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Abstract: In this study, the superoxide radical O2
•− formed by treating Ti(OR)4 (R = iPr, nBu) with

H2O2 in the presence of KOH was detected in the EPR spectra. The g-tensor of this radical differs
from the typical values reported for a superoxide on various TiO2 surfaces. On the other hand, similar
g-tensor components g||(zz = 2.10 ± 0.01, g⊥ = 2.005 ± 0.003 assigned to the O2

•− were previously
observed for radicals in aqueous solutions in the presence of K2O, alkaline solutions of DMSO, and
water/DMSO mixtures. A common factor in all these systems is the presence of alkali ions. However,
there was no structural support for the possible interaction of alkali ions with a superoxide in these
systems. The use of multifrequency pulsed EPR techniques in this work revealed the stabilization
of the O2

•− near the K+ ion and its involvement in a strong hydrogen bond with the surface. These
findings are consistent with the features previously reported for superoxides on a Na pre-covered
MgO surface. Interactions with a closely located 23Na and a strongly coupled 1H proton were also
seen in the HYSCORE spectra but assigned to two different superoxides with various gzz values
presented in the sample.

Keywords: TiO2; hydrogen peroxide H2O2; KOH; superoxide radical; pulsed EPR; hyperfine coupling

1. Introduction

Superoxide anion (O2
•−) is a radical formed after the one-electron reduction of dioxy-

gen O2, in different chemical processes [1]. In reactions with organic compounds, it can
behave as a base, a nucleophile, and an oxidizing or reducing agent [2,3]. O2

•− is paramag-
netic, which has allowed for broad applications of multifrequency, continuous wave (CW)
EPR spectroscopy for its studies [4–8].

The treatment of an oxide with a solution of hydrogen peroxide (H2O2), followed by
drying the obtained solid under a vacuum has been also employed for generations of the
superoxide radicals [9]. A product with matrix-bound O2

•−, produced by treating Ti(OR)4
(R = iPr, nBu) with H2O2, was described and used as a selective heterogeneous catalyst
for the oxidation of organic compounds [10]. It is effective at room temperatures and with
various solvents including water.

Detailed studies of the catalyst using various experimental methods have shown
that O2

•− is responsible for the reaction, and its exceptional stability results from a sta-
bilization near Ti4+ on the TiO2 surface with a contribution of H2O molecules and/or
OH groups [10–12]. However, the nature and strength of O2

•− interactions with the sur-
rounding molecules was not characterized.

In our previous work, paramagnetic O2
•− intermediates formed during the decom-

position of H2O2 on the TiO2 surface have been studied employing X- and Q-band CW
and pulsed EPR spectroscopy. Exploiting high-resolution pulsed EPR techniques, i.e., 1D
and 2D ESEEM (Electron Spin Echo Envelope Modulation) and ENDOR (Electron-Nuclear
Double Resonance), weak interactions between the superoxide unpaired electron and the
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surrounding protons were quantitatively characterized. This enabled us to modify the
model of the O2

•− with its surrounding environment on the TiO2 surface [13]. In this work,
we found that the superoxide radical with different EPR spectroscopic characteristics is
formed in reaction with Ti(OR)4 (R = iPr, nBu) and H2O2 in the presence of a KOH solution.
The application of pulsed EPR techniques has led to our finding that the stabilization of
this O2

•− is due to proximity to K+ ion and its involvement in a strong hydrogen-bonding
interaction with the surface.

2. Materials and Methods
2.1. Preparation of the Catalysts

The TiO2/O2
•− catalyst studied in our previous work [13] was prepared from Ti(OiPr)4

exposed to H2O2 following the method described in [10]. The dried powder obtained at
the end of this procedure was transferred in quartz X- and Q-band EPR tubes, degassed,
sealed, and used in the EPR experiments described in [13] (further called “sample I” in this
article). It is known that radiolytically or photochemically generated superoxide reacts with
tyrosine, forming phenoxyl radicals of tyrosine [14,15]. We aimed to test the appearance
of this species in a similar reaction using tyrosine with superoxide on the surface without
prior irradiation. The solubility of tyrosine in alcohol is highly pH-dependent [16]. Initially,
we tried to initiate a reaction of tyrosine with superoxide by adding tyrosine to the TiO2
dispersion powder from an alcohol solution or from its mixture with low concentration
KOH. EPR spectra of these samples show a rhombic signal consistent with the spectrum of
the O2

