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Abstract: This research examined the production of a V2O5-g-C3N4 nanocomposite to remove organic
dyes from wastewater. To generate the V2O5-g-C3N4 nanocomposite, the sonication method was
applied. The testing of V2O5-g-C3N4 with various dyes (basic fuchsin (BF), malachite green (MG),
crystal violet (CV), Congo red (CR), and methyl orange (MO)) revealed that the nanocomposite
has a high adsorption ability towards BF, MG, CV, and CR dyes in comparison with MO dye. It
was established that the modification of pH influenced the removal of CV by the V2O5-g-C3N4

nanocomposite and that under optimal operating conditions, efficiency of 664.65 mg g−1 could be
attained. The best models for CV adsorption onto the V2O5-g-C3N4 nanocomposite were found to be
those based on pseudo-second-order adsorption kinetics and the Langmuir isotherm. According to
the FTIR analysis results, the CV adsorption mechanism was connected to π–π interactions and the
hydrogen bond.

Keywords: V2O5-g-C3N4 nanocomposite; crystal violet adsorption; hydrogen bond; π–π interactions

1. Introduction

With rapid industrialization, the environmental damage caused by organic dye
wastewater is intensifying and becoming more severe. Organic dyes are commonly em-
ployed in cosmetics, food additives, paper-making, leather, and textile industries [1–3].
Consequently, substantial quantities of organic dyes are generated, and significant amounts
of dyes are discharged into wastewater, which can cause highly hazardous byproducts
in the environment [4–6]. Due to their aromatic character, organic dyes such as crystal
violet (CV) include several functional groups that are persistent and difficult to decompose.
CV is utilized in the manufacture of black and blue inks for ballpoint pens and printer
ink jets [7,8]. CV is also used to produce waxes, leather, varnish, fertilizers, detergents,
medications, and color paints [9–11]. However, CV, similar to most dyes, is a toxic car-
cinogenic with a recalcitrant classification because of its non-biodegradability, persistence
in various environments, and nasty microbial metabolization [12–14]. Moreover, CV gen-
erates unpleasant colorations of water bodies, resulting in reduced light penetration for
photosynthetic activities, negatively impacting aquatic life, such as the development of
tumors in fish [10,15]. In order to ensure the life of aquatic organisms and humans, CV
must be removed from wastewater before release.

Graphitic carbon nitride (g-C3N4), a 2D metal-free semiconductor, has acquired trac-
tion in energy storage and environmental applications, and as a photocatalyst for CO2
reduction [16], hydrogen production [17], and contaminant degradation [18,19] due to its
facile fabrication method, excellent thermal stability, low cost, and environmental friendli-
ness [20–23]. Despite the plethora of research on g-C3N4 as a photocatalyst, there are only
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a few papers on its adsorption uses [24–26]. Even though photocatalytic degradation can
totally eliminate environmental contaminants, it is hampered by the formation of byprod-
ucts and relatively high running costs [27,28]. On the contrary, adsorption can remove
significant quantities of contaminants without producing byproducts.

Due to its limited specific surface area (<10 m2/g) and single surface functional
group [29], pure g-C3N4 is not commonly employed in adsorption procedures [30]. Over
the years, numerous modification techniques have been developed to increase the appli-
cation of g-C3N4 [31–34]. In order to improve the removal efficiency of hazardous dyes,
researchers have increasingly concentrated on modifying pure g-C3N4 by element doping,
controlling its morphology, semiconductor recombination, and stripping [29]. Doping
with heteroatoms is an excellent method for improving the adsorption of carbon-based
compounds [33,35–39]. Vanadium pentoxide (V2O5), which possesses high oxidation
ability, chemical inertness, and long-term stability against photochemical degradation,
has been extensively utilized in numerous applications, including sensors, batteries, and
catalysts [40–42].

We think this is the first study to successfully synthesize V2O5 incorporated with
g-C3N4 with high surface area and efficient elimination of organic dyes, which opens up
new avenues for the applications of g-C3N4 materials.

