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Abstract: Cations and anions are indispensable resources for the development of nature and modern
industry and agriculture, and exploring more efficient technology to monitor them is urgently needed.
A multifunctional fluorescent probe based on 1,8-naphthalimide, N-(2-thiophenhydrazide)acetyl-4-
morpholine-1,8-naphthalimide (TMN), was successfully designed and synthesized for the detection
of Co2+, F−, and CN−, with N-carboxymethyl-4-morpholine-1,8-naphthalimide and thiophene-2-
carbohydrazide as starting materials. TMN displayed superior stability in MeCN with an “on–off”
mode towards Co2+, F−, and CN− by the naked eye. The linear response ranges of TMN were 0–3
and 4–19 µM with a detection limit of 0.21 µM for detecting Co2+, 0–5 and 5–22 µM with a detection
limit of 0.36 µM for F−, and 0–10 and 10–25 µM with a detection limit of 0.49 µM for CN−. TMN
could also recognize Co2+, F−, and CN− in real samples. Finally, the possible sensing mechanisms of
TMN for detecting Co2+, F−, and CN− were deeply investigated. These results implied that TMN
could be a potential chemosensor for monitoring metal cations and anions sensitively and selectively
and could be used in real sample detection.

Keywords: 1,8-naphthalimide derivatives; fluorescence; on–off; Co2+, F−, and CN− detection;
naked-eye visible

1. Introduction

The trace element cobalt has a vital relationship with vitamin B12, which is also called
cobalamin, the only vitamin containing a metal element [1–4]. Cobalt is a component of
vitamin B12, and its physiological function is also displayed by the action of vitamin B12 [5].
Vitamin B12 enters the stomach through the intestinal tract, while cobalt can prevent vitamin
B12 from being destroyed by microorganisms in the intestinal tract. The efficacy of vitamin
B12 will be reduced or even disappear without the participation of cobalt. The lack of cobalt
will lead to the formation of diseases, such as anemia, Alzheimer’s disease, and sexual
dysfunction, accompanied by asthma, abnormal intraocular pressure, body weight loss,
glaucoma, and cardiovascular disease [6–8]. Fluoride anion is a micronutrient for human
growth and plays a vital role in the treatment of osteoporosis and tooth damage [9,10]. In
addition, its compounds are widely used in fluorine-containing pesticides and rubber. The
excessive intake of fluoride anion can cause adverse physiological effects and may lead
to urolithiasis, fluorosis, acute gastritis, and even cancer, etc. [11,12]. The Environmental
Protection Agency (EPA, Washington, DC, USA) proposed that the standards for the
concentration of fluoride anion in drinking water be 2 mg L−1 (non-enforceable) and
4 mg L−1 (enforceable) [13]. Cyanide is one of the most useful anions and has been widely
used in many fields, such as extraction, electroplating, synthetic fibers, metallurgy, the resin
industry, and herbicides [14,15]. Cyanide is also used as a chemical warfare agent and even
as material for terrorism [16]. In addition, cyanide is highly toxic and harmful to humans
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and the environment, especially being lethal to humans at concentrations of 0.5–3.5 mg/kg
(body weight) [17,18].

At present, many materials have been utilized for monitoring cations and anions,
such as fluorescent chemosensors [19,20], electrochemical sensors [21], carbon quantum
dots [22,23], biosensors [24,25], and so on. The methods are mainly divided into three
categories, according to their principles: chromatography, biochemical detection methods,
and fluorescence detection methods. Among them, fluorescence detection methods have the
characteristics of low cost, easy operation, a fast signal response, and signal visualization
compared with the other two methods [26]. Fluorescence detection methods rely on
the specific interaction of fluorescent chemosensors with analysts to analyze anions and
cations based on the enhancement or quenching of fluorescent signals, or the changes in
fluorescence spectra [27].

1,8-naphthalimide is one of the traditional environment-sensitive dyes, which exists
in a large donor–acceptor electron-conjugated system and is susceptible to light transitions,
resulting in strong fluorescence [28]. 1,8-naphthalimide-based fluorescent probes have the
characteristics of high fluorescence quantum yield, excellent light resistance, strong chemi-
cal and thermal stability, easy structural modification, a large Stokes shift, and moderate
emission wavelength, making naphthalimide one of the most valuable fluorophores [29]. In
recent years, 1,8-naphthalimide-based fluorescent probes have become a research hotspot
around the world. They have been applied to ion recognition, cell imaging, the detection
of small molecular substances in cells and the detection of cell cancer, clinical medicine,
etc. [30].