•− radical found in sample I. On the contrary, a signal with an axial g-tensor and
increased gzz was observed in samples with a higher KOH concentration (pH > 10). Similar
results were obtained upon joint addition of peroxide and tyrosine in an alkaline alcohol
solution to Ti(OCH(CH3)2)4. The presence of an axial EPR signal was also confirmed in
the control experiment by adding KOH in methanol without tyrosine to the TiO2/O2

•−

catalyst (sample II).
Earlier, in aqueous solutions and mixtures containing alkali metals (M), radicals with

similar EPR characteristics attributed to O2
•– were found, which suggests a special role

of M+ ions in these samples for the radical stabilization. However, no structural EPR
support was provided for this hypothesis. Therefore, this paper describes the pulsed
EPR characterization of the superoxide radical and its environment in the type II samples
containing K+ ions.

2.2. EPR Measurements

The CW EPR, two-dimensional, four-pulse hyperfine sublevel correlation (HYSCORE,
π/2 − τ − π/2 − t1 − π − t2 − π/2 − τ − echo) [17], and Davies pulsed ENDOR
(π − t − π/2 − τ − π − τ − echo) [18]) experiments were performed as previously
described elsewhere [13]. The Bruker WIN-EPR software was used for spectral processing.

3. Results and Discussions
3.1. EPR Spectra of Dried TiO2 + H2O2

X- and Q-band EPR spectra of a dried sample of TiO2 (solution of Ti(OiPr)4 treated
with H2O2, sample I) were reported in [13]. They show a signal with rhombic g-tensor
produced by the decomposition of H2O2 on the TiO2 surface (Figure S1). The g-tensor
principal components (2.024, 2.009, and 2.003) determined from the Q-band spectrum
supports the formation of a stable superoxide radical O2

•− [10], because they are in line
with values usually reported for the superoxide on various TiO2 surfaces (O2

•−-Ti4+) (see
Table S1).

3.2. EPR Spectra in the Presence of KOH

Figures 1 and S2 show Q- and X-band EPR spectra of the radical formed in sample
II. The spectra were obtained as a field-swept two-pulse Electron Spin Echo (ESE) signal
and its calculated derivative. In contrast to sample I, the shapes of these spectra possess a
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typical axial g-tensor anisotropy with principal values g||(zz) = 2.10, g⊥(x,y) = 2.002, and a
total width of ~20 mT in the X-band. We used the field-sweep ESE because a broad g||(zz)
feature was not clearly resolved in CW EPR spectra. The EPR signals with similar g-tensor
components g||(zz) = 2.10 ± 0.01 and g⊥ =2.005 ± 0.003 assigned to the superoxide radical
have previously been observed in water solutions with the presence of K2O, alkaline DMSO
solutions, and water/DMSO mixtures (Table 1). One can note that the common factor in all
these systems is the presence of alkaline ions. Earlier studies have found a good correlation
of the superoxide gzz value with the oxidation state of the nearest metal cation [5,19].
Particularly, a comparison of our data with the reported empirical dependence [5] indicates
that gzz = 2.0227 for the superoxide in sample I is consistent with its suggested location
near Ti4+. In contrast, gzz = 2.10 is within the region reported for M+ and may display the
radical location near an alkaline cation in sample II as well as in the compounds shown in
Table 1.
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Figure 1. Q-band two-pulse ESE field-sweep spectrum and its first derivative of the radical formed
in sample II. Field-sweep ESE generates a spectrum similar in shape to the absorption spectrum
produced on the integration of the normal continuous-wave EPR derivative. Microwave frequency
is 33.9523 GHz, length of π/2 pulse is 100 ns, time τ between first and second pulses is 400 ns, and
temperature is 15 K.

