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Abstract: Platinum (Pt) drugs have developed rapidly in clinical applications because of their broad
and highly effective antitumor effects. In recent years, with the rapid development of immunotherapy,
Pt-based antitumor agents have gained new challenges and opportunities. Since the discovery of their
pharmacological effects in immunotherapy and tumor microenvironment regulation, research into Pt
drugs has progressed to multi-ligand and multi-functional Pt precursors and their own shortcomings
have been further highlighted. With the development of antitumor immunotherapy and the rise of
combination therapy, the development of Pt-based drugs has started to move in the direction of multi-
targeting, nanocarrier modification, immunotherapy and photodynamic therapy. In this paper, we
first overview the recent applications of Pt-based drugs in antitumor inorganic chemistry, with a focus
on summarizing the application of Pt-based drugs and their precursors in the anticancer immune
response. The paper also provides a reasonable outlook on the future development of Pt-based drugs
from the chemical and immunological perspectives, relying on the existing content and problems
of Pt-based drug development. On the basis of the gathered information, joint multidisciplinary
programs on implementing comprehensive immune analyses for the future development of novel
anticancer metal compounds should be initiated.

Keywords: platinum-based antitumor drugs; anticancer immune response; metal drugs; tumor
microenvironment regulation; photodynamic and photosensitization therapy

1. Introduction

Since Rosenberg’s discovery of cisplatin in 1965, cisplatin has quickly reached the peak
of its clinical use on account of its potent antitumor properties [1,2]. Generally speaking,
Pt(IV) would be reduced into Pt(II) via the reductive microenvironment of tumors. Com-
pared to Pt(IV)-based antitumor drugs, Pt(II)-based ones perform better cytotoxic ability.
Cisplatin, for example, has been used extensively in therapies for ovarian, prostate, testicu-
lar, lung, nasopharyngeal, esophageal and other cancers through the direct binding of DNA
within tumor cells. However, this kind of DNA binding is non-targeted, causing damage
to other “healthy” organs and resulting in limitations of its clinical use. Cisplatin has a
straightforward structure and a clear mechanism, and it can have some therapeutic effects
on many tumor types. However, the substantial side effects (nephrotoxicity, ototoxicity, etc.)
and drug resistance brought on by platinum (Pt)-based therapy have progressively come
to light, and as the clinical application continues to advance, they have also grown to be
a significant barrier to its advancement [3–5]. As a result, second- and third-generation
Pt-based medications with the active ingredients carboplatin and oxaliplatin have appeared.
Compared to cisplatin, oxaliplatin has moderate adverse effects and could be used for
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patients with hepatic dysfunction. It is commonly used in the treatment of colorectal cancer.
Third-generation and second-generation Pt-based medications can treat resistance brought
by previous-generation Pt-based therapies and have superior stability and fewer side effects
compared to cisplatin [6–8]. In summary, the overall development of Pt-based medicines
is still constrained by a unique combination of side effects, and the limitations cannot be
ignored. [4].

Pt medicines primarily attach to DNA and damage it to have anticancer effects in vivo.
For instance, the chloride ion in the structure of the drug cisplatin is activated by hydrolysis
as soon as it enters the cell, resulting in the creation of an electrophilic molecule that may
covalently attach to the nitrogen atom in the purine residue to damage DNA. Chloride
anions improve the reduction potential and ability to receive electrons from some ligands
such as DAD [9]. However, the existence of chloride anions could probably improve the
cytotoxicity of Pt-based drugs [10]. Pt medications can all stimulate the p53 signaling
pathway, caspases and cellular autophagy [11,12]. One of the main factors restricting the
therapeutic usage of cisplatin has been its side effects. As a result, in the following years,
attention was diverted from the development of Pt(II) to that of its prodrug, Pt(IV) [6]. It
had been thought that Pt(IV), which has a gentler and less poisonous structural profile than
Pt(II), would serve as the foundation for the creation of new Pt-based medications that
might successfully replace Pt(II). Theoretically, reducing biomolecules including glutathione
(GSH) and ascorbic acid (ASA) are thought to participate in intracellular reduction processes
of Pt(IV) prodrugs to liberate the Pt(IV) parent drug and exert anticancer activity. The
slower rate of DNA binding to Pt(IV) compared to Pt(II) is the main reason for the lower
in vitro toxicity of Pt(IV) [6,13,14]. The reduction efficiency of Pt(IV) is considered to be a
key step in the activation of Pt(IV) complexes during its antitumor activity in vivo.

The development of photoactive Pt-based drugs, immunotherapies and nanomaterials,
among other things, as existing Pt-based medications which can reduce with time has
received extensive interest [15–17]. In order to lessen side effects, the continual refinement
of functional Pt-based drugs is primarily driven by 1. Reducing adverse responses and
improving the selectivity of Pt-based medications 2 can boost effectiveness and synergism
and mobilize immunity.

This article focuses on the advancement of Pt-based medications in recent years,
listing how these medications have been used to treat malignancies through structural
modifications in chemotherapy, photochemotherapy and other treatments. Due to the
discovery of the actions of Pt medications on immune cells, including macrophages, their
impacts and applications in tumor immunological processes are studied. Nanomaterials,
metals, agonists and antagonists are employed in combination with other fields in order to
lessen their own hazardous side effects and increase antitumor effectiveness. At the same
time, the current advancement of pharmaceuticals based on Pt is coupled with other fields,
such as drug design, to offer fresh viewpoints on emerging patterns. Overall, this paper
summarizes the development of various Pt-based drugs in recent years, in order to lay some
good prerequisites for the research and development of novel Pt-based drugs (Figure 1).
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Figure 1. Multiple pathways to increase the antitumor effect of Pt-based drugs. The breakdown 
of nanomaterials or Pt prodrugs to yield Pt(II) drugs, which damage DNA, increase drug aggrega-
tion in cells or reduce DNA repair activity, can enhance tumor inhibition or reduce drug resistance. 
PTT/PDT can facilitate the targeted release of Pt-based drugs to enhance antitumor efficiency or 
reduce toxic side effects. In addition to their adjuvant role, axial ligands of Pt drugs can be involved 
in the immune response in vivo. They enhance the antitumor effects of Pt-based drugs by reversing 
macrophage polarization, recruiting immune cells and inhibiting tumor-associated inflammatory 
responses. 

