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Abstract: Photoelectrochemical (PEC) splitting water technology over the years has gradually ma-
tured, and now photoanodes loaded with nanoparticles (NPs) show excellent PEC performance.
Each of the metal NPs has a different effect on the PEC performance of BiVO4. This work selected
the noble metals Ag and Au to modify BiVO4 and study its PEC performance. After recombina-
tion, the photocurrent densities of Ag/BiVO4 and Au/BiVO4 photoanodes were 3.88 mA/cm2 and
1.61 mA/cm2 at 1.23 VRHE, which were 3.82 and 1.72 times that of pure BiVO4. The hydrogen
evolution of pure BiVO4 is about 1.10 µmol·cm−2. Ag/BiVO4 and Au/BiVO4 contain 3.56 and
2.32 times pure BiVO4, respectively. Through the research, it was found that the composite noble
metal (NM) NPs could improve the PEC properties; this is because NM NPs can introduce a surface
plasmon resonance (SPR) effect to increase the concentration and accelerate the separation of carriers.
The mechanism of the SPR effect can be explained as NM NPs are excited by light generating “hot
electrons”, and the hot electrons can directly enter the conduction band (CB) of BiVO4 through an
electron transfer mechanism. The potential energy of the Schottky barrier generated by the contact
of NM NPs with BiVO4 is smaller than that generated by the SPR effect, which enables the “hot
electrons” to be smoothly transferred from the NM NPs to the conduction band of BiVO4 without
returning to the NM NPs. Ag/BiVO4 showed higher PEC activity than Au/BiVO4 because of its
higher light absorption, photocurrent, and oxygen evolution capacity. It can be seen that loading NM
NPs increases the concentration of the carriers while the separation and transfer rates of the carriers
are improved. In conclusion, it was concluded from this study that the loading of NM NPs is an
effective method to improve the water oxidation kinetics of BiVO4 photoanodes.

Keywords: surface plasmon resonance; BiVO4; photoelectrochemical; water splitting; noble metal

1. Introduction

With the energy crisis and environmental pollution becoming increasingly prominent,
photoelectrochemical (PEC) splitting water technology, as a new energy conversion technol-
ogy, is attracting attention and being explored by an increasing number of researchers [1–4].
PEC water splitting can convert solar energy into hydrogen with zero pollution [5]. How-
ever, the PEC splitting efficiency is low due to the slow water oxidation process, so finding
a photoanode with high activity which responds to visible light is the required basis. There
are many semiconductor materials that have been found to be useful as photoanodes, such
as WO3, ZnO, BiVO4, TiO2, Cu2O [6–10], etc. Among them, bismuth vanadate (BiVO4) is a
promising photoanode semiconductor material. BiVO4 has a suitable band gap of about
2.45 eV and a light absorption range of 300–520 nm. In addition, BiVO4 is cheap, abundant,
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and stable in aqueous solution. Therefore, BiVO4 is a very suitable photoanode n-type
semiconductor material [11].

However, pure BiVO4 neither achieved the theoretical effect in hydrogen conversion,
nor the theoretical photocurrent density of 7.5 mA/cm2 [12]. This is because pure BiVO4 has
the disadvantages of slow electron transfer, low separation rate of photogenerated carriers,
rapid recombination of photogenerated carriers, and slow water oxidation kinetics [13].
Many methods have been proposed to solve these problems, such as ion doping, oxygen
vacancy, morphology engineering, heterojunction and cocatalysts [14–18]. In addition to
these methods, the BiVO4 loading of NM NPs such as Ag and Au is also highly feasible.
Geng et al. prepared a composite photoanode, FeOOH/Au/BiVO4, whose photocurrent
density is 3.74 times higher than pure BiVO4 [19]. The photochemical (PEC) splitting
water property of Au/TiO2 BNRs photoanode prepared by Su et al. showed high PEC
activity [20]. Zhang et al. [21] studied the PEC performance of BiVO4 modified with Au
NPs of different sizes. The results showed that the PEC performance of various sizes of
modified photoanodes was also different.