Table 1. Systems where the EPR signal with axial g-tensor was assigned to a superoxide.

Matrix g||(gzz) g⊥(gx,y) Reference

H2O ice (K2O) 2.110 [20]

D2O ice (0.1 mM K2O) 2.110 2.002 [21]

KO2 in DMSO/H2O in the presence of
ubiquinone-10 2.108 2.004 [22]

Alkaline DMSO 2.098 2.005 [23,24]

10 µL of 0.5M NaOH/mL of DMSO 2.089 2.007 [25]

TiO2 + H2O2+ KOH 2.10 2.002 This work

3.3. Pulsed EPR Characterization of the Radical

Interactions between the O2
•− species and its environment in samples I and II were

probed using HYSCORE and pulsed ENDOR techniques. Our previous HYSCORE studies
of the superoxide in sample I have found only weakly coupled protons, with the anisotropic
couplings T not exceeding ~2 MHz (Supplementary Materials, Section S1) [13]. These
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protons produce cross-features located along an antidiagonal crossing the diagonal of the
(++) quadrant at the (ν1H, ν1H) point, where ν1H is the proton Zeeman frequency in the
applied magnetic field (Figure S3).

In contrast, the X-band HYSCORE spectrum of sample II (Figure 2) is dominated
by a pair of cross-ridges 1H that significantly deviated from the (ν1H, ν1H) antidiagonal.
This indicates the presence of proton(s) with a substantially stronger anisotropic hyperfine
interaction [22] than the protons contributing to the spectra of sample I (Figure S3). One
can also note that the 1H spectrum in Figure 2 clearly shows additional features 1′H that
also deviated from the 1H antidiagonal but oriented in the opposite matter relative to this
line. In the course of the analysis described below, we provide evidence that the 1H and
1′H lines are parts of the same cross-feature located on opposite sides of the diagonal of the
(++) quadrant. Lines from weaker coupled protons, elongated along the antidiagonal (ν1H,
ν1H), are also present in the spectra of sample II but possess a lower intensity.
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Figure 2. Contour representation of the X- (left) and Q-band (right) HYSCORE spectra of the
superoxide radical in sample II. The time τ, between the first and the second microwave pulses, was
136 ns (X) and 200 ns (Q). The spectra were obtained by FT of the 2D time domain patterns containing
256 × 256 points with a 16 ns step in t1 and t2, which are the intervals between the second and the
third microwave pulses, and the third and the fourth microwave pulses, respectively. The microwave
frequency was 9.671 GHz (X) and 33.9915 GHz (Q), and the magnetic field was set to 343 mT (X) and
12,125 T (Q), and the temperature was 15 K.

The Q-band HYSCORE spectrum of sample II (Figure 2, right) shows an extended
straight ridge around a diagonal frequency of 2.4 MHz with a total length of ~2 MHz. This
line is produced by the interaction with 39K (nuclear spin I = 3/2) possessing a Zeeman
frequency of 2.409 MHz in the applied magnetic field 1212.5 mT. The natural abundance
of 39K is 93.26%. The second stable isotope 41K has the same nuclear spin and natural
abundance of 6.73%. The Zeeman frequency of 41K in the specified field is 1.32 MHz.
However, the spectrum in Figure 2 does not contain any features near this frequency on the
diagonal line.

4. Discussions

4.1. Analysis of the 1H HYSCORE Spectra

Quantitative analysis of 1H cross-ridges from the HYSCORE spectra of the O2
•−

in samples I and II, based on linear regression of contour line shapes in ν1
2 vs. ν2

2

coordinates [26], gives isotropic and anisotropic components of hyperfine tensors in axial
approximation for protons interacting with the electron spin of the superoxide. Detailed
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explanations and results of the analysis are provided in the Supplementary Materials,
Section S1.