2. Results and Discussions
2.1. The V2O5-g-C3N4 Nanosorbent Characteristics

The morphologies and microstructures of the V2O5-g-C3N4 nanosorbent were further
investigated using transmission electron microscopy (TEM). Figure 1a reveals that thin
layers of g-C3N4 wrap V2O5 nanoparticles.
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Figure 1. (a) TEM image, (b) SEM image, (c) EDX, and (d–g) elemental mapping of the V2O5-g-C3N4

nanosorbent.

Figure 1d–g display the energy dispersive X-ray spectrometer (EDS) maps of the
elements V, N, O, and C. EDS maps illustrate the interface between V2O5 and carbon
nitride. It is clearly seen that the components are dispersed uniformly, this result confirmed
the successful combination of these nanomaterials.

The XRD technique was utilized to investigate the produced materials’ structure,
purity, and phase composition. Figure 2a displays the XRD patterns of the as-fabricated
V2O5, g-C3N4, and the V2O5-g-C3N4 nanosorbent. The two distinctive diffraction peaks
at 12.9◦ and 27.4◦ are attributed to the (100) and (002) planes of g-C3N4, respectively. In
addition, the orthorhombic crystal structure of V2O5 is shown by the prominent diffraction
peaks at 2θ = 34.08◦, 31.07◦, 26.19◦, 20.31◦, and 15.42◦ corresponding to the (310), (301), (110),
(001), and (200) planes (JCPDS 41–1426) [43]. Both the definite diffraction peaks of g-C3N4
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and the orthorhombic phase of V2O5 are observable in XRD patterns of V2O5-g-C3N4, and
no other impurities are detected, confirming the purity of the fabricated nanocomposites.
Figure 2b depicts the N2 adsorption-desorption isotherms of the V2O5-g-C3N4 nanosorbent
as manufactured. The isotherms are type IV, confirming the mesoporous structure of
the V2O5-g-C3N4 nanocomposites. The V2O5-g-C3N4 surface area is 61.04 m2/g. Thus,
the nanocomposites featured a greater surface area and additional active sites, favoring
adsorption efficiency.
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isotherm, (c) pore size distribution, and (d) plot for the determination of pHZPC for the V2O5-g-C3N4

nanosorbent.

The graph of point zero charges (Figure 2d) was generated by plotting the difference
between the beginning and final pH against the initial pH. The V2O5-g-C3N4’s point zero
charges (pzc) were 3.83. The surface of the V2O5-g-C3N4 nanosorbent is positively charged
when the pH is less than pzc and negatively charged when the pH is higher than pzc.

X-ray photoelectron spectra (XPS) were used to examine the surface chemical compo-
sitions of the V2O5-g-C3N4 nanosorbent. The XPS spectra of the V2O5-g-C3N4, depicted in
Figure 3a, demonstrate that the nanosorbent consisted of vanadium, oxygen, nitrogen, and
carbon. Figure 3b displays the XPS spectra of C1s. The presence of two characteristic peaks
at 285.2 and 281.9 eV can be deduced from the data in Figure 3b, attributed to the carbon
sp2 (C=N-) and carbon sp3 hybridization (C-C) [44]. Figure 3c shows the XPS spectra of N1s.
Two characteristic peaks were found at 395.7 and 397.4 eV, attributed to the nitrogen sp2

(-C=N-) and sp3 hybridization (-N-C), respectively [45]. Figure 3d depicts the XPS spectra
of O1s, in which the distinctive peak of the oxygen atom in V2O5 was shown to have a
binding energy of 527.4 eV [46]. The V2p’s XPS spectral (Figure 3e) highlights the presence
of two peaks at 527.9 and 514.7 eV, which correspond to V2p1/2 and V2p3/2, respectively.
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2.2. Dyes Adsorption onto the V2O5-g-C3N4 Nanocomposite
2.2.1. Adsorption Capability of the V2O5-g-C3N4 Nanocomposite towards Organic Dyes

The V2O5-g-C3N4 nanocomposite was tested with various organic dye solutions
for constant concentrations equal to 50 ppm. Experiments on dye removal were con-
ducted under magnetic stirring by combining 10 mg of the V2O5-g-C3N4 nanocompos-
ite with 25 mL of the dye’s aqueous solution for 24 h (Figure 4a). The ability of the
V2O5-g-C3N4 nanocomposite to absorb various dyes from an aqueous solution was evalu-
ated. Figure 4b depicts the percentage of elimination of various dyes by the V2O5-g-C3N4
nanocomposite. Results confirmed that the removal ability percentages of BF, MG, CV, CR,
and MO were 94%, 76.8%, 98.9%, 94.4%, and 5.4%, respectively. This result suggests that the
V2O5-g-C3N4 nanocomposite is an efficient sorbent for eliminating CV, MG, BF, and CR
dyes from wastewater.