2. Multiple Pathways to Enhance Targeting Properties of Pt-Based Antitumor Drugs 
2.1. Improving Drug Targeting by Structural Modification of Pt(II) and Pt(IV) Prodrugs 

In order to make Pt-based drugs more selective in their action on tumor cells, and at 
the same time reduce the impact of the adverse effects brought about by the treatment 
process, many researchers have started to target Pt(II) and Pt(IV) structures by linking 
them to different groups. 

One of the primary methods for creating antitumor medications is to structurally al-
ter Pt-based medicines to match the properties of tumor cells in order to achieve antitumor 
goals. Solid tumors are characterized by severe hypoxia that is primarily brought on by 
the hormone hypoxia-inducible factor-1 (HIF-1). Zichen Xu’s team [18] used HIF-1 as their 
target and created a variety of structures that target Pt(IV) alterations. They discovered 
that YCC-2 (1) (Figure 2) greatly reduced HIF-1 expression and improved the effects of 
cisplatin on HCT-116. Similarly, asparagine synthase plays an important role in tumor 
growth and metastasis, and as a molecular target, Di Hu‘s group [19] designed complex 
2, [(bis-NHC)Pt(bt)]PF6 1α (Figure 2), which reduces cellular asparagine levels and effec-
tively inhibits tumor cell proliferation, and a complex that modifies the resistance of can-
cer cells to cisplatin. Furthermore, heat shock protein 70+ can serve as a recognition site 
for targeted therapeutics and is closely linked to tumor aggressiveness and therapeutic 
resistance [20]. Couples 1–5 (Figure 2), designed by A.M. McKeon’s group, can target 
membrane-bound heat shock protein 70+ in cancer cells to increase cytotoxicity [21]. 

The addition of biotin to the structure can lead to more precise targeting of Pt-based 
drugs to cancer cells after structural modifications to increase accumulation in the cells. 
In 2020, researchers developed four Pt(IV) complexes, 6, 7, 8 and 9 (Figure 2), with biotin 
as the axial group, which were found to have a multiplicative increase in cytotoxicity com-
pared to cisplatin in vitro, as well as a reversal of cisplatin resistance [22]. Xing Wang’s 

Figure 1. Multiple pathways to increase the antitumor effect of Pt-based drugs. The breakdown of
nanomaterials or Pt prodrugs to yield Pt(II) drugs, which damage DNA, increase drug aggregation in
cells or reduce DNA repair activity, can enhance tumor inhibition or reduce drug resistance. PTT/PDT
can facilitate the targeted release of Pt-based drugs to enhance antitumor efficiency or reduce toxic
side effects. In addition to their adjuvant role, axial ligands of Pt drugs can be involved in the immune
response in vivo. They enhance the antitumor effects of Pt-based drugs by reversing macrophage
polarization, recruiting immune cells and inhibiting tumor-associated inflammatory responses.

2. Multiple Pathways to Enhance Targeting Properties of Pt-Based Antitumor Drugs
2.1. Improving Drug Targeting by Structural Modification of Pt(II) and Pt(IV) Prodrugs

In order to make Pt-based drugs more selective in their action on tumor cells, and
at the same time reduce the impact of the adverse effects brought about by the treatment
process, many researchers have started to target Pt(II) and Pt(IV) structures by linking them
to different groups.

One of the primary methods for creating antitumor medications is to structurally alter
Pt-based medicines to match the properties of tumor cells in order to achieve antitumor
goals. Solid tumors are characterized by severe hypoxia that is primarily brought on by
the hormone hypoxia-inducible factor-1 (HIF-1). Zichen Xu’s team [18] used HIF-1 as their
target and created a variety of structures that target Pt(IV) alterations. They discovered
that YCC-2 (1) (Figure 2) greatly reduced HIF-1 expression and improved the effects of
cisplatin on HCT-116. Similarly, asparagine synthase plays an important role in tumor
growth and metastasis, and as a molecular target, Di Hu‘s group [19] designed complex 2,
[(bis-NHC)Pt(bt)]PF6 1α (Figure 2), which reduces cellular asparagine levels and effectively
inhibits tumor cell proliferation, and a complex that modifies the resistance of cancer cells
to cisplatin. Furthermore, heat shock protein 70+ can serve as a recognition site for targeted
therapeutics and is closely linked to tumor aggressiveness and therapeutic resistance [20].
Couples 1–5 (Figure 2), designed by A.M. McKeon’s group, can target membrane-bound
heat shock protein 70+ in cancer cells to increase cytotoxicity [21].
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NHC)Pt(bt)]PF6 1α (3, 4, 5) compounds designed by A.M. Mckeon’s group to target membrane sur-
face heat shock protein 70+. (6, 7, 8, 9) Pt(IV) complexes designed by Gao’s group with biotin as the 
axial group. (10) Biotin-modified Pt(IV) complex designed by Chen’s group. (11) DPB structure. (12) 
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2.2. Nanoparticulate Pt-Based drug Delivery System to Upgrade Intracellular Accumulation  
Although great progress in nanoparticle-based drug deliveries has been achieved in 

the past few decades, the toxicity and limitations should not be ignored. In nanoparticle-
based drug carriers, liposomes are characterized by self-assembling, and drugs are assem-
bled to be liposome nanoparticles (LNPs). However, liposomes tend to accumulate in the 

Figure 2. Improving drug targeting properties by structural modification of Pt(II) and Pt(IV)
prodrugs. (A) Structure of cisplatin. (B) Structure of oxaliplatin. (1) YCC-2. (2) Complex [(bis-
NHC)Pt(bt)]PF6 1α (3, 4, 5) compounds designed by A.M. Mckeon’s group to target membrane
surface heat shock protein 70+. (6, 7, 8, 9) Pt(IV) complexes designed by Gao’s group with biotin as
the axial group. (10) Biotin-modified Pt(IV) complex designed by Chen’s group. (11) DPB structure.
(12) Dual-targeted Pt(IV) complexes designed by Liu‘s group.