In particular, a representation of the cross-ridges 1H from the spectra of sample I
prepared with H2O2 and D2O2 in coordinates ν1

2 vs. ν2
2 gives anisotropic hyperfine

coupling T = 2.0± 0.2 MHz for the contributing proton(s) (Figure S4 and Table S2) [13]. The
estimated value of T ~ 2 MHz is supported by the negligible deviation of the cross-ridges
from the antidiagonal in the experimental spectra. A similar analysis of the cross-ridges 1H
and 1′H with the visible deviation from the antidiagonal (Figure S5) in sample II provides
the value of anisotropic coupling of T ~ 7.0 MHz, which significantly exceeds the hyperfine
coupling of T ~ 2 MHz for protons interacting with O2

•− in sample I.

4.2. Evaluation of the Proton Anisotropic Hyperfine Couplings

The anisotropic couplings of T ~ 2 MHz and ~7 MHz for the superoxide-proton
interactions in samples I and II indicate different relative locations of the O–O molecule
and protons. The value of ~7 MHz is closer to previously reported 1H hyperfine couplings
of T ~ 10 MHz and 9.8 MHz for a species with similar g-tensor generated on from KO2
reacting with water in a H2O/DMSO mixture in the presence of ubiquinone-10 [22] and a
Na pre-covered MgO surface [27], respectively. The anisotropic hyperfine tensor for the
proton located near the O2

•− is the result of a magnetic dipole–dipole interaction with an
unpaired π spin density distributed approximately equally over two oxygens. The tensor
depends on a proton position relative to the O–O bond and is generally rhombic [28]. When
the interaction between the electron and the proton spins is described by the point dipole
approximation the anisotropic parameter is defined by the expression T = 79

r3 (MHz) [13],
where r is the distance between spins.

The dipole–dipole interaction is described by an axially symmetric tensor with diago-
nal principal values

T = [Txx, Tyy, Tzz] = T [−1, −1, 2] (1)

in the principal axes coordinate, with the z axis directed along the
→
r direction.

A proton near the superoxide oxygens O1 and O2, carrying unpaired spin densities
ρ1 and ρ2, experiences a local magnetic field, which is a vector sum of two contributions
depending on the O1–H (r1) and the O2–H (r2) distances (Figure S9). The principal values
of the rhombic hyperfine tensor in this case are [28]

T = [1/2 (T1 + T2 − 3δ), − (T1 + T2),
1
2

(T1 + T2 + 3δ)] (2)

where δ = [T1
2 + T2

2 + 2T1T2cos(2α + 2β)]1/2, T1 = 79ρ1/r1
3, T2 = 79ρ2/r2

3. Equation (2)
transforms to the traditional axial form

T = [−(T1 + T2), −(T1 + T2), 2(T1 + T2)] (3)

for the proton located on the O1—-O2 line with β = 180◦and δ = T1 + T2.
The relations between the sides and angles of the triangle HO1O2 (Figure S8)

r2
2 = [r2

1 + r2
O−O − 2r1rO−O cos β]

1/2
and α = arcsin[

r1

r2
sinβ] (4)

allow us to define the tensor components based on one distance (r1, O1–H distance) and
one angle (β, angle between H–O1 and O1–O2).

It has been shown that the unpaired spin density is almost equally (ρ1,2 ~ 0.5) dis-
tributed on the 2pπ

x of each oxygen in superoxide radicals studied in a solution [29], on
a MgO surface [30], and generated in TiAlPO-5 [31]. The reported O–O distance in the
superoxide varies between 1.32–1.35 Å [29,32–34] and increases under the influence of
hydrogen bonds [29,32].
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For a direct comparison with the HYSCORE determined values of T = 2 [13], 7 (this
work) and 10 MHz [22,27], we calculated the term T1 + T2 from Equation (2), which lacks
the rhombic term 3δ and is equal to T = 39.5 [ 1

r3
1
+ 1

r3
2
] for ρ1 ≈ ρ2 ≈ 0.5. This term is shown

in the form of contours, where each point defines r1 and β with the selected T (2, 7, or
10 MHz) (Figure 3), i.e., as a function of the O1–H distance and the angle β between the
H–O1 and O1–O2 directions. Calculated graphs show that T = 2 MHz corresponds to
the H–O1 distance 2.97–3.4 Å for the angles β < 180◦. On the contrary, this distance is
~1.0–1.2 Å less for T = 7 or 10 MHz (Table 2).
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Figure 3. Polar graphs (r1, β) with representative contours T = 39.5 [ 1
r3