In this work, a multifunctional fluorescent probe, N-(2-thiophenhydrazide)acetyl-4-
morpholine-1,8-naphthalimide (TMN), was successfully designed and synthesized for the
detection of Co2+, F−, and CN− in a MeCN solution, with N-carboxymethyl-4-morpholine-
1,8-naphthalimide and thiophene-2-carbohydrazide as starting materials. The fluorescence
intensities of TMN-quenching were observed under 365 nm of UV light in the presence
of Co2+, F−, and CN−. TMN displayed superior sensitivity and selectivity to cations
and anions. The limits of detection (LOD) of TMN for detecting Co2+, F−, and CN−

were extremely low. TMN could also recognize Co2+, F−, and CN− in real samples.
Finally, the mechanisms of TMN for detecting Co2+, F−, and CN− were investigated by 1H
NMR titration.

2. Results and Discussion
2.1. Fluorescence Spectral Characteristics Studies

In order to investigate the solvation effect of TMN, eight solvents, including methanol,
tetrahydrofuran (THF), acetone, dichloromethane, acetonitrile, dimethyl sulfoxide (DMSO),
N,N-dimethylformamide (DMF), and ethanol were selected for fluorescence spectral ex-
periments (Figure S1a). As the polarity of the solvents increased, the main emission of
the fluorescence spectra of TMN (10−5 M) was red-shifted, and the fluorescence intensity
decreased. This phenomenon may have contributed to the ICT process occurring in the
system. Furthermore, the fluorescence spectra of TMN in different ratios of acetonitrile and
water were also studied. As shown in Figure S1b, the fluorescence intensity of TMN was
quenched in the presence of water. Finally, pure acetonitrile was used as the solvent for the
UV-Vis and fluorescence spectral characteristics studies.

2.2. The Spectral Properties of TMN for the Detection of Co2+, F−, and CN−

In order to explore the sensing performance of TMN, five eq. of different metal ions
were added to the MeCN solutions of TMN (10−5 M). In the UV-Vis spectra, TMN had a
strong absorption peak at 396 nm, while the absorbance was enhanced by 2.1 and 3.1 times,
with Fe2+ and Fe3+ added, respectively. The addition of Cu2+ also caused changes in the
UV-Vis spectra, while the change caused by Co2+ was weak (Figure 1a). In fluorescence
spectra, the intensity of the added Co2+ in TMN was visible to the naked eye and was
quenched from 2326 to 1174 at 530 nm (λex = 396 nm), while the changes caused by Fe2+,
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Fe3+, and Cu2+ were weak (Figure 1b), combined with the results of the UV-Vis spectra.
Therefore, Co2+ was selected for subsequent detection. As shown in Figure 2a, only when
F− or CN− were added to the solution did the absorbance of the TMN at 300 to 350 nm
of the UV-Vis spectra significantly enhance. In the fluorescence spectra, the intensities of
TMN added with F− or CN− decreased to varying degrees, which was consistent with the
UV-Vis spectra of the TMN (Figure 2b). This phenomenon implied that TMN could serve
as a fluorescent probe for the detection of Co2+, F−, and CN−.
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The interferences of other cations and anions on the recognition of Co2+, F−, and
CN− by TMN (10−5 M) in MeCN solutions were also studied. Five eq. of different metal
ions or anions were first added to the solutions of TMN, and then five eq. of Co2+, F−,
and CN− were added after the solutions stood for a period of time. The fluorescence
intensities of TMN with other metal ions were nearly unchanged while they were quenched
in the presence of Co2+ (Figure 3a). F− was the same as Co2+ (Figure 3b). For CN−, the
fluorescence intensity of TMN was almost unaffected by the addition of other anions, except
for SO4

2−, HSO4
−, and Ac−. Although these three ions interfered with it, their impact was

relatively small and could be ignored (Figure 3c). Therefore, in the case of F− and CN−

