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Abstract: Nanopowders of strontium fluoroapatite Sr5(PO4)3F (SFAP) were synthesized using a
co-precipitation method with different starting strontium compounds. Based on the data of XRD,
BET and SEM measurements, the nitrate-derived powders were chosen as the least agglomerated.
The SFAP powders were hot pressed at 1000 ◦C to ceramic samples with a transmittance up to 82% in
a mid-IR region. The designed approach was adopted to prepare 2 mol % of Er-doped SFAP powders
and ceramics. It was established that Er:SFAP ceramics have luminescence in the range of 1.5–1.7 µm,
the intensity of which increases with the calcination temperature of the initial powders.
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1. Introduction

Single crystals with an apatite structure doped with rare earth ions are known as laser
materials with characteristics at the level of the best laser crystals and glasses [1]. The
possibility of lasing in these media was found in the early 1970s [2]. However, the structural
and luminescent properties of the most commonly used crystals of strontium fluorapatite
Sr5(PO4)3F (SFAP) doped with ytterbium ions were studied towards the end of the 1990s
and beginning of the 2000s, at which point, more features of laser diode excitation sources
were realized [3–6]. In [4], Schaffers stated that the large emission and absorption cross
sections of Yb3+ ions in the SFAP matrix (6.0 × 1020 and 10 × 1020 cm2, respectively) make
diode pumping more cost-feasible for large laser systems, due to the reduced requirement
on the diode brightness. Moreover, a long luminescence lifetime (1.14 msec), high damage
threshold (≥50 J/cm2) and low losses (<10−3 cm−1) make Yb:SFAP an attractive material
for the creation of novel active media for lasers with a high repetition rate.

Since SFAP (also known as stronadelphite) has a non-cubic anisotropic crystal structure,
its application as a laser material in the form of polycrystals (e.g., ceramics) is limited due
to birefringence-induced losses of the transmitted light. At the same time, the higher
mechanical properties of ceramics compared to single crystals, the possibility of increasing
the concentration of the active additive and creating gradient-doped materials can lead to
significant progress in the laser properties of solid-state laser materials, as has been shown
for other laser ceramics, such as yttrium aluminum garnet [7], zinc selenide [8], calcium
and strontium fluorides [9].

In this regard, attempts are being made to fabricate non-cubic optical ceramics with
the fluorapatite structure. Akiyama et al. sintered laser-grade ytterbium doped calcium
fluorapatite ceramics (Yb:FAP) with control of microdomain orientation [10,11]. In these
studies, slip casting in a 1.4 T magnetic field and subsequent heat treatments in a hot
isostatic press at 1600 ◦C were used. The orientation of the ceramic grains in one direction
significantly reduced scattering losses.
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Another approach to overcome scattering is to limit the grain size growth at the stage
of ceramic sintering to a level of no more than ~100 nm. When the operating wavelengths
are much higher than the grain sizes, the anisotropy of the material has no significant effect
on the radiation propagation. However, achieving 100% ceramic density while maintaining
such a small grain size is a challenging task. The diffusion processes responsible for
pore healing and grain boundary migration occur simultaneously. Precise control of
the characteristics of the powder and its subsequent consolidation method is necessary
to achieve the desired ceramic structure. The main approach to the synthesis of FAP
nanopowders is co-precipitation from solutions [12–15]. Consolidation methods with the
application of external pressure, such as hot pressing [16–18] or spark plasma sintering
(SPS) [14,19,20], are used to give additional sintering force while lowering the temperature
and/or densification time to reduce the grain growth rate. Thus, Furuse et al. [19,20]
obtained ceramic samples of fluorapatite and strontium–fluorapatite doped with ytterbium
and neodymium ions (Yb:FAP and Nd:SFAP), and achieved laser generation with a slope
efficiency of 4.6% and 6.5%, respectively. The same authors argued that Er:FAP ceramics
can provide better performance for industrial and medical applications in the near-infrared
because the scattering coefficient decreases with an increasing wavelength of generation.

To date, a series of Er3+-doped ceramic laser media, such as YAG [21], rare earth
sesquioxides [22], calcium and strontium fluorides [23–25], has been produced for the
1–3 µm spectral region. Such materials have attracted a great deal of attention because of
their potential as a component of eye-safe devices, optical fiber telecommunication, security
system, LIDAR, etc. However, we have not found any information on the preparation of
FAP or SFAP ceramics doped with erbium ions.