This study investigated PEC performance of BiVO4 loaded with noble metal NPs and
Ag NPs and Au NPs, NM NPs were investigated, respectively. NM NPs with different
concentrations were composited with BiVO4 using hydrothermal and electrodeposition
methods, respectively. The PEC performances were greatly improved with the composite
NM NPs material, which is mainly due to enhanced conductivity, the surface plasmon
resonance (SPR) effect, and the Schottky barrier created by metal-semiconductor contacts.
NM NPs are excited by visible light to produce “hot electrons”, and “hot electrons” can
more easily enter the conduction band (CB) through the electron transfer mechanism, while
the Schottky barrier can prevent “hot electrons” from returning to the NM NPs again, which
can broaden the light absorption range, increase the carrier concentration, and accelerate
the separation and transfer of carriers. The research results show that the composite of Ag
NPs and Au NPs with BiVO4 exhibits high PEC activity. This study provides a possible
route for noble metal modified semiconductors.

Characterization

The microstructure and surface morphology of the samples were researched by scan-
ning electron microscopy (SEM, Hitachi, SU8010) and transmission electron microscopy
(TEM, FEI Company, Tecnai G2 F20). X-ray diffraction (XRD, PANalytical B.V., pyrerea,
20–80◦, 10◦/min), X-ray photoelectron spectroscopy (XPS, Thermo Fisher Technology,
250Xi, Al-Kα) and energy spectroscopy spectrometry (EDS, FEI Company, EDAX GENESIS)
were used to determine the crystal structure, valence states of the elements, and element
type in the samples, respectively. The absorption spectra were measured with the dif-
fuse reflectance UV-visible spectra (SHIMADZU UV-2600) over a range of 300–800 nm.
Separation and transfer properties of photogenerated charge were investigated by surface
photovoltage (SPV, Beijing Perfectlight Technology Co., Ltd., Beijing, China, PLS-SPS1000)
and electrochemical impedance spectroscopy (EIS, 5 mV, 0.01 Hz to 100 kHz).

In this paper, the PEC performances of the samples were characterized by the three-
electrode electrochemical workstation. The irradiation source for the three-electrode electro-
chemical workstation consisted of an AM 1.5 G filter and a 300 W Xe lamp. It was detected
that the light intensity near the sample surface was about 100 mW/cm2. Ag/AgCl served
as the reference electrode, the sample was the working electrode, and a Pt sheet was used as
the counter electrode. The Nernst equation yielded a reversible hydrogen electrode (RHE)
result, ERHE = EAg/AgCl + 0.1976 + 0.0591pH [22].

2. Results and Discussion

The fabrication of Ag/BiVO4 (referring to Ag2.5/BiVO4) and Au/BiVO4 (referring
to Au150/BiVO4) is presented in Figure 1. Figure 2 shows the SEM images of BiVO4,
Ag/BiVO4, and Au/BiVO4. In Figure 2a, the BiVO4 that was prepared presented a
nanochain structure. Nanochains consist of interconnected ellipsoidal nanoparticles; each
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nanoparticle is about 250 nm in diameter. Figure 2b shows the schematic diagram of BiVO4
loaded with Ag NPs. Dense and protruding Ag NPs could be observed attached around the
chain-like BiVO4. As can be observed in Figure 2c, Au NPs with a diameter of about 5 nm
were distributed in a points-like manner on BiVO4. Obviously, NM NPs were successfully
combined on BiVO4. It was further observed that there were more Ag NPs than Au NPs on
the surface of the composite photoanodes, indicating that Ag NPs modified BiVO4 could
provide more active sites.
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Figure 2. SEM images of (a) pure BiVO4, (b) Ag/BiVO4, and (c) Au/BiVO4.

The surface structure variations obtained were measured by transmission electron
microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) on
Ag/BiVO4 and Au/BiVO4 as shown in Figure 3. As presented in Figure 3a,b, NM NPs
with a diameter of about 5 nm were composited on BiVO4 and presented an appearance
of solid cores, which were randomly distributed on the surface of BiVO4. In Figure 3c,d,
the lattice fringe spacing of BiVO4 was 0.30 nm and 0.57 nm, which corresponded to the
crystal planes (−1 2 1) and (0 2 0), respectively. The lattice fringe spacings were measured
as 0.21 nm and 0.24 nm, which corresponded to the (2 0 0) and (1 1 1) crystal planes of Ag
NPs and Au NPs. Figure 4 shows the top view of the element mapping, confirming the
existence of various elements (Bi, V, O, Ag, Au, and C).
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XRD patterns of BiVO4, Ag/BiVO4, and Au/BiVO4 photoanodes are shown in
Figure 5. As presented in Figure 5a, the diffraction peaks of Ag/BiVO4 are located at
28.8◦, 30.54◦, 35.22◦, 38.11◦, 44.27◦, 64.42◦, and 77.47◦, of which 28.8◦, 30.54◦, and 35.22◦