1
+ 1

r3
2
] equal to 2.0 (blue),

7.0 (red), and 10 (pink) MHz calculated for a model with one superoxide oxygen located at the (0,0)
point of the coordinates and a second oxygen at the point (1.33 Å, 0◦). O1–O2 distance equals to
1.33 Å marked in purple along the line with β = 0o. Green line normal to r1 axis corresponds to the
middle of the O1–O2 distance. Adapted by permission from Copyright Clearance Center: Springer
Nature, Samoilova et al. [13]. Copyright 2022.

Table 2. Distances of a proton location relative to a superoxide radical at different values of the
anisotropic hyperfine coupling.

T, MHz r1 (H–O1), Å β, Degree r1 at β = 180◦, Å r1 at β = 120◦, Å References a

2 2.97–3.4 180–75 2.97 3.08 [13]

7 1.89–2.24 180–73 1.89 1.95 This work

10 1.67–1.99 180–70 1.67 1.71 [22,27]
a References, where parameters T from first column were experimentally determined. Adapted by permission
from Copyright Clearance Center: Springer Nature, Samoilova et al. [13]. Copyright 2022.

Available models of a hydration shell for the aqueous O2
•− include four water

molecules, with two waters forming hydrogen bonds with each oxygen atom (Figure S9).
The hydrogen bond lengths vary between 1.72–1.94 Å [30,35,36]. The lower limit of the
H–O1 distance 1.89 Å obtained for T = 7 MHz is still within the interval shown above.

4.3. Interaction with 39K Nucleus
39K possesses the nuclear spin I = 3/2 with a natural abundance of 93.26%. The

orientation disordered HYSCORE spectra of the S = 1/2 and I = 3/2 system are influenced
by hyperfine and nuclear quadrupole interactions. Both of them are anisotropic. Available
data about the nuclear quadrupole coupling constant in 39K+ state indicate that it is quite
small [37,38]. Model simulations of the HYSCORE spectra from I = 3/2 nuclei with
hyperfine and nuclear quadrupole tensors satisfying the conditions [νI > AZZ > QZZ]
have shown that the hyperfine interaction creates cross-ridges normal to the diagonal line
in the (++) quadrant, whereas the nuclear quadrupole interaction produces an additional
splitting of these cross-features in the direction parallel to the diagonal [39]. This simple
manual is helpful for the qualitative analysis of the observed spectrum from 39K (Figure 2).
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The spectrum consists of a straight segment normal to the diagonal of the (++) quadrant
and is located symmetrically relative to the (ν39K, ν39K) diagonal point. The length of the
ridge is about ~2 MHz along each coordinate. A projection of the spectrum on each
coordinate and stacked presentation of the spectrum shows a weakly resolved triplet
structure of the ridge with the hyperfine splitting A ~ 1 MHz between cross-peaks with
permutated coordinates of ~2 and 3 MHz. The spectrum does not show any additional
splitting of the ridge along the diagonal, assuming the small value of the quadrupole
coupling constant of 39K [39].

The crystal structure of an α-potassium superoxide shows an octahedral environment
of the superoxide ion near K+ ions with smallest contact distances of 2.71 Å in the direction
parallel to the O–O bond and another 2.92 Å away, in the direction approximately normal
to the O–O bond [40]. The calculated value of the principal component (T1 + T2) of the
hyperfine tensor defined by Equation (2) for the two indicated locations of 39K+ using
formulae T = (3.7/2)[1/r1

3 + 1/r2
3] is equal to 0.12 and 0.148 MHz, respectively. The

anisotropic width of the single-quantum transitions in the powder spectrum 3T/2 does not
explain the line splitting ~1 MHz from 39K, as detected in the HYSCORE spectrum. Conse-
quently, there remains only one source resulting in the observed line shape—the isotropic
hyperfine interaction. However, the simulation of spectra with parameters a ~ 1 MHz and
T ~ 0.15 MHz did not reproduce the presence of a spectral intensity around the diagonal
between two peaks with a ~1 MHz splitting. Additional ideas about hyperfine interactions
between 39K and the O2

•− can be obtained by taking into account the available data on
hyperfine couplings between a superoxide and 23Na or 133Cs on the MgO surface.