interfering with each other, there was almost no interference from other ions.
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In order to explore the fluorescence titration experiments of TMN, different amounts of
Co2+, F−, and CN− were added to TMN to record the change in the fluorescence spectra. As
shown in Figure 4a, the fluorescence intensities of TMN decreased with the increase in the
concentration of Co2+, which was from zero to five eq. (0 to 50 µM). When the concentration
of Co2+ reached 19 µM, the fluorescence intensity of TMN reached the minimum value
and remained unchanged. The linear fitting equations of TMN for detecting Co2+ were
y = 2147.06 − 65.20x (R2 = 0.99) for 0 to 19 µM (Figure 4b). The LOD (limit of detection)
of TMN for detecting Co2+ was calculated to be 0.15 µM on the basis of the equation of
LOD = 3σ/S, where σ means the response standard deviation at the lowest concentration,
and S is the slope of the calibration [31]. In Figure 4d, the fluorescence intensities of
TMN decreased with the increasing concentrations of F−, which were from zero to five eq.
(0 to 50 µM). When the concentration of CN− reached 22 µM, the fluorescence intensity
of TMN remained stable. The linear fitting equations of TMN for detecting F− were
y = 2107.47 − 56.96x (R2 = 0.99) for 0 to 22 µM, and the LOD of TMN for detecting F− was
0.18 µM (Figure 4e). In Figure 4g, the fluorescence intensities of TMN also decreased with
the increasing concentrations of CN−, ranging from zero to seven eq. (0 to 70 µM). The
linear fitting equations of TMN for detecting CN− were y = 2282.81 − 81.90x (R2 = 0.99)
for 0 to 25 µM, with a LOD of 0.12 µM for detecting CN− (Figure 4h). Finally, we made
a Stern–Volmer (S-V) plot to explore its quenching constants for Co2+, F−, and CN−. As
we all know, fluorescence quenching is usually divided into static quenching (SQ) and
dynamic quenching (DQ), and both can be expressed by the S-V equation [32,33]:

F0/F = 1 + Ksv[Q]

where F0 and F are the fluorescence intensities in the absence and presence of ions, re-
spectively; [Q] is the ion concentration of the quenching agent; Ksv is the quenching
constant [34]. Since the fluorescence intensity ratio and ion concentration showed good
linearity and conformed to the S-V equation (R2 = 0.99), it was inferred that they were all
static quenching [35,36], and the quenching constants of Co2+, F−, and CN− were 0.067,
0.060, and 0.189 µM−1, respectively, which meant that CN− had the strongest quenching
effect on TMN, followed by Co2+ and F−. Some reported probes for the detection of Co2+,
F−, and CN− have been compared with TMN in Table 1 [37–42].
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Response time is an important factor for evaluating fluorescent probes in practical
applications. The effect of the reaction time on the binding process of TMN to ions was also
investigated. The results displayed that the fluorescence signal of TMN remained stable in
the absence of any ions, showing good fluorescence stability. However, the fluorescence
intensity of TMN decreased immediately in different degrees after adding Co2+, F−, and
CN− to the solutions of TMN, respectively, reaching the minimum value within 10 s, and
they remained constant for the following 60 min at 530 nm. This phenomenon implied that
TMN had high reactivity with Co2+, F−, and CN− (Figure S2).

Finally, the binding ratios of TMN to Co2+, F−, and CN− were explored by Job’s plot
experiments. In Figure 5, the concentration ratios of the ions were from 0.1 to 0.9, where
the total concentration of the TMN and ions was 1 × 10−5 M. The maxima peaks were all
at 0.5, which implied that the ratio of the interaction between the TMN and Co2+, F−, or
CN− was 1:1.
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Table 1. Comparison of TMN with other reported probes for the detection of Co2+, F−, and CN−.

Probes Solution
System LOD Liner

Ranges Applications Ref.
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2.3. The Mechanism of TMN for the Detection of Co2+, F−, and CN−

To further explore the mechanism of TMN for detecting Co2+, 1H NMR titration
analysis was carried out in a DMSO-d6 solution. Due to the difference in the ligands and
the electron arrangement of cobalt 3d7, Co(II) had a low-spin state, a high-spin state, and
the coexistence of both, and low-spin Co(II) could be converted to low-spin Co3+ [43]. The
two could be distinguished by 1H NMR spectra, with low-spin Co(II) complexes showing
wide peaks and small paramagnetic shifts, high-spin Co(II) complexes showing narrow
peaks and large paramagnetic shifts, and low-spin Co(III) complexes with diamagnetic
and no paramagnetic shifts, so the Co(III) complexes in Figure 6 were in a low-spin
state [44,45]. Since the chemical shift and number of protons of TMN were consistent with
the 1H NMR spectra of the TMN, indicating that the active H of TMN had no interaction
with Co2+, the mechanism of Co2+ detection may be that the two acyl groups of TMN
were coordinated with Co2+, Co(II) was oxidized, and the reduced ligand changed its
fluorescence spectrum [46–48] (Scheme 1).
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In Figure 7a, the two spikes at 10.2–10.5 ppm were two NH proton peaks, and with
the addition of F−, both signals shifted to the upper field, where one moved to 9.6 ppm
and disappeared after becoming wider and smaller, and the other one moved to the
9.1 ppm spike, and the appearance of the next small peak may be due to intramolecular
hydrogen bonding [49]. The new peaks that appeared at 6.7–8.0 ppm may be due to the
upper field displacement of aromatic CH [50]. Meanwhile, a new weak proton signal was
found at 15.56 ppm, which confirmed the presence of the dimer, [HF2]− [51–53], implying
deprotonation between the TMN and F−. In addition, a similar interaction mechanism
between TMN and CN− was also investigated by 1H NMR titration experiments (Figure 7b).
Different amounts (one to five eq.) of TBACN were sequentially added to the DMSO-d6
solution of TMN. When one eq. of CN− was added, the NH proton signal at 10.33 ppm
immediately disappeared, and the other NH proton signal moved to the upper field site at
9.1 ppm, clearly indicating that deprotonation occurred [54,55]. Meanwhile, the addition of
CN− destroyed the original molecular structure, and the proton peak that partially attached
to the aryl group was displaced to the upward field, showing a new peak between 6.7 and
7.5 ppm [56]. The mechanism of TMN for F− or CN− is proposed in Scheme 2. Therefore,
TMN could serve as a highly multifunctional fluorescent probe for the detection of Co2+,
F−, and CN−.
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2.4. Detecting Co2+, F−, and CN− in Real Samples

