 composites provide sufficient
space for SiNPs expansion, ensuring cycle stability. The porous network in the material
can also improve the electrolyte infiltration and promote the transportation of lithium ions.
In addition, the conductive network of MXene also facilitates electron migration during
lithiation/delithiation.
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Figure 3. (a,b) TEM images and (c) HRTEM image of NH2-Si3/MXene1 composites.

In order to obtain the specific surface area and pore size distribution of the composites,
BET measurements on NH2-Si1@MXene1, NH2-Si3@MXene1, and NH2-Si5@MXene1 were
carried out and the results were analyzed. The N2 adsorption isotherms of the studied
materials were presented in Figure 4a–c, and the Figure 4d shows the distribution of the
pore size of the materials. The desorption curves all belong to type III curves, indicating
existence of stacking pores between flakes [36]. The specific surface area values of NH2-
Si1@MXene1, NH2-Si3@MXene1, and NH2-Si5@MXene1 are 28.5, 25.7, and 20.3 m2 g−1,
respectively (See in Table 1). The pores in the composite mainly exist as mesoporous pores
(2–50 nm). The specific surface area of the composite decreases with the decrease in MXene
content. When MXene is combined with SiNPs, more pores are formed at the composite
interface in the materials with higher MXene content, indicating that the pores were mainly
from the interstice formed by the combination of MXene and silicon nanoparticles. The
pore content further affects the electrochemical properties of the material. The presence
of pores in the composite material increases the contact area between the active material
and the electrolyte, enhances the permeability of the electrolyte, and reduces the diffusion
distance of lithium ions in the composite material, which are conducive to achieving higher
lithium-ion storage performance.
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Table 1. The specific surface area values of NH2-Si1/MXene1, NH2-Si3/MXene1 and NH2-Si5/MXene1.

Materials Specific Surface Area (m2 g−1)

NH2-Si1/MXene1 28.5
NH2-Si3/MXene1 25.7
NH2-Si5/MXene1 20.3

The bonding structure of NH2-Si3/MXene1 composites was investigated by XPS, as
shown in Figure 5a–f. The C 1s XPS spectrum (Figure 5b) can be fitted into four separate
peaks located at 281.3, 284.8, 286.5, and 288.9 eV, which correspond to the C-Ti, C-Si, C-O,
and C=O bonds in the NH2-Si3/MXene1 composite, respectively [37]. In the O 1s XPS
spectrum (Figure 5c), the binding energies of 529.8, 530.4, 531.9, 532.6, and 533.3 eV are
attributed to Ti-O-Ti, C-Ti-OH, Si-OH, C-Ti-O, and Si-O-Si bonds, respectively [24]. The
existence of some Ti-O bonds can be ascribed to the oxidation of Ti3C2Tx MXene to TiO2.
In the Si 2p XPS spectrum of the NH2-Si3/MXene1 (Figure 5d), the binding energies of Si
2p1/2 and Si 2p3/2 locate at 98.9 and 99.5 eV, and the binding energies of Si-O are located
at 102.6 and 103.3 eV, respectively [38]. In the Ti 2p XPS spectrum (Figure 5e), the peak of
461.1 eV corresponds to the Ti-N peak [39], which is in accordance with the XPS spectrum
of N 1s, indicating the successful bonding of -NH2 group decorated SiNPs with Ti3C2Tx
MXene through electrostatic attraction.
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3.2. Electrochemical Characterization

The electrochemical properties of the samples as negative electrode materials in LIBs
were evaluated in half-cells. The electrochemical properties of NH2-Si1/MXene1, NH2-
Si3/MXene1, NH2-Si5/MXene1, MXene, and pure Si were investigated. Figure 6a shows
the CV test of the NH2-Si3/MXene1 composite in the potential interval of 0.01 to 1.5 V
(vs. Li+/Li). Since silicon provides most of the capacity in the composite, the potential
range between 0.01 V to 1.5 V of the lithiation/delithiation reactions of silicon is chosen as
the main testing range. In the CV testing process, the starting potential in the first cycle
and the end potential in the third scan are selected according to the open circuit voltage
of the half-cell, at about 2.75 V. In the first cathodic scan, a wide reduction peak at around
1.1 to 1.6 V appears, indicating the formation of the SEI layer. The peak at 0.18 V in the
subsequent cathodic scan corresponds to the lithiation process from Si to Li15Si4, which
can be explained by Equations (1) and (2). In the lithiation process of silicon, the alloy
reaction occurs gradually, and the peaks of the two reactions are relatively close on the
CVs to form a wide peak [40]. The peaks at 0.38 V and 0.56 V in the anodic scan can be
attributed to the delithiation process from Li15Si4 back to amorphous Si, which corresponds
to Equation (3) [41,42].

