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Abstract: The carbonation behavior of calcium-containing sorbents, CaO and Ca(OH)2, was in-
vestigated under pressurized CO2 at nominal room temperature. The carbonation reaction was
mechanically driven via reactive ball milling. The carbonation rate was determined by monitoring
the CO2 pressure inside the sealed milling jar. Two different versions of CaO were fabricated as
starting materials. The addition of citric acid in CaO synthesis resulted in a significant increase
in sorbent surface area, bringing up the conversion of CO2 from 18% to 41% after 3 h of reactive
milling. The hydroxide formation from these two oxides closed the surface area gap. Nevertheless,
we found that hydroxides had a higher initial carbonation rate and greater final CO2 uptake than
their oxide counterparts. However, the formation of byproduct water limited the further carbonation
of Ca(OH)2. When we added a controlled amount of water to the CaO-containing milling jar, the
highest carbonation rate and most extensive CO2 uptake were attained due to the in situ formation of
reactive Ca(OH)2 nanoparticles. We saw CaCO3 X-ray diffraction peaks only when Ca(OH)2 was
involved in this low-temperature carbonation, indicating that the grain growth of CaCO3 is easier
on the Ca(OH)2 surface than on the CaO surface. We used the Friedman isoconversional method
to calculate the effective activation energy of decarbonation for the high surface area CaO sorbent
milled with water. The average effective activation energy was found to be about 72 kJ mol−1, and its
magnitude started to decrease significantly from 50% sorbent regeneration. The drastic change of
the effective activation energy during decarbonation suggests that CaCO3, formed at nominal room
temperature by reactive milling under pressurized CO2, should undergo a more drastic morphology
change than the typical thermally carbonated CaCO3.

Keywords: carbonation; decarbonation; reactive milling; mechanochemistry

1. Introduction

CO2 capture and storage will play a significant role in climate change mitigation. In ad-
dition to industrialized amine-based media, CaO and Ca(OH)2 have been extensively stud-
ied as promising CO2 capture media due to their ability to form calcium carbonate [1–5].
They are especially suited for the post-combustion carbon capture process since they can be
applied to existing thermal power plants without significant equipment changes [6–8]. In
this scheme, differing from the direct air capture, we have a high concentration of CO2 in
the flue gas and an elevated temperature. The CaO/Ca(OH)2 carbonation typically occurs
in the temperature window ranging from 600 to 750 ◦C [9–12]. This elevated temperature
is needed to ensure a high enough carbonation reaction rate; however, it also unavoidably
promotes the sintering of the sorbent. The sintering of the sorbent is a well-known persis-
tent problem of the calcium-based solid sorbent since it leads to a loss of the solid sorbent
surface area and a loss of the CO2 capture capacity [13–16].

Many efforts have aimed to minimize the sintering of the calcium-based sorbent. The
addition of inert oxide as a sintering barrier is a common practice [13,17]. The inert oxide
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particles do not undergo a carbonation reaction and interrupt the sintering. In many cases,
the addition of the inert oxides resulted in the formation of calcium-containing ternary
oxides, such as Ca12Al14O33 [16–19]. The beneficial impact of CaZrO3 island formation for
the CaO-ZrO2 composite sorbent has been demonstrated, showing enhanced carbonation-
decarbonation cycle stability [11,20–22].

Another approach is the modification of the sorbent morphology. Multishelled hollow
microspheres of CaO have been synthesized with MgO stabilizer through a hydrothermal
fabrication route [23]. Their CO2 uptake was about 5 times higher than the limestone-
derived CaO after 30 cycles of carbonation at 650 ◦C and decarbonation at 900 ◦C. Coating
the CaO sorbent layer on an existing backbone material was proposed as a simple and
effective way to control the CaO microstructure. When CaO was coated on the surface of
Saffil ceramic fiber by wet impregnation, there was a trade-off between the cycle stability
and initial CO2 capture capacity since the higher loading of CaO led to more severe degra-
dation [24]. Electrospinning and templating strategies have been adopted. Electrospinning
makes it possible to control the diameter of the as-spun fiber before polymer burn-off.
Even though the fibrous structure collapses after polymer removal, the fiber-derived CaO
sorbent has shown a high initial CO2 capture capacity compared to the CaO sorbent from a
hydrothermal route [25]. The aluminum doping was effective for the fiber-derived CaO
sorbent, greatly enhancing the cycle stability by forming Ca12Al14O33 spacer particles at
the expense of a small decrease in the initial CO2 capacity [25]. For sacrificial templates,
polystyrene microspheres [26], carbon spheres [27], paper fibers [28], carbon nanotubes [29],
soft wood [2], and cotton fibers [29] have been used to render a porous structure in the
solid sorbent.