The aim of this study is to establish the conditions for sintering of transparent stron-
tium fluorapatite ceramics and to evaluate the possibility of creating luminescent materials
based on SFAP doped with erbium ions.

2. Results and Discussion
2.1. Effect of Strontium Source on the Morphology of SFAP Powders

It is known that the choice of the starting compound can have a significant effect on
the morphology and structure of the precipitation product. To assess this effect, we chose
strontium chloride, acetate and nitrate.

According to the XRD patterns shown in Figure 1, the synthesis product, regardless of
the type of starting material, is a strontium fluorapatite phase; no reflections of impurity
phases are observed.
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Figure 2 shows SEM micrographs of the obtained powders. In all cases, the powders
consist of primary rounded particles with a size of 50–100 nm. SFAP powders synthesized
from strontium acetate and nitrate appear to be less agglomerated compared to those
obtained from strontium chloride. Presumably, complex anions (acetate, nitrate) shield
particles more strongly when they are adsorbed on the surface of precipitated particles.
Moreover, acetate and nitrate fragments during oxidative annealing in air give several gas
molecules (CO2–H2O, NO2–H2O); therefore, the powder agglomeration becomes looser.

Inorganics 2023, 11, 57 3 of 13 
 

 
Figure 1. X-ray diffraction patterns of SFAP powders obtained with (a) acetate, (b) chloride, and (c) 
nitrate precursors. Vertical dashes—theoretical reflections for SFAP (PDF# 50-1744). 

To quantify the agglomeration degree of the powders, the so-called agglomeration co-
efficient (n) of particles was calculated from the formula [26] using the BET and XRD data: 

n = (DBET/DXRD) (1)

where DBET is the average equivalent particle diameter corresponding to the measured 
specific surface area SBET, and DXRD is the calculated crystallite size based on the broad-
ening of reflections in the X-ray diffraction patterns. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. SEM images of SFAP powders obtained with (a) acetate, (b) chloride and (c) nitrate pre-
cursors. 

Figure 2. SEM images of SFAP powders obtained with (a) acetate, (b) chloride and (c) nitrate precursors.

To quantify the agglomeration degree of the powders, the so-called agglomeration
coefficient (n) of particles was calculated from the formula [26] using the BET and XRD data:

n = (DBET/DXRD) (1)

where DBET is the average equivalent particle diameter corresponding to the measured spe-
cific surface area SBET, and DXRD is the calculated crystallite size based on the broadening
of reflections in the X-ray diffraction patterns.

As can be seen from Table 1, the synthesized powders have almost identical crystallite
sizes, while the dispersity increases from the chloride precursor to the nitrate one, which
corresponds to the data of scanning electron microscopy. The specific surface area of the
nitrate-derived powder is in good agreement with the data given in [12]. The difference of
the agglomeration coefficient is mainly determined by the DBET values. Since the minimum
n value is observed for the nitrate-derived powders, they were selected for further study.
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Table 1. Characteristics of SFAP powders derived from different precursors. SBET—specific surface area,
DBET—average equivalent particle diameter, DXRD—crystallite size, n—agglomeration coefficient.

Precursor SBET DBET DXRD n

Strontium nitrate 15.1 96 30 3.2
Strontium acetate 10.9 132 35 3.8

Strontium chloride 8.5 170 33 5.1

2.2. Effect of Calcination Temperature on the Phase Composition of the SFAP Powders

Figure 3 shows the diffraction patterns of the obtained powders calcined at different
temperatures. It was found that the characteristic diffraction peaks in the 2θ range of
20–60 degrees correspond to the hexagonal Sr5(PO4)3F structure (PDF# 50-1744) belonging
to the P63/m space group (176). With an increase in the annealing temperature, the
recrystallization of powders is observed, accompanied by an increase in the XRD peak
intensities and a decrease in their widths. Secondary phase impurities were not detected at
either intermediate or maximum temperatures.
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Figure 3. X-ray diffraction patterns of strontium nitrate-derived SFAP powders calcined at different
temperatures. Vertical dashes—theoretical reflections for SFAP (PDF# 50-1744).

Based on the diffraction patterns, the unit cell parameters of the obtained crystalline
phase were calculated. As can be seen from Table 2, the a and c values coincide within the
confidence interval of the measurements and do not depend on calcination temperature.
Using these values, the theoretical density of the material was found to be ~4.14 g/cm3,
which is in good agreement with the previously published data [27].

Table 2. Parameters of the crystal structure of SFAP powders calcined at different temperatures.