The addition of biotin to the structure can lead to more precise targeting of Pt-based
drugs to cancer cells after structural modifications to increase accumulation in the cells.
In 2020, researchers developed four Pt(IV) complexes, 6, 7, 8 and 9 (Figure 2), with biotin
as the axial group, which were found to have a multiplicative increase in cytotoxicity
compared to cisplatin in vitro, as well as a reversal of cisplatin resistance [22]. Xing Wang’s
group [23] also synthesized Pt(II) complex 10 (Figure 2) to target Pt-based drugs with
biotin modifications, which enhanced the antitumor activity. In addition to the increased
targeting of biotin, Suxing Jin’s group [24] designed and synthesized a new Pt(IV) complex
11, DPB (Figure 2), which introduced dichloroacetic acid to enhance lipophilicity and
cytotoxicity and at the same time impeded the growth of cancer cells with active glycolysis,
demonstrating the importance of dual targeting for anticancer effects. The importance of
dual targeting for anticancer effects was strongly demonstrated.
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Not coincidentally, Xiaomeng Liu’s group [25] also relied on dual targeting to design
a Pt(IV) prodrug 12 (Figure 2), which was found to enhance intracellular aggregation,
thus significantly inducing DNA damage, inhibiting tumor cell migration and effectively
suppressing the nephrotoxicity associated with Pt-based drugs. This also improves the
strategy for the treatment of advanced postmenopausal breast cancer.

2.2. Nanoparticulate Pt-Based drug Delivery System to Upgrade Intracellular Accumulation

Although great progress in nanoparticle-based drug deliveries has been achieved in the
past few decades, the toxicity and limitations should not be ignored. In nanoparticle-based
drug carriers, liposomes are characterized by self-assembling, and drugs are assembled
to be liposome nanoparticles (LNPs). However, liposomes tend to accumulate in the liver,
spleen and bone marrow, as well as the mononuclear phagocytic system (MPS) in the
human body. Liposomes accumulated in MPS could probably result in serious side effects
and toxicity. To address these limitations, improving targeting ability and eliminating
influences on other organisms would be the key. Louzhen Fan et al. [26] summarized the
perspectives of nanomaterials such as liposomes, proteins and carbon quantum dots as
carriers and illustrated the progress of nanoparticle-based drugs in cancer medications.

Based on the above, mesoporous silica nanoparticles incorporating Pt(IV) predrugs
were prepared by Zigui Wang et al. [27]. Taking advantage of the liver-targeting properties
of lactobionic acid (LA), the nanocarrier enhanced the circulation time while increasing
the aggregation effect of the drug in hepatic tumor cells, and as it was in a reducing
environment, the bound Pt(IV) could be rapidly reduced for its effect. Li Li’s group [28]
combined an oxaliplatin prodrug with polyethylene glycol-modified nanosomes and found
an enhanced tumor-targeting effect. Because of specific binding to epidermal growth
factor receptor (EGFR) nanosomes, accumulation was found to be more pronounced in
tumors than in normal cells. In addition, hydrophilic materials and peptide fragments and
fluorescent dyes were used as nanocarriers for carboplatin (CRGD), and the complexes
were found to be more cytotoxic than carboplatin and to have an appreciable targeting
uptake capacity [29].

The combination of targeted therapy and chemotherapy is the main tool used to
increase the induction of tumor cell death. It has been clinically found that panitumumab
and Pt-based drugs have difficulty accumulating into high concentrations at the tumor
site both alone and in combination, which is the main reason for the lack of efficacy. The
investigators found that NanoPt-PAN (Figure 3), a nanomedicine made by combining
the two agents, was able to improve this phenomenon and was more actively targeted
than the single agent [30]. In addition, the authors found that NanoPt-PAN also had
good anti-CRC effects, making it a candidate nanomedicine for the treatment of colorectal
cancer. Also making nanopolymers out of existing combination regimens is Jianfeng Guo’s
group [31]: as FNA, 5-FU and oxaliplatin each have low efficacy, high toxicity and long
treatment cycles, nanoprecipitation technology was used to design NanoFOLOX, which
was found to improve the adverse effects of the three drugs, facilitating blood circulation
and the aggregation of Pt-based drugs in tumor cells. The new nanostructures were found
to improve the adverse effects of the three drugs and enhance blood circulation and the
aggregation of Pt-based drugs within the tumor cells. Furthermore, the authors combined
the nanoparticles with a variety of other drugs and found that FOLOX nanoparticles have
great potential as the basis for combination therapeutic strategies in the treatment of CRC.
Nanoparticles are ideal vehicles for multiple combination strategies due to their multiple
drug-carrying capabilities. A novel nanogel system was made by combining CRGDFK-
modified nanogels with the sodium channel inhibitors lidocaine and cisplatin, and it was
found that the adverse effects produced by the system were alleviated by the targeted
release of cisplatin. Due to the introduction of high-affinity peptide fragments, the nanogel
showed a significant increase in enrichment at the tumor site, which was more beneficial to
the inhibition of primary tumor growth [32].
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In the case of brain tumors, such as glioma, the fundamental limitation is the presence
of a blood–brain barrier in the brain, which prevents normal drug entry into brain tumor
cells and inhibits therapeutic efficacy [33]. Tao Sun’s group [34] has developed a novel
nanocarrier that has been found to have enhanced targeting and the ability to cross the
blood–brain barrier both in vitro and in vivo. The combined studies suggest that this
therapeutic strategy could be a new dosage form for Pt-based drugs, particularly for the
treatment of clinical gliomas.
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Figure 3. Scheme of nanoparticulate Pt-based drug delivery system to upgrade intracellular accu-
mulation. Nanoparticles prevent drug degradation and reduce toxic side effects by delivering the
right dose of the drug at the right time and to the right target. Due to the specificity of nanoparticles,
researchers are focusing on combining them with Pt-based drugs in order to achieve targeted delivery
and increase the accumulation of drugs in tumor cells to achieve the desired efficacy.

In previous studies, it was shown that nanocarriers with tumor acidic activation sites
and conversion capabilities have important potential in targeted drug delivery, exhibiting
neutral or negative charges in circulation to prolong circulation and promoting cellular
internalization for targeted drug delivery. Due to the slow charge reversal at the surface
of tumor tissue, Liu et al. [35] prepared UCC-NP/Pt nanocarriers, which can undergo
rapid charge conversion at tumor acidity to achieve targeted drug delivery and significant
anticancer effects in cisplatin-resistant cells.

In general, the structural modification of existing Pt-based drugs and the use of
nanomaterials as drug carriers are promising. The goal is to improve the targeting of
the drug and increase the degree of aggregation in tumor cells, thereby providing better
antitumor effects or reducing the adverse effects and resistance of Pt-based drugs in
clinical use.
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3. Synergistic Involvement of Pt-Based Drugs in Immunotherapy

The immune system has a role in recognizing and killing tumor cells in antitumor
therapy (Figure 4) [36]. Similarly, tumor cells can inhibit the action of immune cells, for
example by releasing immunosuppressive factors, or avoid the effect of immune cells by
avoiding or weakening their recognition [37]. With the rise of therapeutic approaches
targeting immune checkpoints [38], the previous belief that resistance to chemotherapy
drugs was due to suppression or disruption of immune system function needs to be re-
evaluated. In response to the problems that have arisen in the clinical management of
conventional Pt-based drugs, it is hoped that a new range of antitumor Pt-based drugs
can be developed and designed to target the immune system. These Pt-based drugs
could inhibit the immune escape that occurs during conventional drug therapy, slowing
tumor growth and reducing the development of drug resistance. The combination of
chemotherapy and immunotherapy will be a promising strategy in the design of this class
of drugs.