Our group recently reported the impact of mechanical activation on the Ca(OH)2
sorbent for post-combustion CO2 capture [9]. The effect of the structural modification per-
sisted over 10 cycles, leading to higher reaction rates in both carbonation and decarbonation
steps compared to the untreated case. Especially, in situ X-ray diffraction results indicated
that the mechanically activated samples had large (~110 nm) residual CaO crystallites after
20 min of carbonation at 700 ◦C. It was speculated that they facilitated the decarbonation of
CaCO3 by scavenging small newly forming CaO particles [9].

Taking one step further, we hereby study the mechanically driven carbonation of
calcium-containing sorbents at nominal room temperature. Citric acid was used to control
the initial CaO sorbent surface area. Most CO2 mineralization studies conducted at low
temperatures (<200 ◦C) investigated waste materials, including coal fly-ash [30,31], or
naturally occurring sorbents, such as Olivine (Mg2SiO4) and Wollastonite (CaSiO3) [32].
In this study, CaO, Ca(OH)2, and water are the only chemicals other than CO2. Zirconia
milling balls were used to drive the carbonation reaction and reduce the average particle
size of the calcium-based sorbent and calcium carbonate product. A similar reactive ball
milling approach can be found for Mg-based hydrogen storage, where magnesium reacts
with hydrogen to form MgH2 [33].

2. Experimental
2.1. Sorbent Preparation
2.1.1. CaO Preparation

Calcium oxide was made from calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) obtained
from BeanTown Chemical (Hudson, NH, USA) with a purity of 99%, through two distinct
methods. The first method involved heating the nitrate source in an oven at a temperature
of 900 ◦C for a period of 2 h, with a heating rate of 10 ◦C/min, starting from the room
temperature. To confirm the successful formation of CaO, X-ray diffraction testing was
performed on the resulting sample using a Proto manufacturing AXRD powder diffraction
system with Cu Kα radiation (λ = 1.5418 Å). This sample was subsequently named CaO-N.
The second method involved dissolving calcium nitrate tetrahydrate and citric acid in a 1:1
molar ratio in 40 mL of deionized water, and stirring the solution at room temperature for
2 h. Subsequently, the solution was heated to evaporate water. A gel was formed, and the
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gel underwent combustion and transformed into ash as the temperature increased. The ash
was then placed in an oven and calcined at 900 ◦C for 2 h, with the same temperature ramp
rate for CaO-N. The resulting sample was named CaO-NC.

2.1.2. Ca(OH)2 Preparation

To synthesize Ca(OH)2 sorbents, the previously prepared CaO-N and CaO-NC samples
were subjected to a tube furnace process. During this process, the powder sample was
exposed to a humidified nitrogen flow (3 vol% H2O, 100 sccm) for 8 h at 140 ◦C. The powder
sample was placed in a ceramic boat residing at the center of a horizontal quartz tube
(diameter 25 mm). The resulting samples were confirmed to be Ca(OH)2 through X-ray
diffraction analysis. Based on their CaO sources, these samples were named Ca(OH)2-N
and Ca(OH)2-NC, respectively.

To understand the physical properties of all the sorbents, nitrogen adsorption and
desorption isotherms were measured using a Quantachrome NOVA 2200e instrument
(Quantachrome, Boynton Beach, FL, USA). The surface area and pore volume were calcu-
lated using the Brunner−Emmett−Teller (BET) method based on nitrogen physisorption
results. Additionally, the pore diameter distribution was calculated using the Barrett–
Joyner–Hanelda (BJH) method.