4.4. Comparison with Superoxide on a Na or Cs Pre-Covered MgO Surface

The EPR spectrum of superoxide species formed on a Na pre-covered MgO surface [27]
shows a formation of two species with gzz values equal to 2.091 and 2.14. The gx,y compo-
nents of both species are close to g = 2 and produce a single intensive line with a width of
1.5–2.0 mT in the spectrum. The species with gzz = 2.091 have been assigned to superoxide
ions on Mg2+ matrix sites. The value gzz = 2.14 is within the range typical for superoxide an-
ions stabilized on monovalent cations; thus, the corresponding EPR signal was designated
as a surface O2

•− − Na+ adduct.
The HYSCORE spectra collected in the gx,y area of the Na/MgO sample contain cross-

features from the 23Na and 1H nuclei (Figure S10). Two of them belong to 23Na with strong
and weak hyperfine couplings ~17 MHz and ~<3 MHz, respectively. The 1H spectrum con-
sists of two extended ridges with a clearly visible deviation from the antidiagonal crossing
(ν1H, ν1H) point of the diagonal, indicating a strong anisotropic interaction between the
superoxide and a proton. Computer simulations of the spectrum have provided hyperfine
tensors a = −15 ± 2 MHz, T = (−0.1, 3.1, −3.0,) MHz (±0.5 MHz) for the strongly coupled
23Na from the O2

•−–Na+ adduct and a = −5.0 ± 0.5 MHz, T = (−9.8, 19.6, −9.8) MHz
(±0.1 MHz) for the proton that produced extended cross-ridges. It was suggested that this
proton belongs to the superoxide stabilized on the Mg2+ matrix site in the proximity of a
surface OH−. Our analysis (Figure 3) shows that the 1H coupling of T ~ 10 MHz indicates
the formation of an H-bond between the superoxide and proton with an O–H distance
of ~1.7–2.0 Å. Furthermore, the authors have proposed that the line around the diagonal
(νNa, νNa) point is produced by remote 23Na nuclei that are randomly distributed between
3.5 Å and 4.5 Å away (i.e., 0.5 >|T| > 0.2 MHz in the point dipole approximation), and the
species of both gzz contribute to this feature [27].

To compare the experimental and calculated spectra, this feature was calculated using
a single hyperfine tensor a = −2.5 MHz, T = (−0.5, −0.5, 1.0) MHz (Figure S10). On
the other hand, we estimated Tmax = (20.9/2)[1/r1

3 + 1/r2
3] for two models of the 23Na

location relative to the superoxide (O–O length 1.33 Å) using a Na–O distance of 2.38–2.39 Å
reported for the orthorhombic structure of sodium superoxide [41,42]. The corresponding
values are Tmax ~ 1 MHz and 1.5 MHz for the 23Na locations on the line extending the
O–O bond and normal to the middle of the O–O bond that is consistent with the value of
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Tmax/2 used for calculating the spectrum. This estimate shows that the signal assigned to
randomly distributed 23Na nuclei at distances in the range between 3.5 Å and 4.5 Å can be
produced just by one nucleus located at the Na–O distance found in the crystal structures.
More convincing conclusions about the nature of the signal from weakly coupled Na could
be supported by the relative intensities of two sodium signals which are not available from
the published spectra.