2.2.2. Impact of Initial pH and Concentration on CV Dyes Elimination

Monitoring the effectiveness of nanoadsorbents in wastewater treatment relies heavily
on pH levels [1,47]. The fluctuations in pH lead to modifications in the surface charac-
teristics of the adsorbent and the degree of ionization of adsorptive molecules [2,48]. As
is evident from Figure 4c, pH fluctuations significantly impact the percentage of CV dye
removed from a solution. With an initial CV concentration of 50 ppm and a nanoadsor-
bent dosage of 10 mg, the effect of pH was investigated in the range between 2 and 12.
Figure 4b demonstrates that as the pH of the solution reached 7, the CV dye removal per-
centage achieved its greatest values. The V2O5-g-C3N4 nanocomposite revealed removal
percentages of 15, 62, 99, 85, and 77% for CV dye at pH 2, 4, 7, 9, and 12, respectively.
The V2O5-g-C3N4 nanocomposite surface was positively charged at lower pH, resulting
in electrostatic repulsion with the cationic CV dye molecules and, as a result, a decreased
adsorption efficiency. Wathukarage et al. showed that woody biochar interacts electrostat-
ically with CV molecules at a pH higher than pzc, whereas the biochar surface covered
with positive charges below pzc develops electrostatic repulsion with the cationic CV
molecules [49].
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The influence of CV dye concentration on the amount adsorbed was also studied. The
investigations were carried out with 20 mg of the V2O5-g-C3N4 nanocomposite at a pH value
equal to 7. The CV adsorption capacity increased dramatically from 62.9 to 429.6 mg g−1 when
the concentration of CV dye was raised from 25 to 200 ppm, as seen in Figure 4d. Increasing
the CV’s initial concentration furnished an effective driving force to overcome all resistance to
the migration of CV molecules from the aqueous solution [47].

2.2.3. Adsorption Isotherms Modeling

The adsorption result for CV dye was based on widely analyzed adsorption isotherm
models (Langmuir and Freundlich) to estimate the maximum adsorption capacity presented
by the V2O5-g-C3N4 nanocomposite for CV dye. The Langmuir model depicts chemical
adsorption and implies that the adsorption process occurs on a homogeneous monolayer
surface with comparable adsorption energy requirements for all active sites [50]. The
Freundlich model describes physical adsorption and assumes it occurs on a multilayer
heterogeneous surface with different adsorption sites and variable affinities [50]. Table 1
presents the nonlinear formulas for the used isotherms. The results of nonlinear isotherm
graphs for CV adsorption onto V2O5-g-C3N4 are shown in Figure 5a, and the estimated
isotherm parameters are listed in Table 1.
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Table 1. Equilibrium isotherm constants models for CV dye adsorption by the V2O5-g-C3N4 nanosorbent.

Equilibrium Model Non-Linear Form Parameters Values

Langmuir [51] qe =
qmaxKL Ce
1+KL Ce

qm (mg g−1) 664.65
KL (mg g−1) 0.058
RL (L. mg−1) 0.08

R2 0.995

Freundlich [52] qe = kFC1/2
e

n 2.33
KF (L. mg−1) 73.25

R2 0.974
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The correlation coefficient (R2) for the fitted plot of the Langmuir isotherm is 0.995,
which is greater than the R2 for the Freundlich isotherm (0.974). This result indicates that
the Langmuir model is well-fitted, indicating the monolayer adsorption of CV molecules
on the V2O5-g-C3N4 nanocomposite. Following the Langmuir model, it was established
that the maximum adsorption capacity of V2O5-g-C3N4 was 664.65 mg/g. In addition, the
equilibrium parameter RL (= 1

1+KL .C0
) was used to determine whether or not the adsorption

was favorable. The RL value was found to be 0.08, which was in the 0–1 range, affirming
that the adsorption was favorable. The capacity of V2O5-g-C3N4 nanocomposite to adsorb
CV dye has been compared to several adsorbents mentioned in the literature (Table 2).
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Table 2. Observation of CV adsorption capacities of the V2O5-g-C3N4 nanocomposite with the
different nanomaterials’ adsorbents.