could match the (−1 2 1), (0 4 0), and (0 0 2) crystal planes of monoclinic BiVO4 (JCPDS
NO.14−0688) [23], while 38.11◦, 44.27◦, 64.42◦, and 77.47◦ could match the (1 1 1), (2 0 0),
(2 2 0), and (3 1 1) crystal planes of Ag NPs (JCPDS NO.04-0783). Other peaks could
correspond to the peaks of FTO. Figure 5b shows the XRD pattern of the photoanode on Au
NP modified BiVO4. Compared to Figure 5c, there are obvious diffraction peaks at 38.18◦,
44.39◦, 64.58◦, and 77.55◦. These diffraction peaks correspond to (1 1 1) of Au (JCPDS
NO. 04−0784) (2 0 0), (2 2 0), and (3 1 1) crystal planes. The measured diffraction peaks
corresponding to Ag NPs and Au NPs have no miscellaneous peaks, which proves that the
prepared samples are composite expected zero-valence noble metal nanoparticles.
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The surface binding energy characteristics and chemical states of Ag/BiVO4 and
Au/BiVO4 photoanodes can be further analyzed by XPS. In this paper, the binding energy
of elements was calibrated according to the binding energy standard of C 1s (284.8 eV).
Figure 6a shows the binding energies of Bi in Ag/BiVO4 and Au/BiVO4, respectively. The
characteristic peaks of Bi3+ in Ag/BiVO4 were Bi 4f5/2 (164.35 eV) and Bi 4f7/2 (159.05 eV),
and in Au/BiVO4 Bi 4f5/2 (164.67 eV) and Bi 4f7/2 (159.32 eV). The binding energy of Bi3+

in Ag/BiVO4 is smaller than that of Au/BiVO4. In Figure 6b, the characteristic peaks of
V5+ in Ag/BiVO4 were V 2p1/2 (524.18 eV) and V 2p3/2 (516.80 eV), and in Au/BiVO4
V 2p1/2 (524.30 eV) and V 2p3/2 (516.95 eV). The binding energies of V 2p1/2 and V 2p3/2 in
Ag/BiVO4 were 0.12 eV and 0.15 eV, smaller than those of V2p1/2 and V 2p3/2 in Au/BiVO4,
respectively. These results proved the existence of BiVO4 [24]. As presented in Figure 5c, the
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two peaks at 368.30 eV and 374.30 eV could be attributed to Ag 3d5/2 and 3d3/2 spin-orbit
components of Ag NPs [25]. As depicted in Figure 6d, peaks of Au 4f7/2 and Au 4f5/2
were located at 83.40 eV and 87.05 eV [20]. From the binding energy positions of Bi and
V elements in Figure 6a,b, it can be concluded that the electrons of BiVO4 in Ag/BiVO4
are more than those in BiVO4 in Au/BiVO4. This can be explained since the Ag NPs in the
Ag/BiVO4 samples generate more hot electrons due to the photoexcited SPR effect which
transfer to the conduction band of BiVO4.
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Furthermore, the photocurrent density measured is one of the most powerful character-
izations of the performance of PEC. The photocurrent densities of Ag2/BiVO4, Ag2.5/BiVO4,
and Ag3/BiVO4 are characterized in Figure 7a. The results indicate that low or high concen-
trations of Ag ion solution can decrease the photocurrent. The photocurrent density was
maximum at an Ag ion concentration of 2.5 mM. As shown in Figure 7b, the photocurrent
density of Au150/BiVO4 has the largest value among Au100/BiVO4, Au150/BiVO4, and
Au200/BiVO4. This is because the combination of too many NM NPs produces a metal bar-
rier inside the semiconductor. The formation of this barrier inhibits the electron transport
of the semiconductor, which may also lead to the increase of surface recombination; so it is
necessary to select the appropriate concentration to modify the semiconductor.