The increased hyperfine parameters for strongly coupled 23Na is explained by the
formation of the ionic sodium superoxide Na+O2

− as symmetrical triangular molecules
with an interatomic distance of 1.96 Å that was deduced from vibrational spectra [43]. One
can recalculate the characteristic hyperfine parameters of the 23Na+O2

•− species obtained
in this work for a superoxide interacting with a nucleus of 39K+. The ratio of 23Na/39K
magnetic moments is 5.56. Then, the parameters |a| =15 MHz and |T|= 3 MHz found for
the 23NaO2 species will give formal values of a = 2.7 MHz and T = 0.54 MHz for 39K. The
ratio of the atomic isotropic hyperfine constants 927.1 MHz (23Na, 3s) and 228.5 MHz (39K,
4s) [44] calculated for unit spin density is 4.06. It leads to a decreasing a value of 0.67 MHz.
Another possible factor that may reduce the hyperfine parameters of 39K compared to 23Na
is the larger value of its ionic radius (1.02 Å for 23Na and 1.38 Å for 29K). Simulations of the
39K HYSCORE spectra with estimated parameters a = 0.6–0.7 MHz and T = 0.6 MHz confirm
the increased total length of the cross-ridge and its line shape without well pronounced
maxima (Figure S11). Thus, the recalculation analysis assuming similar structural motifs
of the MO2 species predicts significantly lower hyperfine couplings for 39K. However,
the value of the anisotropy parameter is greater than the calculated ~0.15 MHz using the
crystallographic structure. That increase provides an extended line shape from 39K, which
is consistent with the experimental HYSCORE spectra.

DFT calculations of the hyperfine parameters for O2
•− in Na/MgO were performed

for different elements of the MgO surface [27]. Based on the analysis of the full set of g
and A tensors, the NaO2 species formed on an edge site of the MgO surface, where O2
is simultaneously bound to Na and to MgO, give the best description of the large gzz
and the 23Na hyperfine interaction observed in the EPR experiments. On the other hand,
the DFT analysis of the 1H tensor determined from the HYSCORE spectrum of O2

•− in
Na/MgO has not been carried out even for the proposed O2

•−/HMgO center, although
this tensor possesses an aiso = −5 MHz and Tmax = 19.6 MHz, which significantly exceeds
the aiso ~ 0 MHz and Tmax ~ 10 MHz reported for O2

•− at the surface of MgO [45].
One can note that the exchangeable proton with Tmax ~ 20 MHz was found in the

HYSCORE spectra of the superoxide in the KO2/DMSO/H2O mixture in the presence of
ubiquinone-10 [24]. However, the X-band HYSCORE spectra obtained in this work were
not suitable for the detection of 39K signals due to a low Zeeman frequency in this band.

Other experimental examples relevant to this work are EPR studies of 23NaO2, 39KO2,
87RbO2, and 133CsO2 in rare gas matrices [46] and superoxides on a 133Cs/MgO surface [47].
Similar to Table 1, the gzz component of these species varies between 2.10–2.12, and the
alkali metals 23Na and 133Cs produce a resolved hyperfine splitting of the gzz and gxx,yy
components presented in Table 3.

Table 3. EPR parameters of MO2 species in a rare gas and on a MgO surface.

Sample gzz T11 T22 T33 aiso A0 ρ×•10−3 Ref. a

23NaO2 2.111 −2.8 1.68 −1.12 9 927.1 9.7 [46]

O2
•− on

Na/MgO 2.14 −0.1 3.1 −3.0 −15 927.1 16.2 [27]

133CsO2 2.107 −0.56 0.84 −0.28 14 2464 5.7 [46]

O2
•− on

Cs/MgO 2.120 5.1 2.6 −7.7 29.6 2464 12.0 [47]

a Tii components of an anisotropic tensor, isotropic constant aiso, and atomic isotropic hyperfine constant A0 are
in MHz.
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A comparison with rare-gas matrix-trapped MO2 molecules shows that the surface-
stabilized complexes are characterized by larger aiso and gzz parameters. The differences
between isolated MO2 molecules and surface-adsorbed NaO2/MgO species have been
examined with the help of DFT calculations, which illustrated the role of the matrix in the
stabilization of the superoxide with particular magnetic characteristics [27]. A set of surface
sites was compatible with the observed experimental results, which are characterized by a
mutual interaction between the superoxide anion and the Mg2+ matrix ions and adsorbed
Na+ species. Particularly, in the case of the surface-stabilized NaO2 complex, the unpaired
electron is localized in a π* orbital lying in the O2–Na plane, whereas the π* orbital hosting
the unpaired electron is found to be perpendicular to the M(OO) plane for matrix-trapped
NaO2 in the rare gas. This difference will influence the hyperfine interaction with the
alkaline atom nucleus [46].