Temperature, ◦C a, Å c, Å V, Å ρ, g/cm3

400 9.71(2) 7.27(2) 593(4) 4.15(3)
500 9.71(3) 7.28(2) 595(4) 4.14(3)
600 9.71(2) 7.28(2) 595(4) 4.14(3)
700 9.72(2) 7.28(2) 596(3) 4.13(3)
800 9.71(2) 7.283(14) 595(2) 4.14(3)
900 9.715(10) 7.283(7) 595.3(13) 4.14(3)

2.3. Microstructure and Optical Properties of SFAP Ceramics

The SFAP powders calcined at 700 ◦C were chosen for ceramics sintering. Hot pressing
was carried out in the temperature range of 900–1300 ◦C, which is the most often used to
obtain fluorapatite ceramics [16–18].
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The sample obtained at 900 ◦C was completely opaque, and the transmission spectra
of the rest of the obtained ceramic samples in the visible and IR spectral regions are shown
in Figure 4.

Inorganics 2023, 11, 57 5 of 13 
 

2.3. Microstructure and Optical Properties of SFAP Ceramics 
The SFAP powders calcined at 700 °C were chosen for ceramics sintering. Hot 

pressing was carried out in the temperature range of 900–1300 °C, which is the most often 
used to obtain fluorapatite ceramics [16–18]. 

The sample obtained at 900 °C was completely opaque, and the transmission spectra 
of the rest of the obtained ceramic samples in the visible and IR spectral regions are 
shown in Figure 4. 

 
 

 
 

(a) (b) 

Figure 4. Transmission spectra of SFAP ceramics obtained by hot pressing at different tempera-
tures in the (a) visible and (b) IR regions. 

The short and long edges of the transmission window correspond to the wave-
lengths of 0.2 and ~8 μm. In the mid-IR range the transmission is 82%, which is one of the 
best results to date. A number of absorption bands are observed in the IR region. A sharp 
peak at 2.8 μm can be attributed to residual hydroxyl groups, which are able to isotrop-
ically replace the fluorine ion in the fluorapatite matrix; it corresponds to the spectrum 
published in [14,28,29]. According to [28,29], bands with a maximum at 2.80, 3.24, 3.34, 
3.42, 5.71 and 5.84 μm could also be associated with the stretching vibrations of hydroxyl 
groups, while the absorption bands at 6.17 and 6.26 μm are associated with the bending 
vibrations of the hydroxyl groups. Intense bands in the region of 5 μm could be explained 
by the bending vibrations of PO4 groups [28,29]. The incorporation of carbonate groups 
causes a broad absorption band at a 6.5–7 μm spectral range, which is due to the re-
placement of phosphate (type-B substitution) and in the apatite channels (A-type sub-
stitution) in the apatite structure [30]. The removal of these kinds of impurities is possible 
with the use of equipment capable of maintaining a higher level of vacuum. Closer to 8 
μm, transparency is limited by a wide band of the matrix compounds, such as the 
asymmetric stretching vibrations (9.81 μm) and bending vibrations (10.58, 11.41 μm) of 
the P–O phosphate group [30].  

The sample sintered at 1000 °C has the highest transmission over the entire range; 
apparently, this is due to the lowest scattering losses. This assumption is confirmed by 
the results of studying the microstructure of the obtained samples. 

Figure 5 shows micrographs of the fractured surface of the ceramics sintered at dif-
ferent temperatures. It can be seen that the lowest sintering temperature does not ensure 
pores eliminating, while other samples have a dense microstructure. This agrees with the 
measured relative density of ceramics. When sintered at 900 °C, the SFAP density was 
~97%, while for the samples sintered at 1000–1300 degrees it exceeded 99.5%. The ce-
ramics obtained at 1000 °C show the average grain size of ~150 nm, which provides the 
best optical properties. 

Figure 4. Transmission spectra of SFAP ceramics obtained by hot pressing at different temperatures
in the (a) visible and (b) IR regions.