The photocurrent density of BiVO4, Ag/BiVO4, and Au/BiVO4 are shown in Figure 7c.
As is theoretically consistent, the photocurrent of pure BiVO4 (0.92 mA/cm2 at 1.23 VRHE)
is the lowest among these. It is obvious that the photocurrent density of BiVO4 loaded
with Ag NPs (3.52 mA/cm2) and Au NPs (1.61 mA/cm2) was significantly increased at
1.23 VRHE, respectively. The photocurrent densities of Ag/BiVO4 and Au/BiVO4 are
3.52 and 1.72 times that of pure BiVO4, respectively. The photocurrent density of Ag NP
modified BiVO4 is higher than that of Au NP modified BiVO4 because Ag NPs can expose
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more active sites than Au NPs, and more active sites can absorb carriers more effectively,
and transfer more electrons from Ag NPs to the interior of the semiconductor. In order to
ensure the stability of the test data, the error bars of data were performed five times, as
shown in Figure 8. From the error bar results, it can be concluded that the experimental
data are relatively stable. Comparison of the research results of LSV at 1.23VRHE in this
paper with previous research results is shown in Table 1. The experimental data in this
paper shows a certain improvement compared to previous results. As shown in Figure 7d,
under the dark condition, the photocurrent density of the photoanodes is zero. At the
beginning of illumination, the circuit quickly generates a peak and undergoes a transient
response, then stabilizes. The photocurrent density trend under irradiation is consistent
with LSV. From the above results, it can be concluded that the enhancement of photocurrent
density is because NM NPs can accelerate both the separation of carriers and the transfer
of carriers.

Inorganics 2023, 11, x FOR PEER REVIEW 7 of 14 
 

 

times that of pure BiVO4, respectively. The photocurrent density of Ag NP modified BiVO4 

is higher than that of Au NP modified BiVO4 because Ag NPs can expose more active sites 

than Au NPs, and more active sites can absorb carriers more effectively, and transfer more 

electrons from Ag NPs to the interior of the semiconductor. In order to ensure the stability 

of the test data, the error bars of data were performed five times, as shown in Figure 8. 

From the error bar results, it can be concluded that the experimental data are relatively 

stable. Comparison of the research results of LSV at 1.23VRHE in this paper with previous 

research results is shown in Table 1. The experimental data in this paper shows a certain 

improvement compared to previous results. As shown in Figure 7d, under the dark con-

dition, the photocurrent density of the photoanodes is zero. At the beginning of illumina-

tion, the circuit quickly generates a peak and undergoes a transient response, then stabi-

lizes. The photocurrent density trend under irradiation is consistent with LSV. From the 

above results, it can be concluded that the enhancement of photocurrent density is because 

NM NPs can accelerate both the separation of carriers and the transfer of carriers. 

0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

5
 Ag

2mM
/BiVO

4

 Ag
2.5mM

/BiVO
4

 Ag
3mM

/BiVO
4

E (V) vs. RHE

J
 (

m
A

·c
m

-2
)

 

 

(a)

 

0.6 0.8 1.0 1.2 1.4

0

1

2

3

 

 

E (V) vs. RHE

J
 (

m
A

·c
m

-2
)

 Au
100s

/BiVO
4

 Au
150s

/BiVO
4

 Au
200s

/BiVO
4

(b)

 

0.6 0.8 1.0 1.2 1.4

0

2

4

6

E (V) vs. RHE

 BiVO
4

 Ag/BiVO
4

 Au/BiVO
4

 

 

J
 (

m
A

·c
m

-2
)

(c)

 

0 60 120 180 240
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

J
 (

m
A

·c
m

-2
)

Time (s)

 BiVO
4

 Ag/BiVO
4

 Au/BiVO
4
 

(d)

 

Figure 7. The LSV curves of different concentrations (a) Ag NPs, (b) Au NPs modified BiVO4, (c) 

the LSV and (d) i-t curves of BiVO4, Ag/BiVO4 and Au/BiVO4.  

0

1

2

3

4

5

Au/BiVO4

samples
BiVO4 Ag/BiVO4

 LSV（1.23 VRHE）

J
 (

m
A

·c
m

−
2
)

0.913

3.412

1.574

 

Figure 7. The LSV curves of different concentrations (a) Ag NPs, (b) Au NPs modified BiVO4,
(c) the LSV and (d) i-t curves of BiVO4, Ag/BiVO4 and Au/BiVO4.

Inorganics 2023, 11, x FOR PEER REVIEW 7 of 14 
 

 

times that of pure BiVO4, respectively. The photocurrent density of Ag NP modified BiVO4 

is higher than that of Au NP modified BiVO4 because Ag NPs can expose more active sites 

than Au NPs, and more active sites can absorb carriers more effectively, and transfer more 

electrons from Ag NPs to the interior of the semiconductor. In order to ensure the stability 

of the test data, the error bars of data were performed five times, as shown in Figure 8. 