Inorganics 2023, 11, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 4. Scheme of combinations with immune agonists to improve T-cell responses. Immune 
agonists, such as a TLR7 agonist, conjugated with oxaliplatin, can accelerate T-cell maturation, acti-
vating prime T cells into mature T cells. Mature T cells release cytokines and exert specific killing 
effects on tumor cells. Antigens, released by tumor cells going through immunogenic cell death, will 
perform a synergistic effect with immune agonists to improve T-cell responses to tumor cells. 

3.1. Recruiting Immune Cells to Enhance Immunotherapy Effects  
Tryptophan 2,3-dioxygenase (TDO) is an immunosuppressive enzyme that may be 

involved in the immune escape of tumor cells and the potential for tolerance in vivo 
[39,40]. Therefore, a Pt(IV) antitumor drug containing a TDO inhibitor was designed to 
reverse tumor immunosuppression [41]. Flow cytometry suggested that this complex 13 
(Figure 5) could induce cell inactivation via the mitochondria-dependent apoptotic path-
way and inhibit the TDO enzyme to block the kynurenine pathway downstream, thereby 
enhancing the immune response of T cells. 

Analysis by Takahiro Yamazaki et al. [42] for complex 14, PT-112 (Figure 5), a novel 
Pt-based coupling, revealed that the cytotoxic response to PT-112 was associated with ex-
posure of calreticulin on the surface of dying cells, secretion of ATP and HMGB1 and other 
danger signals that also promoted anticancer immunity. In addition, the authors also 
found that when combined with an immune checkpoint inhibitor, PT-112 controlled can-
cer in mice through the systemic immune function of recruiting immunoreactive cells in 
TME while exerting cytotoxicity, limiting the growth of distant lesions. 

Milos’s team [43] developed four newly designed Pt-based complexes, 15, 16, 17 and 
18 (Figure 5), and compared their antitumor effects with cisplatin in vivo and in vitro. The 
results suggest that [PtCl4(en)] (en = ethylenediamine) increased the number of CD45+ cells 
and led to a reduction in metastatic lung lesions in tumor-bearing mice, also highlighting 
the potential of this structure in antitumor action. 

Figure 4. Scheme of combinations with immune agonists to improve T-cell responses. Immune
agonists, such as a TLR7 agonist, conjugated with oxaliplatin, can accelerate T-cell maturation,
activating prime T cells into mature T cells. Mature T cells release cytokines and exert specific killing
effects on tumor cells. Antigens, released by tumor cells going through immunogenic cell death, will
perform a synergistic effect with immune agonists to improve T-cell responses to tumor cells.

3.1. Recruiting Immune Cells to Enhance Immunotherapy Effects

Tryptophan 2,3-dioxygenase (TDO) is an immunosuppressive enzyme that may be
involved in the immune escape of tumor cells and the potential for tolerance in vivo [39,40].
Therefore, a Pt(IV) antitumor drug containing a TDO inhibitor was designed to reverse
tumor immunosuppression [41]. Flow cytometry suggested that this complex 13 (Figure 5)
could induce cell inactivation via the mitochondria-dependent apoptotic pathway and
inhibit the TDO enzyme to block the kynurenine pathway downstream, thereby enhancing
the immune response of T cells.

Analysis by Takahiro Yamazaki et al. [42] for complex 14, PT-112 (Figure 5), a novel
Pt-based coupling, revealed that the cytotoxic response to PT-112 was associated with
exposure of calreticulin on the surface of dying cells, secretion of ATP and HMGB1 and
other danger signals that also promoted anticancer immunity. In addition, the authors also
found that when combined with an immune checkpoint inhibitor, PT-112 controlled cancer
in mice through the systemic immune function of recruiting immunoreactive cells in TME
while exerting cytotoxicity, limiting the growth of distant lesions.

Milos’s team [43] developed four newly designed Pt-based complexes, 15, 16, 17 and
18 (Figure 5), and compared their antitumor effects with cisplatin in vivo and in vitro. The
results suggest that [PtCl4(en)] (en = ethylenediamine) increased the number of CD45+ cells
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and led to a reduction in metastatic lung lesions in tumor-bearing mice, also highlighting
the potential of this structure in antitumor action.
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Figure 5. Synergistic involvement of Pt-based drugs in immunotherapy. (13) Pt(IV) complexes
containing TDO inhibitors. (14) PT-112. (15, 16, 17, 18) Four Pt complexes designed by Milos’s group.
(19) The structure of OPA. (20) OXA-NO-enhanced immunotherapy designed by Liu’s group. (21)
ROS-response micelles PKS. (22) Novel immunochemotherapeutic agents for the combination of
TLR7 agonists with oxaliplatin. (23) Naproxen Pt(IV) complexes designed by Han’s group. (24, 25)
DNP and NP structures. (26) Ketoprofen Pt(IV) complex. (27) IA-1 structure. (28, 29, 30, 31) A family
of coumarin derivatives designed by Wang et al.
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3.2. A Promising Combination of ROS and Macrophages to Direct Polarization Strategy

Tumor-associated macrophages (TAMs) account for the largest proportion of the
tumor immune microenvironment (TME) and play a key role in tumorigenesis and pro-
gression [44]. Evidence suggests that tumor-associated macrophages accumulate in tumors
and lead to drug resistance, whereas cisplatin inhibits the clearance of EGF by tumor-
associated macrophages during antitumor therapy, thereby inhibiting tumor progression
or recurrence [45]. Andrulis’s group [46] studied the treatment of the cisplatin analog
“poly-plat”, SSP and SAP and found that macrophages treated with “poly-plat” and SSP
showed cytoplasmic elongation after stimulation.