In order to further explore the practical application of TMN, different water samples
were collected to detect Co2+, F−, and CN− in actual water samples, and the standard
addition method was introduced in this work. The final concentrations of Co2+, F−, and
CN− in the water samples were 3.00 µM, 6.00 µM, and 9.00 µM, and the data are listed in
Table 2. The recoveries of TMN for detecting Co2+, F−, and CN− all ranged from 98.56% to
110.67%, and all of the RSD values were within 3.67%. These data indicated that TMN could
be a multifunctional fluorescent probe for monitoring Co2+, F−, and CN− in real samples.

Table 2. Results of detecting Co2+, F−, and CN− in real water samples.

TMN Add (µM)
(Co2+)

Found (µM)
(Co2+)

Recovery (%)
(Co2+)

RSDb (%)
(Co2+)

3.00 3.27 ± 0.04 109.00 ± 1.33 1.22
Songhua River 6.00 5.94 ± 0.02 99.00 ± 0.33 0.34

9.00 9.19 ± 0.05 102.11 ± 0.56 0.54

3.00 3.30 ± 0.06 110.00 ± 2.00 3.30
Tap water 6.00 6.31 ± 0.03 105.17 ± 0.50 0.48

9.00 9.38 ± 0.06 104.22 ± 0.67 0.52
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Table 2. Cont.

TMN Add (µM) (F−)
Found (µM)

(F−)
Recovery (%)

(F−) RSDb (%) (F−)

3.00 3.14 ± 0.04 104.67 ± 1.33 1.92
Songhua River 6.00 6.28 ± 0.05 104.67 ± 0.83 3.67

9.00 9.16 ± 0.03 101.78 ± 0.33 0.79

3.00 3.32 ± 0.04 110.67 ± 1.33 3.48
Tap water 6.00 6.30 ± 0.03 105.17 ± 0.50 0.72

9.00 9.29 ± 0.05 104.22 ± 0.56 1.08

TMN Add (µM)
(CN−)

Found (µM)
(CN−)

Recovery (%)
(CN−)

RSDb (%)
(CN−)

3.00 3.18 ± 0.03 106.00 ± 1.00 0.63
Songhua River 6.00 6.25 ± 0.03 104.17 ± 0.50 0.48

9.00 8.87 ± 0.05 98.56 ± 0.56 0.56

3.00 3.25 ± 0.03 108.33 ± 1.00 1.12
Tap water 6.00 6.33 ± 0.04 105.50 ± 0.67 0.47

9.00 9.42 ± 0.06 104.67 ± 0.67 0.64

Average of three repeated measurements of Co2+, F−, and CN−. b: RSD means relative standard deviation.

3. Experimental Section
3.1. Materials and Physical Measurements

All the reactants and solvents utilized in this work were commercially available with
no further purification. KCl, NaCl, MgCl2, AlCl3, ZnCl2, FeCl3, CaCl2, NiCl2, SnCl2, BaCl2,
CuCl2, HgCl2, Pb(NO3)2, MnCl2, AgNO3, CrCl3, CuCl, FeCl2, and CoCl2 were purchased
from Sigma Aldrich. Anions of H2PO4