From the error bar results, it can be concluded that the experimental data are relatively 

stable. Comparison of the research results of LSV at 1.23VRHE in this paper with previous 

research results is shown in Table 1. The experimental data in this paper shows a certain 

improvement compared to previous results. As shown in Figure 7d, under the dark con-

dition, the photocurrent density of the photoanodes is zero. At the beginning of illumina-

tion, the circuit quickly generates a peak and undergoes a transient response, then stabi-

lizes. The photocurrent density trend under irradiation is consistent with LSV. From the 

above results, it can be concluded that the enhancement of photocurrent density is because 

NM NPs can accelerate both the separation of carriers and the transfer of carriers. 

0.6 0.8 1.0 1.2 1.4

0

1

2

3

4

5
 Ag

2mM
/BiVO

4

 Ag
2.5mM

/BiVO
4

 Ag
3mM

/BiVO
4

E (V) vs. RHE

J
 (

m
A

·c
m

-2
)

 

 

(a)

 

0.6 0.8 1.0 1.2 1.4

0

1

2

3

 

 

E (V) vs. RHE

J
 (

m
A

·c
m

-2
)

 Au
100s

/BiVO
4

 Au
150s

/BiVO
4

 Au
200s

/BiVO
4

(b)

 

0.6 0.8 1.0 1.2 1.4

0

2

4

6

E (V) vs. RHE

 BiVO
4

 Ag/BiVO
4

 Au/BiVO
4

 

 

J
 (

m
A

·c
m

-2
)

(c)

 

0 60 120 180 240
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

J
 (

m
A

·c
m

-2
)

Time (s)

 BiVO
4

 Ag/BiVO
4

 Au/BiVO
4
 

(d)

 

Figure 7. The LSV curves of different concentrations (a) Ag NPs, (b) Au NPs modified BiVO4, (c) 

the LSV and (d) i-t curves of BiVO4, Ag/BiVO4 and Au/BiVO4.  

0

1

2

3

4

5

Au/BiVO4

samples
BiVO4 Ag/BiVO4

 LSV（1.23 VRHE）

J
 (

m
A

·c
m

−
2
)

0.913

3.412

1.574

 

Figure 8. Standard deviation of LSV of the sample tested 5 times at 1.23 VRHE.



Inorganics 2023, 11, 206 8 of 14

Table 1. Comparison of the values of LSV for the present work with previous values of studies based
on BiVO4.

Catalyst LSV (mA/cm2, 1.23VRHE) Ref.

Ag/BiVO4 3.19 [25]
Ag/Co3O4/BiVO4 1.84 [26]

FeOOH/Au/BiVO4 4.64 [19]
Ag/BiVO4 4.1 [21]
Au/BiVO4 1.25 [27]
Ag/BiVO4 3.52 Present work
Au/BiVO4 1.61 Present work

The diffuse reflectance UV-visible spectra (DRS) of BiVO4, Ag/BiVO4, and Au/BiVO4
samples are shown in Figure 9. Pure BiVO4 showed a steep light absorption edge of around
495 nm, and it can be concluded that the band gap of BiVO4 was almost consistent with
the theoretical 2.45 eV. When BiVO4 is combined with NM NPs, a slight redshift of the
light absorption edge can be found. It is worth noting that Ag/BiVO4 and Au/BiVO4 had
obvious absorption peaks around 499 nm and 553 nm due to the SPR effect of Au and
Ag [27,28]. Additionally, it can be observed that the intensity and range of the obvious SPR
characteristic absorption peak of Ag/BiVO4 are greater than the characteristic absorption
peak generated by Au/BiVO4. This could indicate that the SPR effect produced by Ag NPs
is stronger than that of Au NPs, and more “hot electrons” can be transferred to BiVO4 to
participate in the reaction of PEC splitting of water. Moreover, it can be proved that Ag NPs
and Au NPs were successfully loaded on BiVO4. The SPR effect generated by the loading
of Ag NPs and Au NPs broadens the absorption of BiVO4 for visible light. It enhances light
harvesting, thus improving the solar energy conversion efficiency [29].
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The charge separation efficiency of the photoanode can be characterized by PL. PL
spectra are displayed in Figure 10a; the PL intensity of pure BiVO4 was the strongest. It
can be seen that the recombination rate of photogenerated carriers (electrons and holes) of
pure BiVO4 was high. When BiVO4 was loaded with NM NPs, the recombination rate of
photogenerated carriers decreased significantly. As anticipated, the test results of PL were
consistent with the results of LSV. The recombination rate of photogenerated carriers is
as follows: Ag/BiVO4 < Au/BiVO4. The relationship between bias voltage and current
density can be explained by ABPE as displayed in Figure 10b. The calculation formula of
ABPE is as below [30]:

ABPE (%) = I (1.23 − VRHE)/Jlight
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where I, VRHE and Jlight are the measured photocurrent density (mA/cm2), the applied bias
vs. RHE (VRHE = VAg/AgCl + 0.197 + 0.0591pH), and the light intensity, respectively. The
calculation results are as expected, and pure BiVO4 has the lowest ABPE, about 0.027%.
The ABPE values of Ag/BiVO4 and Au/BiVO4 are about 0.388% and 0.137%, respectively.
In order to ensure the accuracy of the experiment, the value of ABPE at 0.96VRHE was
analyzed by error bar in Figure 11. In the results of previous studies, it was found that the
energy transfer mechanisms in the plasma are as follows: (1) anti-reflection and scattering
effects; (2) near-field electromagnetic enhancement; (3) transfer of e−-h+ pairs between
metals and oxides, and (4) plasmon-induced heating [31]. Therefore, it can be determined
that the reason for the enhanced PEC performance in this experiment is because of the
second and third points mentioned above—the electrical conductivity of metals and the
SPR effect of Ag NPs and Au NPs.
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The charge transfer kinetics at the interface can be unambiguously analyzed using the
Nyquist plots of EIS, as shown in Figure 12a. The circuit is shown in the picture, where
RCT represents charge transfer resistance at the electrode/electrolyte interface, and RS
represents the series resistance [32]. The information conveyed by the Nyquist curve is
that the smaller the radius of the curves, the lower is the impedance of the samples [33].
Therefore, the impedance of Ag/BiVO4 was the lowest and the impedance of BiVO4 was
the highest in all samples. It follows that after BiVO4 is compounded with NM, the electrical
conductivity and the charge-specific efficiency at the electrode/electrolyte interface are also
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enhanced. It can be seen from Figure 12b that the surface photovoltage (SPV) relationship
of the samples is as follows: Ag/BiVO4 > Au/BiVO4 > BiVO4. The generation range of
SPV is consistent with the UV-vis absorption range. The above results were consistent with
previous experimental results. The compound of two noble metal nanoparticles improves
the photoelectrochemical performance of BiVO4.
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The photoelectric catalytic water splitting experiments of different samples for hydro-
gen production are shown in Figure 13. The results of the quantitative detection performed
using gas chromatography are displayed in Figure 13a. It can be seen that at the fifth
hour, the hydrogen evolution of pure BiVO4 is about 1.10 µmol·cm−2. Ag/BiVO4 and
Au/BiVO4 are 3.56 and 2.32 times pure BiVO4, respectively. Figure 12b shows the average
hydrogen evolution rate, where the hydrogen evolution rate of pure BiVO4 is the low-
est. Figure 13a,b show the oxygen evolution and average oxygen evolution rate of the
photoanodes. The results are consistent with hydrogen evolution. Therefore, the results
confirm that the loading of noble metal nanoparticles can improve the hydrogen evolution
rate. Ag NPS and Au NPs with SPR effect can absorb large wavelengths of visible light
and inhibit the recombination of holes and electrons, increasing the hydrogen evolution.
Ag NPs exhibited higher hydrogen evolution than Au NP modified BiVO4 because the
work function of Ag and Au was 4.26 eV [34] and 5.1 eV, respectively, while the work
function of BiVO4 was 4.8 eV. The hot electrons generated in Ag NPs could transfer from
Ag NPs to BiVO4 more smoothly. Hot electrons generated by Au will overcome more
electron barriers and flow into BiVO4, resulting in a decline in PEC performance compared
with Ag/BiVO4. Combined with more reactive sites and stronger SPR effect provided by
Ag NPs, it was effectively proved that Ag NP modified BiVO4 showed higher hydrogen
production activity.