Adsorbents qe (mg g−1) pH References

Xanthated Rice husks 90.02 10 [53]
Saccharum munja biomass-functionalized

carbon nanotubes 180.51 7 [54]

Nascent Rice Husk 24.47 10 [55]
Cellulose based on sugarcane 107.50 8–13 [56]

Nocardiopsis sp 15.90 7 [57]
MChs-Ppy 11.84 8 [58]

GO@NPANI@ZrSiO4 15.81 7 [59]
Fe noparticles/βCD 100 9 [60]

V2O5-g-C3N4 nanocomposite 664.65 7 This paper

2.2.4. Contact Time and Adsorption Kinetics Modeling

In order to establish the optimal time required for the maximal uptake of CV dye by
the V2O5-g-C3N4 nanocomposite, the impact of contact time on the CV adsorption was
investigated for various contact times ranging from 3 to 1440 min at 25 ◦C. The effects
of contact time on the adsorption process are illustrated in Figure 5b. The adsorption
capabilities of the V2O5-g-C3N4 nanocomposite grew rapidly during the first 20 min and
reached equilibrium, with no significant changes after that. At the start of the process, the
adsorption rate was very fast due to the availability of many active sites on the surface of
the V2O5-g-C3N4 nanocomposite. As a result, the concentration of the remaining active
sites decreased at equilibrium, and the sorption rate decreased dramatically. As a result,
beyond this optimum value, the elimination of CV molecules remained unaltered.

For the optimal selection of the adsorption kinetics model, CV adsorption over the
V2O5-g-C3N4 nanocomposite at a concentration of 100 ppm CV was investigated. The
pseudo-first order (PFO) and pseudo-second order (PSO) plotting graphs were presented
in Figure 5c by plotting qt against time. The parameters of adsorption kinetics denoted by
k1, k2, qe, and R2 of the evaluation model were determined theoretically using nonlinear
fitting and are reported in Table 3. The R2 values indicated that CV adsorption on the
V2O5-g-C3N4 nanocomposite is well-defined using the PSO model, which agrees with the
experimental result.

Table 3. Kinetics models for CV adsorption by the V2O5-g-C3N4 nanocomposite.

Kinetics Models Equations Parameters Values

PFO [61] qt = –
(

1− e−1k1t
) qe (mg g−1) 242.71

k1 (min−1) 0.95
R2 0.606

PSO [61] qt =
t k2q2

e
k2qet+1

qe(calculated) (mg g−1) 244.69
qe(experimental) (mg g−1)

k2 (g mg−1·min−1) 0.018
R2 0.932

IPD [62] qt = kdi f
√

t + C

C1 (mg g−1) 223.53
Kdif1 (mg g−1 min1/2) 3.77

R2 0.983
C2 (mg g−1) 244.35

Kdif2 (mg g−1 min1/2) 0.02
R2 0.908

Weber’s intraparticle diffusion was used to fit the experimental data in order to
comprehend the adsorption kinetics and rate-controlling stages better. The intraparticle
diffusion model is chosen as the application model by graphing qt against t1/2. Figure 5d
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depicts the intraparticle diffusion process curves of CV adsorbed over the V2O5-g-C3N4
nanocomposite. The adsorption procedure consists of two steps. The initial stage is film
diffusion, wherein CV molecules diffuse from the solution to the outer surface of the
V2O5-g-C3N4 nanocomposite. The intraparticle diffusion stage is the second step, and is
influenced by the surface morphology as well as the number of void sites that are present
in the V2O5-g-C3N4 nanocomposite. Kdif1 was considerably greater than Kdif2, indicating
that the intraparticle diffusion phase was a smooth process [63]. The intercept at the second
step was larger than that at the first step, which indicates a greater contribution of surface
adsorption in the step that controls the rate [64]. In addition, the R2 values in the two phases
were, respectively, 0.983 and 0.908, which indicates that Weber’s intraparticle diffusion
model had great application in investigating the CV adsorption mechanism.