2.2. Reactive Milling Carbonation

We investigated the reactive milling carbonation behaviors of calcium-based sorbents
using a 200 mL stainless steel jar (height: 112 mm, inner diameter: 50 mm, outer diameter:
75 mm). We specifically designed a stainless steel lid to enable the reactive milling process.
A hole was drilled through the lid and sealed off by a 5.5 mm diameter septa (Thermolite,
Restek, Bellefonte, PA, USA) at the center of the hole. The gap between the septa and
the hole wall was sealed using J-B Weld glue. Another hole was made similarly. When
poked through by needles, the two septas provided one inlet and one outlet, forming a
continuous gas pathway throughout the milling jar. For reactive milling carbonation, 250 g
of 3 mm zirconia balls were first introduced to fill 50 mL of the milling jar volume from
the bottom. After feeding either Ca(OH)2 or CaO in the jar, we filled the jar with pure
CO2 to a pressure of 34.8 psia. We did not go to higher pressures for the safe operation
of the milling jar. The CO2 leakage was undetectable with this initial CO2 pressure. We
injected CO2 through a 0.7 mm diameter needle, pushing out the initial air through another
needle. To ensure that the jar was filled with CO2 without any remaining air, the CO2 flow
was on for 10 min before cutting off the outlet flow by pulling out the downstream needle
from the downstream septa. With the closed outlet, we adjusted the initial CO2 pressure.
The stoichiometric amount of sorbents to consume 34.8 psia of CO2 was calculated. The
calculated amount for Ca(OH)2 was 1.1 g. However, considering the sorbent’s available
surface area and reaction sites, a decision was made to feed more sorbent than the exact
stoichiometric requirement. Consequently, 3 g of Ca(OH)2 sorbent and 2.27 g of CaO
sorbent were used. The number of moles for calcium was kept the same in both cases.

Finally, the jar was placed in a planetary ball mill (PQ-N2 Across International) and
ran at a speed of 300 rpm. Additionally, in some runs, a controlled amount of water was
added to the calcium oxide for the reactive milling carbonation. To completely convert
2.27 g of CaO to Ca(OH)2, 0.73 g of H2O is required. To ensure in situ hydroxide formation
during milling, three times the required amount was added to the jar: 2.19 g H2O and
2.27 g CaO. The in situ formed Ca(OH)2 is expected to have high carbonation reactivity
due to its small size.

The CO2 pressure in the jar was monitored over time using a Heise ST-2H bench top
digital pressure indicator. We stopped the planetary mill to take the pressure measurements.
After reading the pressure, reactive milling resumed immediately. The conversion of CO2
was calculated using the following equation:

CO2 conversion (%) =
p0 − p

p0
× 100 (1)
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where p0 is the initial pressure of CO2 and p is the pressure of CO2 during carbonation.
After the mechanically driven carbonation, the samples were collected to take X-ray

diffraction patterns. Some samples were selected to carry out temperature-programmed
decarbonation tests.

2.3. Temperature-Programmed Decarbonation

Temperature-programmed decarbonation experiments were conducted using 0.05 g
of the ball-milled samples, which were loaded in a ceramic boat and then put in a quartz
tube which was then placed in a tube furnace. Decarbonation tests were conducted under
100 sccm air flow by raising the spent sorbent temperature from the room temperature to
1050 ◦C, with four different temperature ramp rates: 2.5 ◦C/min, 5 ◦C/min, 10 ◦C/min,
and 15 ◦C/min. The air flow rate was controlled by the mass flow controller, and the CO2
concentration in the exhaust gas was monitored by a CO2 sensor (ExplorIR®-M CO2 Sensor,
CM-40831, Thief River Falls, MN, USA).

We used this data to calculate the activation energy as a kinetic parameter based
on the Friedman isoconversional method, which is the most common differential isocon-
versional method [34]. In general, the kinetic methods used under the constant heating
rate for thermal analysis assume that the rate of the reaction is a function of conversion
and temperature.

dα

dt
= k(T) f (α) (2)

k(T) is the chemical reaction rate constant (min−1), α is the extent of conversion, and
f(α) is the reaction model. Experimental measurements are used to determine the extent of
conversion, which represents the fraction of the overall released CO2 from CaCO3, observed
at different times or temperatures. α increases from 0 at the initiation of the reaction and
reaches 1 when the reaction completes. The magnitude of α indicates the progress of the
decarbonation of the sorbent. We can use Equation (3) to calculate α at different times.