M1 macrophages exert their antitumor function through directly mediated cytotox-
icity and antibody-dependent cell-mediated cytotoxicity (ADCC) [47]. Cisplatin-loaded
umbilical cord-derived exosomes were designed by Xiaohui Zhang’s group and found to
be several times more toxic and cell-sensitive in drug-resistant cells when compared to
chemotherapy alone [48]. Tao Yang et al. [49] found that the Pt-based complex OPA 19
(Figure 5) exerts chemoimmunotherapeutic effects on tumors mainly by blocking DNA
replication and inhibiting trigger receptors expressed on myeloid cells 2 (TREM2), while
also promoting the polarization of macrophages from M2 to M1. It also stimulates dendritic
cells, cytotoxic T cells and natural killer cells to act on cancer cells. In addition, OPA alters
the tumor microenvironment to reverse resistance to Pt-based drugs.

Similarly, Zhuang Liu’s group designed an epigenetic Pt(IV) complex 20 (Figure 5) to
enhance cancer chemoimmunotherapy [50]. This structure also promotes the polarization
of macrophages from the M2 to M1 phenotype, thereby reversing the immune microenvi-
ronment and reducing immunosuppression, demonstrating better tolerance and inhibition
of tumor growth compared to traditional Pt-based drugs. Of course, the investigators found
that it is not feasible to rely on immunotherapy alone to inhibit tumor progression and that
it needs to be combined with other therapies to maximize the effect of immunotherapy.
Therefore, Chun-Liang Lo’s group [51] designed an ROS-responsive micelle 21 (Figure 5)
based on the restricted regulation of ROS levels in tumor tissue and the importance of ROS
in the tumor microenvironment and in the cancer treatment process. It can release Pt-based
drugs into the cytoplasm of macrophages and cancer cells, increasing the level of ROS
in the tumor and inducing the polarization process towards M1-type macrophages and
phagocytosis of cancer cells by macrophages, achieving the dual effect of complementary
chemotherapy and immunotherapy.

3.3. Combination with Immune Agonists to Improve T-Cell Responses

Myeloid-derived suppressor cells (MDSCs) play a major coordinating role in cancer-
associated inflammation, dynamically promoting a differentially polarized inflammatory
program in tumor progression that facilitates tumor development and resistance to ther-
apy [52]. As mentioned above, Tao Yang’s group found that OPA could alter the tumor
microenvironment to reverse drug resistance while inhibiting the expression of TREM2,
thus resulting in reduced antitumor responses in mice, including less immunosuppres-
sive macrophages, more secretion of immunostimulatory molecules and improved T-cell
responses [49].

The synergistic effect of Pt-based drugs and immunotherapy was even more effec-
tive in drug-resistant cancer models, and Zhigang Wang’s group [53] designed a novel
immunotherapeutic agent 22 (Figure 5) by binding TLR7 agonists to oxaliplatin prodrugs,
which induced immunogenic death of 4T1 cells and activated dendritic cells to secrete
proinflammatory factors such as IFN-γ, TNF-α, IL-6 and IL-12. The mechanism suggests
that intratumor cytotoxic T cells are activated, thereby increasing antitumor efficiency.

3.4. Pt-Based Drugs Combined with NSAIDs to Repress Tumor-Related Inflammation

Inflammation is an important feature of cancer progression and is associated with the
development, progression and metastasis of malignancies; therefore, the inhibition of the
associated inflammatory response plays an important role in antineoplastic chemother-
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apy [54,55]. The introduction of NSAIDs into Pt-based regimens has been shown to
significantly improve the efficacy of NSAIDs compared to cancer treatment alone [56–58].
Han’s group [59] used naproxen in combination with Pt(IV) and found that compound
23 (Figure 5) had better antitumor properties, with a Pt-based fragment in its structure
causing DNA damage and naproxen as a non-steroidal anti-inflammatory agent inhibit-
ing COX-2 and reducing the associated inflammatory response, while both significantly
inhibited MMP-9 activity in tumors, thereby helping to reduce the growth and metasta-
sis of aggressive tumors. Therefore, in line with the trend towards the development of
nanodrug delivery systems in oncology therapy, Linming Li et al. [60] developed new
bovine serum protein nanoparticles based on naproxen Pt-based complexes, which were
found to have better antitumor effects and lower toxic side effects than the free compounds.
In addition, the addition of nanoparticles reduced tumor inflammation targeting COX-2,
MMP-9 and iNOS, which was more beneficial to the antitumor capacity and provided a
new clinical approach to overcome the shortcomings of Pt-based drugs. In addition, Wang’s
group [61] prepared two Pt-based complexes, DNP 24 (Figure 5) and NP 25 (Figure 5), with
naproxen as the axial phase ligand and found that DNP showed potent antitumor activity
and reduced toxicity in triple-negative breast cancer mice. DNP also reduced prostaglandin
secretion and inhibited c-Myc expression, showing that the complexes could interfere with
the inflammatory and metastatic processes of breast cancer.

As another NSAID approach, Zuojie Li and Qingpeng Wang et al. [62] designed and
prepared a ketoprofen Pt(IV) complex 26 (Figure 5) which, in addition to the several effects
described previously, notably inhibited PD-L1 expression, improving immune responses
and CD8+ T-cell infiltration in tumor tissues. In 2022, Gou’s group [56] designed and found,
through etodolac binding to Pt(II), that LA-1 27 (Figure 5) was significantly cytotoxic and
inhibited metastasis of A2780 cells by inhibiting the COX-2/JAK2/STAT3 axis.

Since the structure of coumarin confers anti-inflammatory effects on its derivatives by
inhibiting COX activity, Bingquan Wang et al. [63] designed a series of Pt-based coumarin
derivatives, 28, 29, 30 and 31 (Figure 5), and found that in addition to their respective
structural effects, they could also induce apoptosis by upregulating the expression of
caspase 3 and caspase 9. The group also evaluated the anticancer activity of bifunctional
7-hydroxycoumarin Pt(IV) and found that the derivatives could release Pt(II) compounds
to attack DNA and inhibit COX activity, which has great potential to overcome Pt(II)
resistance [64].

4. Multi-Targeting Structure Modification to Actualize Diverse Antitumor Actions

Tumor tissues are often generated by kinds of mutations, and there are significant
differences between samples of the same type of tumor from the same patient, so scholars
have tried to achieve more satisfactory results by combining therapies that act on multiple
cancer targets or by structurally modifying a drug [65]. For example, clinical attempts to
use “cocktail therapy” for the treatment of AIDS beginning as early as the last century and
the combination of chemotherapy and immunotherapy to improve antitumor outcomes
as described above have the same aim of using multiple drugs with different effects in a
more comprehensive and synergistic manner to achieve optimal efficacy for a particular
condition. This section focuses more on the recent work on structural modifications of Pt-
based drugs to achieve dual- or multi-targeting effects and provides more data to support
the enhancement of the antitumor effects of Pt-based drugs.