The short and long edges of the transmission window correspond to the wavelengths
of 0.2 and ~8 µm. In the mid-IR range the transmission is 82%, which is one of the best
results to date. A number of absorption bands are observed in the IR region. A sharp peak
at 2.8 µm can be attributed to residual hydroxyl groups, which are able to isotropically
replace the fluorine ion in the fluorapatite matrix; it corresponds to the spectrum published
in [14,28,29]. According to [28,29], bands with a maximum at 2.80, 3.24, 3.34, 3.42, 5.71 and
5.84 µm could also be associated with the stretching vibrations of hydroxyl groups, while
the absorption bands at 6.17 and 6.26 µm are associated with the bending vibrations of the
hydroxyl groups. Intense bands in the region of 5 µm could be explained by the bending
vibrations of PO4 groups [28,29]. The incorporation of carbonate groups causes a broad
absorption band at a 6.5–7 µm spectral range, which is due to the replacement of phosphate
(type-B substitution) and in the apatite channels (A-type substitution) in the apatite struc-
ture [30]. The removal of these kinds of impurities is possible with the use of equipment
capable of maintaining a higher level of vacuum. Closer to 8 µm, transparency is limited
by a wide band of the matrix compounds, such as the asymmetric stretching vibrations
(9.81 µm) and bending vibrations (10.58, 11.41 µm) of the P–O phosphate group [30].

The sample sintered at 1000 ◦C has the highest transmission over the entire range;
apparently, this is due to the lowest scattering losses. This assumption is confirmed by the
results of studying the microstructure of the obtained samples.

Figure 5 shows micrographs of the fractured surface of the ceramics sintered at different
temperatures. It can be seen that the lowest sintering temperature does not ensure pores
eliminating, while other samples have a dense microstructure. This agrees with the measured
relative density of ceramics. When sintered at 900 ◦C, the SFAP density was ~97%, while
for the samples sintered at 1000–1300 degrees it exceeded 99.5%. The ceramics obtained at
1000 ◦C show the average grain size of ~150 nm, which provides the best optical properties.

An increase in the sintering temperature leads to a significant growth in grains. Thus,
obtaining highly transparent SFAP ceramic samples should be carried out at temperatures
no higher than 1000 ◦C. Otherwise, even an ideally dense structure of enlarged grains will
cause radiation scattering.

Nevertheless, judging by the presence of scattering even in the best ceramic sample,
further selection of the sintering period or the use of more complex two-stage modes is
necessary to improve the microstructure of ceramics.
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2.4. Luminescence of Erbium Ions in the SFAP Matrix

The main efforts in the study of FAP and SFAP ceramics are currently focused on
obtaining materials doped with ytterbium and neodymium ions for the manufacture of
lasers in the 1 µm range. Doping with erbium ions was carried out only when obtaining
SFAP powders for the upconversion visualizers of IR radiation [31]. No data are given for
the production of optical ceramics.

It was found that sintering under conditions similar to undoped SFAP does not
lead to transparent samples; moreover, the Er:SFAP luminescence appears only in the
region of 1.6 µm, and its intensity is extremely low. It turned out that it is possible
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to increase the luminescence intensity by sintering Er:SFAP powders calcined at higher
temperatures. However, the transmission of the ceramic increases insignificantly in this
case. The luminescence spectra of 2% Er:SFAP ceramics, produced from powders calcined
at different temperatures, in the wavelength range of 1.45–1.65 µm corresponding to the
4I13/2 → 4I15/2 transition, are shown in Figure 6. As can be seen, the IR luminescence
intensity rises when increasing the temperature at which the samples are calcined.
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This fact correlates with the results obtained in [31,32], where it was found that
ErYb:SFAP powders do not exhibit luminescence if their calcination temperature does not
exceed 850–900 ◦C. The authors attribute this to the point lattice defects that arise due to the
lack of compensation for the valence of triply-charged rare-earth ions in the SFAP matrix.
Calcination at higher temperatures leads to the substitution of a part of the fluoride ions by
oxygen, which equalizes the ion balance and promotes luminescence.

The presence of residual OH-groups will also affect the luminescence. In addition
to the resonant absorption of the luminescence of erbium ions in the region of 3 µm,
hydroxyl groups can act as acceptors and significantly reduce the intensity and lifetime of
luminescence, as it was shown, for example, for Yb:Sc2O3 [33]. Moreover, OH-groups can
contribute to the elimination of fluorine via OH− + F− → O2− + HF reaction.

Figure 7a shows the luminescence decay kinetics of Er:SFAP ceramics hot pressed with
powders calcined at different temperatures. At a low temperature (700 ◦C), the process
can be divided into two stages with rapid decay in the beginning. With an increase in
temperature, the dependence becomes more linear. This fact can be attributed to a lower
impurities content (such as hydroxyl groups) and higher crystallinity. The curve of the
sample calcined at 1000 ◦C is approximated by a single exponent, as shown in Figure 7b.
The lifetime of Er3+ ions calculated from these data amounted to 5 ms. The resulting value
is ~2 times lower than that measured for single-crystal Er:SFAP [34]. Apparently, this
difference is due to a significantly higher content of erbium −2% vs. 0.15% for monocrystal.
Compared with previously studied materials, we can say that the obtained value is on the
same level with such known media as scandium oxide and lithium niobate [35].