α =

∫ t
0 CCO2 dt∫ t f

0 CCO2 dt
(3)

where tf is the final time when CO2 release is completed (0 < t < tf).
The rate constant k(T) can be described by the Arrhenius equation [35]:

k(T) = A exp
(
−Ea

RT

)
(4)

where A is the frequency factor (min−1), Ea is the activation energy (J/mol), R is the gas
constant (8.314 J mol−1 K−1), and T is the temperature (K).

So, by combining Equations (2) and (4), we have:

dα

dt
= A exp

(
−Ea

RT

)
f (α). (5)

For a nonisothermal program in which the temperature changes linearly with time,
the heating rate β (K/min) is constant and can be described as follows:

β =
dT
dt

. (6)

Applying Equation (6) into Equation (5) results in:

β
dα

dT
= A exp

(
−Ea

RT

)
f (α). (7)
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The equation for the Friedman isoconversional method is obtained from
Equation (5) [34–36]:

ln
(

dα

dt

)
α,i

= ln( f (α)Aα)−
Eα

RTα,i
. (8)

The index “i” identifies different heating rate programs. Under the “ith” temperature
program, the temperature at which the extent of conversion α is reached is denoted as
Tα,i. For each given conversion fraction α, by plotting the ln

(
dα
dt

)
α,i

versus 1
Tα,i

at different

heating rates, the slope of the line gives us the activation energy Eα.
For a nonisothermal process with a constant heating rate β, Equation (8) could also be

written as [34]:

ln[βi

(
dα

dT

)
α,i
] = ln( f (α)Aα)−

Eα

RTα,i
(9)

3. Results and Discussion
3.1. Sorbent Characterization

Figure 1 shows the X-ray diffraction patterns of as-synthesized CaO and Ca(OH)2
sorbents. CaO-N, the oxide sorbent made without citric acid, was converted to Ca(OH)2-N
via the reaction with humid nitrogen at 140 ◦C. “-N” in the sample naming denotes the
calcium nitrate precursor. The same process converted CaO-NC, the sorbent made with
citric acid, to Ca(OH)2-NC. “-NC” in the sample naming denotes the calcium source and
citric acid. The 8 h reaction time was necessary to achieve the complete elimination of the
remaining X-ray diffraction peaks from CaO. The citric acid addition in the CaO preparation
step did not result in any significant microstructural difference in the Ca(OH)2 sorbents
probed by X-ray diffraction.
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Figure 1. XRD patterns of (a) CaO sorbents prepared with or without citric acid and (b) Ca(OH)2

sorbents prepared with or without citric acid.

All the sorbents were characterized for their pore structures and surface areas by nitro-
gen physisorption. The results are summarized in Table 1. Pore size distributions and nitro-
gen adsorption isotherms can be found in the supplementary materials (Figures S1 and S2).
When we used citric acid in CaO sorbent synthesis, the sorbent BET surface area increased
significantly; however, this surface area difference diminished after the conversion of CaO
to Ca(OH)2. Hydroxide formation increased the surface area of the low surface area sorbent
(from 14.7 to 29.1 m2/g) while lowering the surface area of the high surface area sorbent
(from 50.9 to 34.1 m2/g). Eventually, Ca(OH)2-NC still had a higher surface area than
Ca(OH)2-N under the tested hydroxide formation condition. If the hydroxide grain growth
was carried out over a longer period of time (>8 h), we would have an even more similar
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surface area and pore size distribution regardless of the citric acid usage in the initial CaO
preparation.

Table 1. Structural properties of the prepared sorbents.

Sorbent Name BET Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore
Diameter (nm)