Combining the above characterization analysis and experimental results, Figure 14
shows the working mechanism of NM/BiVO4. Under irradiation, NM NPs produce the
SPR effect and are excited to produce “hot electrons”, which can directly enter the CB of
BiVO4 through the electron transfer mechanism and participate in photocathode reduction
reaction together with photogenerated electrons. At the same time, the NM NPs surface
generates electromagnetic fields, and “hot electrons” generate potential energy at the metal-
semiconductor interface. It was confirmed that a Schottky barrier is generated when the
NM NPs are in contact with BiVO4. The potential energy generated by the Schottky barrier
is smaller than that generated by the “hot electrons” at the contact interface, which enables
the “hot electrons” to be smoothly transferred from the NM NPs to BiVO4. The Schottky
barrier can keep the “hot electrons” generated by NM NPs in the CB of BiVO4 and not
return them to the NM NPs. Therefore, the recombination of noble metals with the SPR
effect can enhance the recombination of carriers and improve the charge transfer efficiency
of BiVO4.
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3. Conclusions

The paper proposes a new idea of loading several types of noble metal nanoparticles
on BiVO4, while the PEC performances of the BiVO4-loaded NM NPs were investigated.
The photocurrent density values of photoanode Ag/BiVO4 and Au/BiVO4 are 3.82 and
1.72 times that of pure BiVO4, respectively. In addition, when Ag/BiVO4 and Au/BiVO4
are used as photoanodes, the hydrogen evolution of the counter electrodes is 3.56 and
2.32 times that of pure BiVO4 as a photoanode under AM 1.5 G continuous illumination.
BiVO4 modification with NM NPs effectively improves the performance of PEC. The SPR
effect exhibited by NM NPs can broaden the absorption range of visible light, effectively
capture photogenerated electrons, and increase the concentration of charge carriers, re-
sulting in faster carrier separation rate and interface charge transfer efficiency. However,
compared to Au/BiVO4, Ag/BiVO4 has higher light absorption, higher photocurrent, and
greater oxygen evolution. This can be explained by the fact that Ag NPs are exposed to more
active sites, with a stronger SPR effect, and a smaller electronic barrier, so that Ag/BiVO4
also shows higher PEC activity. In conclusion, NM NPs modified BiVO4 can show excellent
PEC performance, which is an effective way to enhance the PEC performance of BiVO4.

4. Experimental Section
4.1. Synthesis of BiVO4 Films

The monoclinic BiVO4 was prepared by the method studied by predecessors [35].
First, prepare solution A, dissolve 0.04 M Bi(NO3)3 solution in 0.4 M KI aqueous solution,
and add concentrated HNO3 to adjust the pH to about 1.75. Then prepare solution B; mix
20 mL of ethanol solution with 0.23 M p-benzoquinone. Mix A and B to get solution C.
Electrodeposition BiOI films were performed at a potential of −0.143 V vs. SCE for 600 s
using a three-electrode electrochemical with C solution as the electrodeposition solution,
a fluorine-doped tin oxide (FTO) as working electrode, platinum sheet as the counter
electrode, and Ag/AgCl as the reference electrode. Put the prepared BiOI into an oven at
60 ◦C to dry for 5 h. Afterwards, prepare solution D; solution D consists of 50 mL DMSO
and 0.2 M VO(acac)2. The prepared solution D was dropped onto BiOI, and then it was
dried and annealed. Annealing conditions were 450 ◦C (The temperature rose by 2 ◦C/min)
for 2 h. Finally, there was excess V2O5 on the annealed samples, so after soaking the
samples in 1 M NaOH for 30 min, the desired BiVO4 electrode was obtained after drying.

4.2. Fabrication of Ag/BiVO4 and Au/BiVO4 Photoanodes

Fabrication of Ag/BiVO4 photoanodes: Prepare a solution by mixing 2.00 mM,
2.50 mM, and 3.00 mM AgNO3 and 1 mM C6H5Na3O7, respectively, denoted as Ag2/BiVO4,
Ag2.5/BiVO4, and Ag3/BiVO4. The BiVO4-coated FTO substrate is then immersed in the
mixed solution and transferred to a hydrothermal reactor at 100 ◦C for 2 h.

Fabrication of Au/BiVO4 photoanodes: 2.50 mM HAuCl4 was used as the electrode-
position solution, and BiVO4 was used as the working electrode to deposit at a potential
of 0.10 V vs. SCE for 100 s, 150 s, and 200 s, denoted as Au100/BiVO4, Au150/BiVO4, and
Au200/BiVO4, respectively.
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