Si + xLi+ + xe− → LixSi, (1)

LixSi + (3.75 − x) Li+ + (3.75 − x) e− → Li3.75Si, (2)

Li3.75Si→ ySi + (3.75 − x) Li+ + (3.75 − x) e− + LixSi1−y, (3)

In addition, the intensity of the peak gradually increases with the cycle, suggesting the
activation process of Si/MXene composite. CVs of other samples are shown in Figure S3,
exhibiting a similar shape due to the main lithiation and delithiation reaction of Si. Specially,
two redox couples at 1.01 V/1.15 V and 2.36 V/2.14 V in the MXene electrode are observed,
which belong to the lithium storage process of MXene [43]. The redox peaks at 1.91 V/1.66
V can be ascribed to the charging/discharging process of anatase TiO2. Comparing the CVs
of composites, MXene and silicon, the peak intensity corresponding to MXene decreases
with the increase in the mass ratio of Si.
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Figure 6b shows the galvanostatic charge/discharge curve of an NH2-Si3/MXene1
composite in the first three cycles at the specific current of 0.2 A g−1 in a potential range of
0.01 to 1.5 V (vs. Li+/Li). In the galvanostatic charging/discharging process, the starting
discharging potential was set as the open circuit voltage at 2.6 V of the half-cell, and in the
subsequent charging and discharging cycles, the potential range was set between 0.01 V
and 1.5 V. During the first discharge process, there is a voltage platform at about 0.2 V,
corresponding to the lithiation of crystalline silicon and forming an amorphous lithium
silicon phase. The slope platforms occur during the charging process below 0.6 V, which is
due to the delithiation process. In the first cycle, discharging and charging capacities of
NH2-Si3/MXene1 are 2395.1 and 1848.4 mAh g−1, respectively, with an initial coulomb
efficiency (ICE) of 77.17%, which is much higher than that of pure Si sample. The large
initial irreversible capacity loss is mainly attributed to the irreversible formation of the SEI
layer on the surface of the active material during the first discharge. The good capacity
retention rate indicates the stable structure of the composite and the synergistic effect of
silicon and MXene. MXene can act as the matrix of the structure and stay integrated where
NH2-SiNPs are strongly wrapped in this porous matrix. The flexibility and strength of
MXene could buffer the volume change of silicon in charging/discharging. The better
electrochemical properties of NH2-Si3/MXene1 composites are attributed to the relatively
stable structure due to the suitable mass ratio between MXene and SiNPs, which could slow
down the capacity decay rate of the composite. The high mass ratio of Si may lead to the
agglomeration of SiNPs, resulting in an unstable structure of NH2-Si/MXene composite.
On the other hand, MXene with a large ratio in the composite may reduce the whole specific
capacity and the restacking MXene also may lead to the ununiform distribution of Si on
MXene. Therefore, the proper mass ratio of Si and MXene can form a uniform and stable
composite structure and thus better performance.



Inorganics 2023, 11, 279 9 of 14

To demonstrate the cycling properties of the NH2-Si/MXene composites, MXene, and
silicon, galvanostatic charging and discharging were performed at a specific current of
0.2 A g−1 for 100 cycles, as shown in Figure 6c. All four electrodes that contained silicon
exhibit high initial discharging capacity due to the high theoretical specific capacity of
silicon. However, the rate of capacity fading varies for different samples. After 100 cycles,
the Si/MXene composites all present better capacity stability than pure silicon, indicat-
ing the good synergistic effect between the two materials. Among them, the reversible
discharging capacity of NH2-Si3/MXene1 can be maintained at 1203.3 mAh g−1, which
is the highest capacity, much higher than that of pure silicon (273.5 mAh g−1). The pure
MXene electrode demonstrates low capacity both at the first and after 100 cycles. The
NH2-Si3/MXene1 presents better cycling performance than other previous works, as sum-
marized in Table 2. The good cyclic stability can be attributed to the porous structure of
NH2-Si3/MXene1 composites with plentiful pores and uniformly distributed SiNPs in the
MXene matrix via strong bonds, which effectively releases volume variations and maintains
the integrity of silicon, thereby improving capacity retention. In addition to good cycle
stability, NH2-Si3/MXene1 composite also exhibits better rate properties. As shown in
Figure 6d, the average reversible discharge capacity of the NH2-Si3/MXene1 composites is
1821.8, 1657.6, 1507.3, 1312.8, and 1046.1 mAh g−1 when the specific currents are 0.1, 0.2,
0.2, 0.5, 1 and 2 A g−1, respectively, indicating better lithiation and delithiation kinetics
than other composites and pure silicon. When the specific current returns to 0.1 A g−1, the
discharge capacity increases to 1474.8 mAh g−1, which suggests that the NH2-Si3/MXene1
composite has good reversibility.

Table 2. The comparison of LIBs’ negative electrode performances between this work and the similar
composites.

Materials
Specific
Current
(A g−1)

Initial
Capacity

(mAh g−1)

Cycle
Number

Reversible
Capacity

(mAh g−1)
Ref.