When discussing the reasons for the opacity of Er:SFAP ceramics, we made an as-
sumption about the formation of a secondary phase of the rare earth element. For this
purpose, the X-ray diffraction patterns of ceramics obtained from the powders calcined
from 700 to 1000 ◦C were recorded. As can be seen from Figure 8, calcination at 700 ◦C
does not lead to the formation of a secondary phase, while at 1000 ◦C a small peak with
a maximum of 33.36 degrees appears, which can be identified as one of the most intense
peaks for Sr3Er(PO4)3 (PDF card # 33-1328). Thus, Er:SFAP is a promising material for
the manufacture of eye-safe laser materials; however, it is necessary to carefully optimize
the temperature and the powder processing environment to prevent decomposition of the
SFAP phase.
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3. Materials and Methods

To obtain strontium fluorapatite (SFAP) nanopowders doped with erbium ions, stron-
tium carbonate SrCO3 (II) (99.9%, Khimreaktiv, N. Novgorod, Russia); ammonium hy-
drogen phosphate (NH4)2HPO4 (99.5%, Khimreaktiv); ammonium fluoride NH4F (99.9%,
Vekton); nitric acid HNO3 (99.999%, Khimreaktiv); hydrochloric acid HCl (99.999%, Khim-
reaktiv); acetic acid CH3COOH (99.9%, Khimreaktiv); ammonium hydroxide NH4OH
(99.999%, Khimreaktiv); and erbium oxide Er2O3 (99.999%, Polirit, Moscow, Russia) were
used as starting materials.

Figure 9 shows a flowchart for the synthesis of SFAP powders. First, strontium
carbonate was dissolved in nitric, hydrochloric or acetic acid to obtain 0.3 M solutions of
strontium nitrate, chloride and acetate, respectively. To eliminate residual carbonate ions,
the solution was degassed by boiling for 2 h on a magnetic stirrer.

Nanopowders of Sr5(PO4)3F were obtained by direct-strike precipitation. To a cationic
solution containing 0.035 mol of strontium ions, a solution of a precipitant containing
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0.021 mol of ammonium hydrogen phosphate, 0.007 mol of ammonium fluoride and 0.021 mol
of ammonium hydroxide was added dropwise with a 2 mL/min rate under constant stirring.

The corresponding scheme of the proceeding chemical reactions could be written
as follows:

5Sr(NO3)2 + 3(NH4)2HPO4 + NH4F +3NH4OH→ Sr5(PO4)3F + 10NH4NO3 + 3H2O

5SrCl2 + 3(NH4)2HPO4 + NH4F +3NH4OH→ Sr5(PO4)3F + 10NH4Cl + 3H2O

5Sr(CH3COO)2 + 3(NH4)2HPO4 + NH4F +3NH4OH→ Sr5(PO4)3F + 20CH3COONH4 + 6H2O
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Figure 9. Flowchart for the synthesis of SFAP powders.

To obtain the powder of a required phase and at a minimum agglomeration degree,
in accordance with the literature data [12], the pH of the medium was maintained with
ammonium hydroxide in the range of 7–8. This is crucial since at lower pH values, the
formation of strontium fluoride could occur, and in an alkaline solution, hydroxyl groups
replace fluorine ions more intensively. The resulting suspension was kept under constant
stirring for 24 h. Then, the precipitates were washed three times with deionized water and
three times with anhydrous isopropyl alcohol and dried in a vacuum oven at 60 ◦C for
5 h at a residual pressure of 0.5 bar. After that, the precipitates were calcined in a muffle
furnace at temperatures from 400 to 1100 ◦C in a muffle furnace.
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To obtain Er-doped SFAP powders, the initial erbium oxide was dissolved in a stoi-
chiometric amount of nitric acid, and the resulting solution was added to the solution of
strontium ions. The mole fraction of the dopant was 2 mol %.

The morphology and structural properties of the synthesized nanopowders were
studied using the methods of electron microscopy, X-ray diffraction analysis (XRD) and
BET adsorption-structural analysis. This made it possible to correctly assess the main
characteristics of the powders—dispersity and phase composition, and the degree of
agglomeration.