Kogularamanan Suntharalingam et al. [66] reported a planar Pt(II) complex
[Pt(BDI(QQ))]Cl, which the authors found to have a dual targeting ability, acting on both
DNA and mitochondria. [Pt(BDI(QQ))]Cl induces DNA damage and acts selectively on
cancer cells; it can also accumulate in mitochondria to cause direct damage. The article also
suggests that p53 is not a determinant of complex activity and therefore can be targeted
to cancers with a p53-deficient state. In the same year, the group [67] also synthesized
two Pt(IV) complexes, 32 and 33 (Figure 6), of vitamin E and a-TOS and found that OET
has a dual targeting effect in killing cancer cells, with the Pt-based group causing DNA
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damage and the axial ligand causing mitochondrial dysfunction, further validating the
value of a dual targeting strategy. Weike Su’s group [68] designed and synthesized four
novel Pt(IV) complexes and found that compound 34 (Figure 6) could release Pt(II) and
DCA within the tumor cells, leading to DNA damage as well as disruption of mitochondrial
membrane potential, illustrating the great potential of 34 in dual-targeted antitumor action.
In addition, Mariafrancesca Hyeraci et al. [69] have prepared Pt(II) complexes 32 and 33
with a triphenylphosphorus fraction based on previous studies. This makes the trans-
[PTBR2(NHRR’)(PPH3)] proposed in this article an option for the design of multi-targeted
oncology drugs.
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In addition to targeting DNA damage and mitochondrial damage in tumor cells,
Jin-Lei Tian et al. [70] designed a series of dual-targeted monofunctional Pt(II) complexes
based on the aspect of improving drug delivery and targeting during antitumor therapy.
This series of compounds can be used as one of the targets to rapidly enter the cell through
the upregulation of Gluts in tumor cells leading to increased glucose uptake, and then to
induce apoptosis through lysosomal damage caused by the production of large amounts of
reactive oxygen species (ROS) through the localization of the P-gp protein.

Polyamines play an important role in tumor growth, progression and migration and
have also been found to be highly expressed in tumor cells. Targeting polyamines to block
their metabolism has become one of the popular anticancer drug targets [71]. Summarizing
the previous studies, Liu’s group [72] has designed polyamine-Pt(IV) prodrug 35 (Figure 6),
which can effectively inhibit tumor growth and reverse resistance to cisplatin. In addi-
tion to targeting DNA, complex 35 can also alter the high-polyamine environment and
inhibit tumor cell growth by upregulating SSAT and PAO and downregulating putrescine,
spermine and spermidine concentrations.

5. Activation of Pt-Based Prodrugs via Thermal/Invisible Light Stimuli

Photothermal and photodynamic therapies have become a popular area of interest
in oncology treatment in recent years. Researchers have experimented with different
structures of photosensitive materials and nanomaterials and have demonstrated in a
variety of cancer cells and tissues that PDT and PTT are among the factors to be considered
in the antitumor process due to their uniquely targeted low toxicity and high stability.

5.1. NIR-Based Photothermal Therapy Using Pt-Based Drugs

Near-infrared fluorescence imaging (Figure 7) [73] has features such as deep penetra-
tion and low photodamage among current imaging techniques [74]. Therefore, combining
it with Pt-based drugs is a preferred choice for the preparation of novel photothermal
therapy drugs. Near-infrared nanodrug encapsulation is a new technique for reversing
tumor resistance to Pt-based drugs. Chengwei Zhang et al. [75] investigated the use of
melanin-like nanoparticles (MENPs) in combination with Pt(IV) to obtain targeted therapy
for prostate cancer. The authors found that the nanomaterials had appreciable biocom-
patibility, antitumor activity and conversion efficiency. The synergistic effect of the two
resulted in a significant improvement in the antitumor effect. Zhang’s group [76] proposed
a way to overcome cisplatin resistance through NIR photothermal therapy by means of a
prepared nanosystem F-Pt-NPS 36, 37 (Figure 8). The authors found that NIR laser-induced
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nanocomplexes could promote drug uptake while accelerating GSH depletion to activate
cisplatin; they also found that these nanocomplexes could increase cisplatin’s cross-linking
to DNA and inhibit DNA repair. In addition, they showed good tumor inhibition in vitro
and in vivo and the reversal of cisplatin resistance, suggesting an important idea of using
infrared light-induced mild heat therapy to address cascade resistance.

Furthermore, in order to improve drug targeting effect, Yiyun Cheng et al. [77] re-
ported a nanoparticle that has the anticancer activity of phytic acid (PA) while maintaining
the photothermal effect of Pt-based nanoparticles by using natural PA-modified Pt-based
nanoparticles with bone targeting properties combined with hydroxyapatite. Under NIR
light irradiation, the growth of bone tumors and tumor-associated osteolysis were ef-
fectively inhibited. Also to increase targeting, Lianshuai Gu et al. [78] synthesized folic
acid-modified cisplatin-loaded ICG lipid–polymer hybrid nanoparticles, FCINPS, known
to be FDA-approved near-infrared fluorescent dyes. Induced apoptosis and necrosis also
provide good support for tumor-targeted therapeutic nanopharmaceutical formulations.

Mao’s group [79] has developed a biotin-labeled Pt(IV) prodrug 38, 39 (Figure 8)
to address cisplatin resistance in tumor cells through mitochondrial targeting and pho-
tothermal therapy. Pt(IV)-NPs were able to enhance mitochondrial targeting to induce
maximal mitochondrial DNA damage and increase the intracellular accumulation of Pt,
while also reducing GSH levels and inhibiting DNA repair, with significant inhibitory
effects on A549cisR cells in the presence of targeted chemotherapeutic–photothermal
synergistic treatment.
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Figure 7. Mechanism of NIR-based photothermal therapy in Pt-based drugs. This structure has
both hydrophilic and hydrophobic ends, which is the structural basis module for this hybrid drug’s
self-assembling into nanoparticles, making the intracellular accumulation easier. Via NIR Irradiation,
this basic module will be degraded into 5 parts, which then target the nucleus and mitochondrion,
resulting in ROS enhancement and GSH reduction. In addition, there also exists mt DNA damage
and MMP decline in the mitochondrion.
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Figure 8. Structures of Pt-based prodrugs activated via thermal/invisible light stimuli. (36, 37)
The Zhang group obtained the prepared nanocomplexes by systematically combining P1 (36) with
DAP-F (37) and Pt. (38, 39) Pt(IV)-NPs are mainly composed of IR1780 (38) and Ad-Pt(IV)-PEG-biotin
(39). (40) The structure of prodrug. (41, 42, 43) CPNP-Fc/Pt consists mainly of DSPE-PEG500-NH2

(41), Pt(IV) prodrug (42) and CP (43). (44, 45, 46) (CAT)@Pt(IV)-liposome consisting of DSPE-Pt(IV)
(44), DSPE-PEG5K (45) and DPPC (46).