Si@Ti3C2 MXene 0.2 1195 150 188 [32]
MXene and Si 0.1 731 500 557.6 [44]

NH2-Si/Ti3C2Tx 0.3 1624.1 100 643.8 [26]
SiO/wrinkled

MXene 0.5 1945 100 850 [45]

Si@MXene 0.2 1450 100 981 [46]
Si@Ti3C2Tx 0.5 4392 200 1000 [47]
Si@MXene 0.5 1238.5 150 1003.6 [48]
SiOx@NTS 0.5 1882.1 100 1141.3 [49]
pSi/MXene 0.1 2843.5 200 1039.3 [50]

NH2-Si/MXene 0.2 2395.1 100 1203.3 This work

To further analyze the electrochemical properties of Si/MXene composites, EIS of
NH2-Si3/MXene1 composite and pure Si are compared as shown in Figure 7a,b. At high
frequencies, the diameter of the semicircle refers to the charge transfer resistance (Rct) at
the interface between the electrodes and the electrolyte [51]. The Rct attracted from the
high-frequency semicircle of the NH2-Si3/MXene1 composite is 242.6 Ω and 129.1 Ω before
and after 100 cycles, respectively, smaller than those of (243.5 Ω and 634.3 Ω). It shows that
the compositing of MXene with NH2-Si into a 3D porous structure can improve the overall
conductivity of the electrode and highlight its advantages in electrolyte permeation on the
electrode surface. Figure 7c,d show the relationship between the impedance and the phase
angle before and after cycles. After 100 cycles, the slope of NH2-Si3/MXene1 is smaller
than Si, indicating a smaller Warburg factor (σ) and a larger Li+ ion diffusion coefficient in
NH2-Si3/MXene1. This may come from the lamellar porous structure of NH2-Si3/MXene1,
where the transport length of Li+ ions is shorter and the Li+ diffusion and migration ability
is better. Therefore, the NH2-Si3/MXene1 composite demonstrates better electrochemical
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properties as negative electrode material in LIBs with good cyclic stability, effective charge
transportation, and high reversibility.
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To further study the structural stability of the prepared electrodes, SEM was per-
formed to observe the surface and cross-section micromorphology of NH2-Si3/MXene1
and Si electrodes before and after 100 cycles (Figure 8). After 100 cycles, the surface of
NH2-Si3/MXene1 electrode exhibits smooth and united structure with no cracks existing,
suggesting good structural stability. However, there are obvious cracks on the surface of
Si electrodes, which is in accordance with the sharp drop in discharge capacity during
the cycling. The improvement of the structural stability of NH2-Si3/MXene1 is mainly
caused by the strong bonds between Si and MXene as well as the integrity of the porous
structure of the composite. In the cross-section view in Figure 8e–h, the thicknesses of
NH2-Si3/MXene1 and Si electrodes before and after cycling can be found. The thickness
change of NH2-Si3/MXene1 and Si electrodes are 19.7% and 48.8%, respectively, indicating
the huge difference in volume expansion ratios of these two electrodes. The low volume
expansion ratio of NH2-Si3/MXene1 illustrates that the chemical bond formed between
NH2-Si and MXene and the integrated porous structure of the composite plays an important
role in forming a stable electrode.
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Figure 8. Top-view (a–d) and side-view (e–h) SEM images of NH2-Si3/MXene1 and Si electrodes
before and after 100 cycles.

4. Conclusions

NH2-Si3/MXene1 composite with a stable porous structure was successfully syn-
thesized and used as the negative electrode materials for LIBs. Positive-charged NH2-Si
can be stably fixed on the surface of the negative-charged MXene nanosheets, which can
protect Si from volume expansion issue and improve the electrical conductivity in the
whole composite. At the same time, the interwoven MXene nanosheets provide an effective
migration channel for lithium ions and constitute a stable conductive three-dimensional
framework. Thus, the NH2-Si3/MXene1 negative electrode materials show good electro-
chemical performances. After 100 cycles, it could demonstrate a high specific discharge
capacity of 1203.3 mAh g−1 at a specific current of 0.2 A g−1. The stable bonding mode
and the strong porous structure can relieve the volume expansion problem of Si and put
forward a new method for the development of lithium-ion negative electrode materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11070279/s1, Figure S1: The XRD patterns of NH2-
Si1/MXene and NH2-Si5/MXene1; Figure S2: SEM images of (a,b) NH2-Si1/MXene1 and (c,d) NH2-

https://www.mdpi.com/article/10.3390/inorganics11070279/s1
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Si5/MXene1; Figure S3: CVs of the first three cycles at 0.2 mV s−1 from 0.01 to 1.5 V for (a) NH2-
Si1/MXene1, (b) NH2-Si5/MXene1, (c) MXene, and (d) Si.
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