The XRD analysis of the nanopowders was carried out on an XRD-6000 diffractometer
(Shimadzu, Japan) equipped with a graphite monochromator (CuKα radiation λ = 1.54178 Å)
in the 2θ range of 15◦–65◦. The scanning step for 2θ was 0.02◦, the scanning rate was 2◦/min.
The ICDD database was used in the analysis.

The average crystallite size of DXRD was evaluated using the Scherrer equation:
DXRD = 0.9λ/(βcosθ), where λ is the CuKα wavelength and β is the full width at half
maximum of the diffraction peak at the Bragg angle θ.

The cell parameters were calculated by the Rietveld method using the «Diffrac.TOPAS»
software (Bruker, Germany) with the cif-file from the ICSD database (2016), deposition
No. 95737. Theoretical density was calculated from the results of the XRD analysis using
the formula:

ρXRD =
Z·M·1.66

V
(2)

where Z is the number of structural units in the unit cell, M—average molar mass, V—the
unit cell volume.

The morphology of the powders and the microstructure of the sintered ceramics were
studied on an Auriga CrossBeam scanning electron microscope (Carl Zeiss, Germany) at
an accelerating beam voltage of 3 keV with a secondary electron detector.

The specific surface area (SBET) of the SFAP nanopowders was measured using the
Brunauer–Emmett–Teller (BET) method on a Sorbi-MS (Meta, Russia) instrument. The
measurements were carried out on powders calcined at 800 ◦C. The average particle
diameter (DBET) was calculated based on the assumption of its spherical shape, according
to the equation:

DBET =
6

ρ×SBET
(3)

where ρ is the theoretical density of the material, calculated from the X-ray diffraction patterns.
The powders were consolidated by hot pressing in a vacuum in a graphite mold

(Ø 15 mm), at maximum temperatures of 1000–1300 ◦C and a uniaxial pressure of 50 MPa,
on homemade equipment. The soaking time at maximum temperature was set for 10 min.
Prior to sintering, the powder was compacted in a stainless steel mold at a pressure of
~10 MPa. The compacted material was isolated with graphite paper in order to reduce the
contamination effect of the equipment and to minimize the adhesion of the ceramic sample
to the surface of the punch. Heating was carried out with the use of graphite heaters; the
residual pressure in the chamber was not more than 10 Pa.

The obtained ceramic samples were ground and polished on both sides to a thickness of
0.5 mm using diamond slurry. The relative density of the ceramic samples was determined
by hydrostatic weighing in water. The optical transmission spectra of the ceramics in the
visible and IR ranges were measured using an SF-2000 spectrophotometer (LOMO, Russia)
(190–1100 nm) and FT-801 IR Fourier spectrometer (SIMEX, Russia).

The luminescence of the SFAP ceramic samples doped with erbium ions was excited by
a laser diode at a wavelength of 975 nm, and the spectra were recorded using the SOLAR TII
S150-2 spectrometer. The luminescence spectra of the Er:SFAP powders were measured using
an automated setup based on the SOLAR M833 monochromator and the SRS SR830 lock-in
amplifier, under excitation of the 975 nm diode laser. Infrared luminescence was recorded
using the Thorlabs PDA30G photodetector equipped with silicon and germanium filters.
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The luminescence decay of Er3+ ions in the range of 1.55 µm was studied upon
excitation by laser pulses with a fall time of about 10 µs. The dependence was approximated
by the exponent decay function: y = A1·exp(−x/t1).

4. Conclusions

1. The effect of a strontium source on the morphological properties of SFAP powders
was studied; it was established that the powders obtained using strontium nitrate have the
lowest agglomeration coefficient.

2. The influence of the calcination temperature on the parameters of the crystal
structure of SFAP powders was determined. Sufficient recrystallization was observed while
the unit cell parameters do not depend on temperature.

3. It was shown that hot pressing of the obtained powders at a temperature of 1000 ◦C
and an external pressure of 50 MPa makes it possible to form a non-porous microstructure
with a characteristic grain size of ~150 nm. This ensures the transmission of ceramics in
the visible and IR ranges; however, the transmission spectra contain a large number of
impurity absorption bands.

4. The introduction of an active additive of erbium oxide in the amount of 2 mol %
leads to the formation of a secondary phase at annealing temperatures above 900 ◦C, which
limits the transmission of Er:SFAP ceramics. At the same time, when the resulting ceramics
are pumped with a diode laser at 975 nm, intense luminescence is observed in the region of
1.5–1.7 µm.
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