5.2. Pt-Based Drugs for Oxygen-Dependent Photodynamic Therapy

The hypoxic environment of solid tumors can limit the production of reactive oxygen species
(ROS) by photodynamic therapy, thereby limiting its effect. Dongbo Guo et al. were the first to
polymerize Pt(IV) complex precursor monomer (PPM) with 2-methacryloyloxyethyl phospho-
rylcholine (MPC) to form a nanoprecursor 40 (Figure 8) that could be reduced to Pt(II) under
light irradiation, demonstrating that high levels of ROS could be produced in the absence of
endogenous oxygen. The article also demonstrates that this structure has a long half-life and
high aggregation in the antitumor process and can downregulate the expression of multidrug
resistance-associated protein 1 (MRP1), thereby reversing the drug resistance problem in tumor
cells. Chemodynamic therapy relies on the involvement of transition metal ions and endoge-
nous H2O2, but low levels of endogenous H2O2 can also affect the efficacy of CDT [80]. The
Ju group [81] developed CPNP-Fc/Pt 41, 42, 43 (Figure 8), a nanoparticle used to increase local
oxygen levels and enhance the effects of CDT. The article illustrates that the main mechanism is
that the release of Pt(II) from glutathione simultaneously triggers a cascade reaction of NADPH
oxidase and superoxide dismutase to increase H2O2 levels to ensure an effective supply of H2O2,
showing good CDT effects and inhibiting tumor growth. Zhuang Liu et al. [82] encapsulated CAT
in Pt(IV) phospholipids to make CAT@Pt(IV)-liposome 44, 45, 46 (Figure 8) for enhancing the
effect of tumor chemotherapy. The authors found that the use of this liposome resulted in good
protection of enzymatic activity and triggered the breakdown of H2O2 in tumor cells to alleviate
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hypoxia in the environment, with good synergistic effects, providing a novel option for the clinical
treatment of tumors. Similarly, to enhance the H2O2 generation of ROS to diminish cancer cells,
some scholars used endogenous H2O2 for the conversion of reactive oxygen species to enhance
the antitumor effect by using Fenton chemistry [83]. In this paper, an organic nanomedicine PTCG
NPs was designed using EGCG, a phenolic Pt(IV) prodrug (Pt-OH) and a polyphenol-modified
block copolymer (PEG-b-PPOH) as a backbone to achieve efficient drug release after cellular
internalization. After being activated by the release, the cisplatin in the nanomedicine acts as
an artificial enzyme involved in a cascade reaction to produce H2O2 for CDT and catalyzes
the generation of highly toxic reactive oxygen species in the Fenton reaction to produce good
anticancer effects. In addition, the avoidance of toxic side effects of Pt-based drugs provides a
powerful strategy for cascade cancer therapy with nanomedicines.

6. Complexes with DNA Expression and Histone Post-Translation Depressants

Conventional Pt-based drugs achieve their antitumor effects primarily by acting on
DNA damage. However, tumor cells can also reduce DNA damage or repair DNA through
strategies such as translesion synthesis (TLS), nucleotide excision repair (NER), homologous
recombination (HR) and other pathways in addition to increasing exocytosis [84,85]. Tumor
cells can develop resistance to antitumor drugs through the repair of DNA damage [86].
While the effects of drug-resistant tumors of increasing accumulation in tumor cells and
acting on immune pathways to reverse tumor cell immune escape have been described
previously, this section focuses on the reduction of tumor cell resistance by blocking the
DNA repair process and inhibiting genetic materials.

6.1. Histone Acetylation (HDAC) Inhibitors to Reverse Drug Resistance in Tumor Cells

Post-translational modifications of histones are not only involved in dynamic pro-
cesses such as transcription and DNA repair in cells but are also associated with the
maintenance of chromatin stability. Alterations in histones can affect DNA repair, mitosis
and meiosis, and the inhibition of histones can be used to target DNA in tumor cells [87,88].
Therefore, histone acetylase inhibitors (HDACi) are novel anticancer drugs that inhibit
histone acetylation.

A series of HDACi-containing Pt(IV) prodrugs, 47, 48, 49 and 50 (Figure 9), were
designed and prepared by Zichen Xu et al. for multiple targeting of genomic DNA,
histone acetylase and PARP-1 [89]. The article illustrates the significant antiproliferative
activity of the prepared Pt(IV) prodrugs against cisplatin-resistant tumor cells. These
compounds mainly resulted in increased DNA damage in chromatin and inhibited the
repair process. Dan Gibson’s group prepared a series of double- and triple-acting Pt(IV)
analogs 51, 52 and 53 (Figure 9) based on the currently more effective Pt(IV) complex
satraplatin, cct-[Pt(NH3)(c-hexylamine)Cl2(OAc)2], in order to overcome satraplatin analog
drug resistance, most of which exhibited improved water solubility in the analogs [90,91].
They found that one of the triple-acting compounds, 51 (Figure 9), was active in all cell
lines, causing DNA damage to induce apoptosis. In addition, targeting HDAC and nuclear
DNA is a promising therapeutic strategy.
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Figure 9. Structures of complexes with DNA expression/histone post-translation related depres-
sants. (47, 48, 49, 50) Pt(IV) prodrug structure containing HDACi. (51, 52, 53) Three satraplatin
analogs designed by Dan Gibson’s group. (54, 55) A prodrug for the simultaneous activation of Pt
as well as the redox polymer of camptothecin. (55, 56) Structures of DDNPs (55) and SNNPs (56).
(57, 58) Two Pt(IV) prodrugs containing PARPi3-aminobenzamide (3-ABA) fragments. (59, 60) The
supramolecular combination chemotherapy system (DOX@PtC10-CP6A) was prepared from CP6A
(59) and Pt(IV) to obtain an amphiphilic aggregate (PtC10-CP6A) (60) which was then wrapped
in DOX. (61) Octahedral coordination of Pt(IV) predrugs. (63, 64) Components of dual drug co-
delivery systems.