CaO-N 14.7 0.015 4.20
Ca(OH)2-N 29.1 0.149 10.3

CaO-NC 50.9 0.099 7.76
Ca(OH)2-NC 34.1 0.135 7.9

3.2. Sorbent Carbonation by Reactive Milling

Figure 2 shows the CO2 consumption over time and corresponding CO2 conversion of
the sorbents made without citric acid. The CO2 pressure in the milling jar was measured
every 30 min for 3 h. The carbonation rate of Ca(OH)2-N exceeds that of CaO-N, as
expected. It is well documented that Ca(OH)2 carbonation is easier than CaO carbonation
in the post-combustion CO2 capture literatures. The inevitable formation of byproduct
liquid water during hydroxide carbonation does not interfere with the carbonation reaction,
reaching around 80% CO2 conversion in 3 h. The most interesting result from Figure 2 is
the very rapid consumption of CO2 when water is added to CaO-N in the milling jar. Its
carbonation rate was the highest of the three cases. The in situ formation of Ca(OH)2 on
the CaO particle surface may have taken place during reactive milling. The presumably
nanograined Ca(OH)2 can react with CO2 rapidly, leading to the observed enhancement of
carbonation kinetics. Even with the enhanced carbonation, 3.7 psia of CO2 remained after
3 h of milling. The mechanical milling was not able to drive carbonation further. All CO2
consumption took place within the initial 30 min.
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Figure 2. Conversion of CO2 over time for different sorbents made without citric acid. (a) CaO-N,
(b) Ca(OH)2- N, and (c) CaO-N with added water. Conditions: initial CO2 pressure: 34.8 psia, ball
milling speed: 300 rpm.

Similar carbonation tests were conducted for the sorbents fabricated with citric
acid. The as-synthesized sorbent should have a preferable pore structure for carbona-
tion. Figure 3a shows the improvement of the carbonation kinetics. After 3 h of reactive
milling, the CO2 conversion for CaO-NC is more than double that of CaO-N. The favored
pore structure induced by citric acid templating persisted after even hydroxide formation,
as manifested by the rapid carbonation of Ca(OH)2-NC (Figure 3b). However, after the fast
initial carbonation of Ca(OH)2-NC, the CO2 conversion showed an unexpected plateau
at 66%. It is clear that the limited carbonation originated from a kinetical barrier, since
higher CO2 conversion was possible (Figure 2b). The only reasonable explanation would
be the formation of dense calcium carbonate shells that completely cover the surface of
calcium hydroxide particles, even under continuous milling. The wet agglomeration of
the Ca(OH)2-CaCO3 composite may proceed due to the presence of water generated by
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hydroxide carbonation. The mechanical strength of the agglomerated composite particle
and its relative size with respect to the milling balls (3 mm diameter) will determine the
fracture probability. Fracturing clearly did not take place, prohibiting fresh Ca(OH)2 surface
exposure to CO2. Therefore, further CO2 capture is not possible. The initial carbonation
rate (water formation rate) determines the emergence of the dense carbonate shell that
does not break easily. The addition of water to CaO-NC, as expected, induced rapid CO2
capture. When water is added to CaO for the reactive milling carbonation, the citric acid
templating did not significantly impact the carbonation rate and final CO2 conversion.
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(b) Ca(OH)2- NC, and (c) CaO-NC with added water. The first data point is collected at 20 min mark.
Conditions: initial CO2 pressure: 34.8 psia, ball milling speed: 300 rpm.

After reactive milling carbonation, we collected the X-ray diffraction patterns of the
spent sorbents. Figure 4 compares all the spent sorbents. For CaO-N and CaO-NC, only
CaO diffraction peaks were observed, even though it is clear that CaCO3 should have
formed, considering the consumption level of CO2. The low carbonation temperature led
to either the formation of amorphous CaCO3 or very small crystallites of CaCO3, so we
could not detect CaCO3 diffraction peaks. The exact temperature of the instantaneous hot
spots during reactive milling is difficult to measure. For Ca(OH)2-N and Ca(OH)2-NC,
there is no significant difference between the diffraction patterns, even though the temporal
CO2 pressure evolution differs greatly. The water-added cases shared similar diffraction
patterns. When Ca(OH)2 participated in the carbonation reaction, the CaCO3 product
showed clear diffraction peaks, indicating that the grain growth of CaCO3 is easier on the
Ca(OH)2 surface than on the CaO surface. In situ generated Ca(OH)2 particles provided
active sites for carbonation.

3.3. Spent Sorbent Regeneration

We further investigated the decarbonation behavior of the CaO sorbents milled with
water under pressurized CO2 by temperature-programmed decarbonation in air (10 ◦C/min
ramp rate). The solid sorbent regeneration profiles had a common shape. The regeneration
of the CaO-NC sorbent milled with water was relatively sluggish compared to the CaO-
N sorbent milled with water, but not by much (Figure 5). The observed decarbonation
behavior agrees well with the similarities found in the carbonation rates under reactive
milling and post-reaction X-ray diffraction patterns.