5. Conclusions

Our experiments with the TO2 . . . O2
•− catalyst obtained with the joint addition of

peroxide and a KOH solution of alcohol show the formation of the superoxide radical with
the atypical gzz = 2.10. A similar EPR signal was previously observed in various systems
containing alkaline ions that allowed us to suggest the special role of K+ ions in the O2

•−

stabilization. However, 39K nucleus(i) did not produce any resolved features in the reported
EPR spectra. In this work, we applied 2D HYSCORE spectroscopy to characterize hyperfine
interactions between the O2

•− and the 39K and 1H nuclei in its environment. Q-band
HYSCORE spectra have shown the presence of 39K near the superoxide. A comparison of
the magnetic characteristics and electronic configuration defining the isotropic coupling of
39K with 23Na in Na/MgO [27] allowed us to predict significantly smaller 39K hyperfine
couplings for the similar structural MO2 motifs. The estimated values give a reasonable
agreement between the calculated and experimental 39K HYSCORE spectra. Another
finding of this superoxide is the existence of a strongly coupled 1H with the anisotropic
coupling T ~ 7 MHz, which suggests the formation of an H-bond with an O–H distance of
<2Å. So far, an interaction with the closely located alkaline ion and the strongly coupled
proton T ~ 10 MHz has been reported for the O2

•− on Na/MgO only [27]. However,
two different O2

•− species with gzz = 2.014 and 2.091 were present in this sample, and
strongly coupled 23Na with a = 15 MHz and the 1H with anisotropic coupling T = 9.8 MHz
were assigned to different species, − O2

•−/NaMgO and O2
•−/HMgO, respectively. Only

one type of O2
•−/KTiO2 species with gzz = 2.10 was found in our work. This means that

signals from 39K and a strongly coupled proton with T ~ 7 MHz in the HYSCORE spectra
are produced by interactions with this superoxide and should be considered as the elements
of its structure. Therefore, independent data to support the hypothesis that the presence of
a stable superoxide radical in systems containing alkali metals requires the simultaneous
proximity of M+ ion(s) and the formation of a hydrogen bond with its environment are
still needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11070274/s1, Figure S1: X- and Q-band EPR spectra of
the superoxide radical in sample I; Figure S2: X-band two-pulse ESE field-swept spectrum and its first
derivative of the TiO2 surface produced from Ti(OiPr)4 exposed to H2O2/KOH; Figure S3: Contour
representation of the HYSCORE spectra of the superoxide radical in the sample I (a) and in the similar
sample prepared using D2O2 (b); Figure S4: Plots of cross-ridges 1H from HYSCORE spectra of the
superoxide radical in sample I in the (ν1)2 vs. (ν2)2 coordinate system; Figure S5: Plots of cross-ridges
1H and 1H’ from HYSCORE spectrum of the superoxide radical in sample II in the (ν1)2 vs. (ν2)2

coordinate system; Figure S6: Q-band field-sweep 2-pulse ESE spectrum (a) and Q-band Davies
ENDOR spectra (b) of the superoxide radical in sample I; Figure S7: Q-band Davies ENDOR spectrum
of the superoxide radical in sample II; Figure S8: Definition of the distances and angles describing
the location of the proton relative to O1 and O2 of the superoxide radical; Figure S9: Structural model
of [O2(H2O)4]−; Figure S10: Experimental and simulated HYSCORE spectra of the O2

•− species
on Na/MgO; Figure S11: Experimental and simulated 39K HYSCORE spectra; Table S1: g-tensors
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assigned to the O2
•− radical in different TiO2 samples; Table S2: 1H hyperfine tensor parameters

determined from linear regressions of the cross-ridges; Section S1: Square frequency fitting of the 1H
HYSCORE spectra and its comparison with the pulsed ENDOR data [4,10,13,22,26,27,29,31,35,36,48–56].
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