6.2. DNA Expression Inhibitors of Various Levels to Enlighten Novel Modifications

Based on the shortcomings of existing nanomedicines, combined with the selective
cytotoxicity of camptothecin on cells with S-phase DNA, Qixian Chen’s group [92] proposed
the selective and simultaneous activation of Pt-based and camptothecin redox-reactive
polymeric predrugs in the cytoplasm 54, 55 (Figure 9), and these drugs are self-assembled
into a single nanoparticle by appropriate chemical methods. In the cytoplasm, multiple
predrugs are activated and released in close proximity to the drug targets to exert an
optimal therapeutic effect. The redox effect of the predrugs also depletes endogenous GSH
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and promotes greater sensitivity of tumor cells to chemotherapeutic agents. Hongtong
Lu and Shasha He et al. [93] designed DDNPs 56 (Figure 9) and SNNPs 57 (Figure 8) as
light-activated Pt-based synergistic chemotherapeutic dual-sensitive dual precursor drug
nanoparticles, which are photosensitive and can activate Pt(IV) to Pt(II) under UVA light
while producing a small amount of N3, which contributes to the lysosomal escape of DNNPs
to achieve better photoactivated chemotherapy. In addition, the acid-sensitive protein
phosphatase 2A inhibitor desmethyldeoxorubicin (DMC) in an acidic microenvironment
can block DNA repair pathways and reverse resistance to Pt-based drugs.

PARP inhibitors, the first clinically approved antitumor drugs that utilize synthetic
lethality, primarily target poly ADP-ribose polymerase [94]. This inhibitor can exert antitu-
mor effects by inhibiting reparation of DNA damage and promoting apoptosis in tumor
cells, and one of the reasons for resistance to CDDP is the enhanced DNA repair activity of
tumor cells [95,96]. Mauro Ravera’s group [97] combined the two structures and introduced
two Pt(IV) prodrugs 58, 59 (Figure 9) containing PARPi3-aminobenzamide (3-ABA) frag-
ments and found their therapeutic effect was superior to that of CDDP, and the mechanism
of action was found to be a combination of DNA damage by CDDP and inhibition of the
repair process by PARPi resulting in a potent antitumor effect.

6.3. Conjugations of Doxorubicin (DOX) and Pt-Based Drugs to Reduce Drug Resistance

DOX is an inhibitor of RNA and DNA synthesis in tumor cells. Chen’s group pre-
pared amphiphilic aggregates (PtC10-CP6A) using supramolecular carboxylated columnar
aromatics (CP6A) and Pt(IV) and encapsulated DOX in them to obtain a supramolecular
combination chemotherapy system (DOX@PtC10-CP6A) 60, 61 (Figure 9). The drug can be
selectively released at the specific pH of the TME and was found to be non-toxic to normal
cells. However, compared to CDDP and DOX, this drug not only inhibits tumor progres-
sion but also reduces the toxic effects of CDDP itself [98–100]. In addition, Tang’s group
assembled a synergistic drug delivery system 62 (Figure 9) using Pt(IV) with octahedral
coordination and DOX, which has a dual blocking effect on nuclear and mitochondrial
genetic material, and the nanoshell enhances targeting and in vivo accumulation, thus
significantly improving the therapeutic effect compared to CDDP and DOX [101,102]. Fur-
thermore, Caiying Zhu and Jingjing Xiao et al. [103] developed a novel DOX and Pt(IV)
dual drug co-delivery system 63, 64 (Figure 9) using the amphiphilic block copolymer PCL-
b-p(OEGMA-co-AzPMA) as a nanoscale drug carrier. The substance showed a 2-5-fold
increase in killing effect compared to CDDP and DOX in HeLa cells and A357 cells.

7. Conclusions and Outlook

CDDP, oxaliplatin and a series of Pt(II) class metallo-antitumor drugs have many limi-
tations in clinical use, including low selectivity, poor accumulation in vivo, drug resistance
and adverse effects caused by long-term use. Pt(IV) drugs have become a hot topic of
research in recent years as modifying their axial position can reduce these problems. At
present, the main research directions for Pt drugs are structural modifications and the selec-
tion of nanomaterials, and considerable progress has been made. By combining them with
structures with different properties, scholars have achieved significant results in improving
the efficiency of antitumor agents, reversing the resistance of tumor cells to Pt drugs and
reducing adverse effects. Photodynamic and photothermal therapies, which are widely
used in nanomaterials and other areas, also offer many options to improve the targeting
and biostability of Pt-based drugs. Meanwhile, the development of Pt-based drugs is not
limited to chemotherapy, as researchers are focusing on the synergistic effects of a combina-
tion of immunotherapies in order to achieve multiple targets on tumor cells and tissues and
to explore the possibility of a comprehensive inhibition of tumor progression. Although
tumorigenesis is a combination of many factors, in general, Pt-based drugs still have a
large potential for development in oncology treatment. Future development of Pt-based
drugs should focus on synergistic multi-treatment, with immunotherapy providing strong
support for antitumor chemotherapy, effective modulation of the tumor immune microen-
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vironment, mobilization of specific immune cells, etc., to achieve key tumor cell-targeting
effects and reduce the incidence of drug resistance and adverse reactions to Pt-based drugs.
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Nomenclature

GSH glutathione
ASA ascorbic acid
HIF-1 hypoxia-inducible factor-1
LA lactobionic acid
EGFR epidermal growth factor receptor
CRGD carboplatin
TDO tryptophan 2,3-dioxygenase
TAM tumor-associated macrophage
TME tumor immune microenvironment
ADCC antibody-dependent cell-mediated cytotoxicity
TREM2 trigger receptors expressed on myeloid cells 2
MDSC myeloid-derived suppressor cell
ROS reactive oxygen species
MENPs melanin-like nanoparticles
PA phytic acid
PPM precursor monomer
LNP liposome nanoparticle
TLS translesion synthesis
NER nucleotide excision repair
HR homologous recombination
HDAC histone acetylation
HDACi histone acetylase inhibitors
PARP-1 poly ADP-ribose polymerase-1
DOX doxorubicin
CP6A carboxylated columnar aromatics
3-ABA 3-aminobenzamide
PDT photodynamic therapy
PTT photothermal therapy
CDT chemodynamic therapy
UVA ultraviolet-A
MRP1 multidrug resistance-associated protein 1
MPC 2-methacryloyloxyethyl phosphorylcholine
MPS mononuclear phagocytic system
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