−, OH-, NO3
−, SO4

2−, HSO4
−, ClO−, Cl−, NO2

−,
Ac−, CNS−, Br−, I−, F−, and CN− were purchased from Sigma-Aldrich, which were all
tetrabutylammonium (TBA) salts. Methanol (MeOH), ethanol (EtOH), acetonitrile (MeCN),
dimethyl sulfoxide (DMSO), N,N’-dimethylformamide (DMF), dichloromethane, acetone,
and tetrahydrofuran (THF) were also purchased from Sigma-Aldrich. High-resolution
mass spectrometry (HRMS) was carried out on an Agilent 6224. The 1H NMR and 13C
NMR spectra of samples were obtained through a Bruker AVANVE 400 MHz system
(Bruker, Germany). The fusion points were recorded on a Shanghai Inesa melting point
apparatus (WRS-3) without correction. UV-Vis spectra were measured on a Shimadzu
UV-2700 spectrophotometer. IR spectra were recorded on an Alpha Centaurt FT/IR spec-
trophotometer over a wavenumber ranging from 4000 to 400 cm−1 using KBr pellets.
Fluorescence spectra were gathered on an LS-55 using a xenon lamp and quartz carrier at
an ambient temperature.

3.2. Synthesis of N-(2-thiophenhydrazide)acetyl-4-morpholine-1,8-naphthalimide (TMN)

The syntheses of compounds 1 and 2 [57,58] are introduced in the supporting informa-
tion, and the relative spectra are listed in Figures S3–S8. Compound 2 (5 mmol) was reacted
with thiophene-2-carbohydrazide by the coupling reagents 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC, 1.1 eq.), the base N,N-diisopropylethylamine (DIEA, 2 eq.), and hy-
droxybenzotrizole (HOBt, 1.2 eq.) in dry DMF at 150 ◦C for 12 h. The reaction was then
quenched by adding water, and the desired product was precipitated from the reaction
mixture, which was further filtered and dried. The mixture was purified by column chro-
matography on silica gel eluted with CH2Cl2/MeOH (V/V, 15/1) to obtain yellow TMN
(Scheme 3); yield: 80%. m.p.: 220.6–221.3 ◦C. All spectra of the structural characterization
of the compound TMN are listed in Figure S9–S12. FT-IR (KBr) cm−1: 3273 (v N-H), 2995,
2872 (v C-H), 1693, 1660 (v C=O). 1H NMR (DMSO-d6, TMS, 400 MHz, ppm) δ 10.47 (d,
J = 1.4 Hz, 1H), 10.33 (s, 1H), 8.57–8.40 (m, 3H), 7.83 (td, J = 5.9, 4.9, 3.4 Hz, 3H), 7.40–7.38
(m, 1H), 7.17 (dd, J = 4.9, 3.8 Hz, 1H), 4.79 (s, 2H), 3.92 (t, J = 4.5 Hz, 4H), 3.25 (t, J = 4.5 Hz,
4H). 13C NMR (DMSO-d6, TMS, 100 MHz, ppm): 167.02, 163.80, 163.23, 160.85, 156.12,
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137.70, 132.78, 132.08, 131.25, 129.97, 129.67, 129.42, 128.60, 126.55, 125.69, 122.79, 115.97,
115.51, 66.65, 53.51, 41.42; HRMS (ESI) was calculated for C23H20N4O5S ([M+H]+) 465.1227,
found 465.1217.
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form homogeneous solutions. Finally, different concentrations of Co2+, F−, and CN− were
titrated to 10−5 M of TMN to study the ability of TMN to detect cations and anions.

3.4. Detecting Co2+, F−, and CN− in Real Samples

Tap water was collected from the Northeast Agricultural University (Harbin, China).
The Songhua River water and tap water were filtered with a 0.45 µm microporous mem-
brane for use. The standard addition method was been chosen for sensing Co2+, F−, and
CN− in real samples. The added concentrations of Co2+, F−, and CN− were 30, 60, and
90 µM, respectively, using a 9:1 ratio of TMN to water.

4. Conclusions

In summary, a multifunctional fluorescent probe, TMN, based on 1,8-naphthalimide,
was designed and synthesized for the detection of Co2+, F−, and CN−. TMN displayed
superior stability in MeCN with an “on–off” mode towards Co2+, F−, and CN− by the
naked eye. The detection limits of TMN for detecting Co2+, F−, and CN− were 0.21 µM,
0.36 µM, and 0.49 µM, respectively. Meanwhile, the possible sensing mechanisms of TMN
for detecting Co2+, F−, and CN− were deeply investigated by 1H NMR titration analysis.
TMN could also recognize Co2+, F−, and CN− in real water samples. These results indicated
that TMN could be a potentially multifunctional chemosensor for the sensitive and selective
detection of metal cations and anions.
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