The decarbonation behavior of the CaO-NC sorbent milled with water was further
analyzed using the Friedman method with four different temperature ramp rates. These
ramp rates were chosen for a direct comparison to a benchmark study. Figure 6 shows how
the sorbent regeneration proceeded over temperature. The powder samples originated from
the same batch of the spent sorbent for the tests of different ramp rates. The current work’s
maximum values of dα/dT were similar to the reported decarbonation under nitrogen
(Table 2). The only deviation arose for the lowest heating rate of 2.5 ◦C/min. Compared
to the thermally carbonated CaO that is initially synthesized using calcium nitrate and
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citric acid, the mechanically carbonated CaO in this work had a higher regeneration rate at
2.5 ◦C/min heating rate. With higher heating rates, the maximum dα/dT values converged
for thermally carbonated CaO and mechanically carbonated CaO, as expected.
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From the Friedman method, we can extract the effective activation energy for CaCO3
decarbonation from the isoconversion temperatures and corresponding dα/dt values
(Figure 7). Fedunik-Hofman et al. have found the effective activation energy Eα ranging
from 171 kJ/mol to 147 kJ/mol within the conversion window of 0.1~0.9 [35]. The effective
activation energy did not change much until 80% conversion. A certain decrease in Eα was
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detected at conversion levels higher than 80% [35]. However, we have found a drastically
different effective activation energy behavior for our mechanically carbonated sample. The
effective activation energy was lower throughout the various conversion levels, and the
magnitude started to decrease significantly from 50% conversion. It has been suggested
that the change in the effective activation energy may come from the sample morphology
evolution [35]. We can infer that our CaCO3 will undergo a more drastic morphology
change since it is prepared at nominal room temperature by reactive milling under CO2
rather than typical carbonation at elevated temperatures. We do not think that the nature
of the decarbonation gas (air vs. nitrogen) causes the observed effective activation energy
behavior, since oxygen does not participate in the decarbonation reaction.
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Heating Rate (◦C/min) 2.5 5 10 15
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4. Conclusions

We investigated the mechanically driven carbonation of calcium-containing sorbents
at nominal room temperature. Two different CaO sorbents from calcium nitrate were
synthesized: one with citric acid (high surface area, CaO-NC) and another without citric
acid (low surface area, CaO-N). Calcium hydroxide sorbents were derived from these
CaO sorbents.

Reactive milling carbonation was successfully conducted for 3 h in a milling jar filled
with zirconia balls and 34.8 psia CO2. For CaO sorbents, the higher surface area samples
showed a higher consumption of CO2; however, the conversion of the CO2 was only
around 40%. Since it is known that calcium hydroxides can quickly be carbonated, Ca(OH)2
samples were milled under CO2 to see if it is possible to achieve higher carbonation levels.
We obtained a higher degree of carbonation; however, an unexpected CO2 consumption
plateau appeared for Ca(OH)2-NC, the hydroxide sample with a higher surface area and
corresponding higher initial carbonation kinetics. The wet agglomeration of the Ca(OH)2-
CaCO3 composite, induced by byproduct water, complicated the mechanically driven
carbonation process.

The most effective strategy was to add water to the CaO sorbents. The amount of
water in this work (2.19 g H2O per 2.27 g CaO) is notably different from the aqueous
mineral carbonation processes. The in situ formation of the Ca(OH)2 particles facilitated
CaCO3 formation during reactive milling. Interestingly, we saw crystalline CaCO3 only
when Ca(OH)2 was involved in the reactive milling carbonation.

The effective activation energy extracted from temperature-programmed decarbon-
ation tests showed a noticeable change against the sorbent regeneration level, deviating
from the reported behavior of thermally carbonated CaO. Our mechanically carbonated
sorbent undergoes more drastic morphology changes during decarbonation than thermally
carbonated sorbents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11050200/s1, Figure S1: Pore diameter distributions of
(a) CaO sorbents and (b) Ca(OH)2 sorbents.; Figure S2: Nitrogen adsorption isotherms of (a) CaO
sorbents and (b) Ca(OH)2 sorbents.; Figure S3: Friedman analysis.
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