2.2.5. Adsorption Mechanism

The mechanism of CV dye adsorption onto the V2O5-g-C3N4 nanocomposite may
imply electrostatic interactions, physical adsorption, π–π interactions, and hydrogen
bonds [65,66]. To comprehend the adsorption process, the FTIR spectra of V2O5-g-C3N4
before and after CV dye adsorption were recorded in the range of cm−1 (Figure 6a). Hydro-
gen bonding may have a significant role in CV dye adsorption. The broadband between
3000 and 3500 cm−1, attributed to the O–H and terminal amino group stretching modes,
slightly shifted, revealing the embroilment of the OH and amino groups of the nanocom-
posite in the adsorption process. As a result, the existence of hydrogen bonds between
CV dyes and V2O5-g-C3N4 can be confirmed. The π–π interactions represent an essential
mechanism between the π-electrons in organic molecules with aromatic rings and those
in a carbon nitride substance, according to several investigations that have validated this
phenomenon [67]. The vibrational triazine ring mode at 883 cm−1 was shifted after CV
dye adsorption, and this confirmed the π-π interaction between the aromatic rings of CV
molecules and the π-electron clouds of V2O5-g-C3N4. Figure 6b depicts the possible CV
adsorption mechanism onto the V2O5-g-C3N4 nanocomposite.
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2.2.6. Reusability Test

Along with having a high adsorption capacity, an ideal adsorbent should also have
high reusability, as this would help to keep the overall cost of the adsorption process to
a minimum. The reusability tests for the V2O5-g-C3N4 nanocomposite for the removal of
CV dye was conducted four times with the same adsorbent dose, as shown in Figure 7.
Following the adsorption experiment, the previously utilized V2O5-g-C3N4 nanocomposites
were first recovered using filtering and then calcined at a temperature of 500 degrees
Celsius for one hour. Following that, the obtained V2O5-g-C3N4 was utilized again. As a
result of the reusability performance trial, depicted in Figure 7, it is possible to notice that
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V2O5-g-C3N4 can perform the CV elimination process effectively for at least four cycles,
with a mean value of around 92%.
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3. Materials and Methods
3.1. Chemicals

Ammonium vanadate (NH4VO3 ≥ 99.0%), urea (≥98.0%), crystal violet (CV ≥ 90%),
malachite green (MG ≥ 90%), basic fuchsin (BF ≥ 85%), Congo red (CR ≥ 97.0%), methyl
orange (MO ≥ 98%), sodium hydroxide (NaOH ≥ 99%), sodium chloride (NaCl ≥ 99%),
and hydrochloric acid (HCl ≥ 37%) purchased from Merck Company were used without
further purification. The required CV concentrations (25 to 200 ppm) were obtained by
diluting CV stock solution (500 ppm).

3.2. Nanomaterials Synthesis

V2O5 nanomaterials were fabricated by thermal decomposition of ammonium vana-
date (NH4VO3) at 400 ◦C for 2 h in the air atmosphere. The g-C3N4 nanostructures were
generated by the thermal polymerization approach [68]. In the typical method, 4000 mg of
urea powder was calcined at 550 ◦C in an alumina crucible with a cap in an electric furnace
at a heating rate of 4.6 ◦C/min for 120 min. A yellowish solid powder was formed after
cooling to ambient temperature through natural means.

For the V2O5-g-C3N4 nanocomposite fabrication, 800 mg of solid g-C3N4 powder was
distributed in 115 mL of ethanol and sonicated for 30 min. After adding 1800 mg of V2O5
nanoparticles, the mixed solution was rapidly agitated for 60 min. The suspension was
then heated at 75 degrees Celsius for 24 h to evaporate the organic solvent. The resultant
solid was then annealed at 150 ◦C for 120 min to generate the V2O5-g-C3N4 nanocomposite.

3.3. The V2O5-g-C3N4 Nanocomposite Characterization

Employing JEOL, JEM-2100 transmission electron microscopy (TEM), the production
and distribution of the V2O5-g-C3N4 nanocomposite were investigated. The nanocomposite
morphology was investigated by JEOL, JEM-6700F field emission scanning electron mi-
croscopy (FESEM). Energy dispersive X-ray spectrometer (EDS) analysis was performed to
determine the notional stoichiometry composition of nonmaterial surfaces. The crystallinity
grade and phase construction were scrutinized through X-ray diffraction (XRD) using a
Bruker D8–Advance equipped with a Cu-K source (λ = 0.15418 nm). The porosity and BET
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surface area were measured using N2 adsorption-desorption at 77 K and a Micromeritics
2010 device. Using FTIR (Nicolet 6700) in the 4000–400 cm−1 range with a resolution of
4 cm−1, the chemical bonding and stretching vibration of the produced samples before and
after CV dye adsorption were analyzed.

3.4. CV Dye Adsorption Procedure

Batch removal studies were conducted by contacting 20 mg of the V2O5-g-C3N4
nanocomposite sorbent with 50 mL of CV dye solution at varying starting concentrations
(25–200 mg/L). In 50 mL screw-top bottles, the mixture was swirled on a magnetic stirrer
at 400 rpm for 24 h, which was longer than necessary to achieve equilibrium. A compar-
ison with other organic dyes (malachite green (MG), basic fuchsin (BF), Congo red (CR),
and methyl orange (MO)) was also performed by dissolving 20 mg of the V2O5-g-C3N4
nanocomposite in 50 mL of dye solution (50 ppm) and magnetically stirring for 24 h. After
each experiment, the solutions were centrifuged and the residual dye concentrations were
measured with a SHIMADZU UV-1650PC spectrophotometer. The residual dye concen-
trations were determined at a maximum wavelength of 590 nm for CV, 617 nm for MG,
545 nm for BF, 497 nm for CR, and 467 nm for MO. Then, the concentration of dyes was
obtained, and equilibrium dye capacity (qe (mg g−1)) was calculated using the following
equation:

qe =
V(C0 − Ce)

m
where m is the mass of the adsorbent (g), V is the volume of the solution (L), and C0 and Ce
(mg L−1) are the dye concentrations at time equal to 0 and equilibrium, respectively.

For the kinetic experiment, the volume and initial concentration of dyes were 150 mL
and 250 ppm, respectively, while the mass of the V2O5-g-C3N4 nanocomposite was 60 mg.
The test was conducted in the dark while magnetic stirring was taking place. Later, 5 mL of
the suspension was withdrawn and centrifuged at predetermined intervals to determine
the remaining CV dye concentration. The following equation was employed to determine
the adsorbed quantity qt (mg g−1) at time t:

qt =
V(C0 − Ct)

m

The Origin 2016b program was used to plot and model the experimental data.

4. Conclusions

The V2O5-g-C3N4 nanocomposite with a greater surface area was successfully syn-
thesized using the sonication method. The study findings demonstrated a good CV dye
removal efficiency. The evaluation of V2O5-g-C3N4 as a possible adsorbent for various dyes
(BF, MG, CV, CR, and MO), demonstrated the overall high potential of the nanocomposite
for the removal of dyes from wastewaters. In order to improve V2O5-g-C3N4’s effective-
ness in removing CV dye, an investigation into the influence of pH was carried out. The
removal of CV dye by the V2O5-g-C3N4 nanocomposite was found to be pH-dependent.
The greatest adsorption capacity for CV pollutants was found at a pH of 7, 664.65 mg g−1.
Several kinetic and adsorption models were utilized in this study to evaluate the removal
of CV by V2O5-g-C3N4. The PSO kinetics and the Langmuir adsorption isotherm models
were found to fit the data best. According to the FTIR analysis results, the CV adsorption
mechanism was connected to π–π interactions and the hydrogen bond.
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