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Abstract: Metallacycles and metallacages constitute a class of coordination compounds composed of
metal ions and organic ligands. Because of their precise stoichiometry, the flexibility and viability
of design, metallacycles and metallacages have attracted considerable attention as supramolecular
assemblies. Various two-dimensional polygons, three-dimensional polyhedra, and other nanoscale
materials have been constructed and applied. The highly diverse structures, sizes, and shapes endow
metallacycles and metallacages with unique physical and chemical properties and make them suitable
for various applications such as encapsulation, separation, catalysis, and biological science. Herein,
we review the recent developments in various metallacycles and metallacages in different fields. The
text highlights biomedical applications involving molecular recognition and binding, antibacterial
activity, and especially cancer diagnosis and treatment, including imaging, chemotherapy, PDT,
and PTT.

Keywords: metallacycles; metallacages; biomedical applications; anticancer

1. Introduction

Metallacycles and metallacages are members of a class of metal organic complexes
(MOCs) that are accessed through coordination-driven self-assembly [1–4]. The bonding
between metal and ligand, which serves as the driving force for assembly, promotes the
formation of two-dimensional polygons, three-dimensional polyhedra, and other nanoscale
materials [5–7]. Different kinds of organic ligands can be used as building blocks to
prepare metal organic complexes, such as bis-pyridyl, ter-pyridyl, and heterotopic ligands.
Recently, researchers have prepared many types of metallacycles and metallacages with
different shapes and sizes, such as triangles [8–10], rectangles [11], hexagons [12–14],
trigonal prisms [15], hexagonal prisms [16,17], and cubes [18,19], in which the overall
performance can be designed to achieve interesting properties and functions through
the interaction between metal centers and ligands. For example, tetraphenylethylene
(TPE), boron-dipyrromethene (BODIPY), and porphyrin have been employed to endow
fluorescent and imaging abilities. Significant progress has been made in the development of
Pt- and Pd-based metallacycles and metallacages due to the efforts of Stang, Fujita, and other
groups. In addition, other metal centers, such as Ru [20–22], Fe [23,24], Ir [25,26], Zn [27],
Ni [28], and Co [29,30], can also be introduced into various metallacycles and metallacages.

Metallacycles and metallacages have attracted considerable scientific interest because
of their advantages of well-organized architectures and tunable sizes and their unique
structure and excellent application prospects [13], including guest recognition [31], en-
capsulation [32], separation [33], catalysis [29], sensing [34], drug delivery [18], etc. With
increased structural complexity and novel designs of metal acceptors and ligand donors,
biological studies related to metallacycles and metallacages have been widely carried out,
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with these complexes being used as anticancer agents, drug carriers, and photosensitizers
in chemotherapeutic or phototherapeutic treatment. Multiple functional systems involving
metallacycles and metallacages can also be constructed to reduce biological toxicity and
side effects and enhance enrichment in tumors via active or passive target transport; this
strategy is the same as that used for nanodrug delivery systems [35,36].

In this review, a number of metallacycles and metallacages based on different metal
centers are introduced. More importantly, we present recent developments in different
fields, with a focus on biological applications.

2. Applications of Metallacycles and Metallacages
2.1. Encapsulation and Separation

With well-defined shapes and cavities, host-guest inclusion complexes can be formed
through weak interactions, which have attracted the attention of scientists in the field of
supramolecular chemistry, and numerous systems have been developed to investigate
the encapsulation and separation of various guests. To realize the recognition process,
it is necessary to maintain a relatively short distance between the guest and the host
molecule, which requires matching their size and shape. In this regard, metallacycles and
metallacages formed by the self-assembly of metal ions and organic ligands may provide
obvious advantages for tunable structures and sizes.

The anion encapsulation and separation ability of metallacages open up future applica-
tions in extraction and recovery. Nitschke and coworkers reported a Co12L6 cuboctahedron
metallacage M1 (Figure 1a) that is able to cooperatively bind neutral guests and anions [37].
They also prepared an azaphosphatrane-functionalized Fe4L4 tetrahedron metallacage
M2 and investigated the hydrogen-bond donating ability of +P-H through anion recogni-
tion [38]. Based on the strong electrostatic driving force, the affinity of the hydrogen bond
donor, and its good solubility and flexibility, M2 can encapsulate anions within the volume
range of 35–219 Å3 inside the cavity. In subsequent work, researchers reported that M2
was able to extract equimolar amounts of ReO4

- and TcO4
- from water into nitromethane

(Figure 1b) [39]. This work demonstrated the feasibility of metallacages for two-phase ex-
traction. Fujita’s group constructed a trinuclear Ir(III)-based metallacage M3 that contained
three adaptive binding pockets on its rim and was capable of recognizing anions. Anions
were recognized and bound on the rim instead of being encapsulated into the cavity [25].

It is necessary to develop selective confinement technology for rare earth metal ions.
Fujita and coworkers reported a cationic octahedral metallacage M4, which consisted of
PdII coordination blocks and tridentate electron-deficient ligands. The cavity of M4 can
selectively isolate rare earth metal ions (La3+-Eu3+) under the action of tripodal anionic
caps in a solution state, in which the hydrates are recognized in the isolated space [40].
Benefiting from the cap-like counteranions in the cage’s portals, early lanthanoid(III) ions
could be selectively encapsulated into the metallacages from a mixture of two different
metal ions via electrostatic interactions, as confirmed by the visualization of competitive
dye inclusion.

The cavities of metallacages have also been used for selective molecular separation.
Systems have been established to recognize different kinds of guest molecules, including
reactive molecules and intermediates. Due to the quite small windows, rhombic dodecahe-
dral metallacages can enclose small molecules. Li described that the Ni-imidazolate Ni14L24
metallacage M5 was able to selectively encapsulate CO2 molecules among several small gas
molecules in both solution and the solid state (Figure 1c) [41]. The CO2 molecules could be
encapsulated and imprisoned into the cavities under relatively high pressure or supercriti-
cal conditions but could not escape from the cages freely. Yuan generated homochiral Zn3L2
metallacage M6 and explored its application in gas chromatographic separations [33]. The
manufactured capillary column coated by M6 showed noteworthy chirality recognition and
separation of multiple analytes, including polycyclic aromatic hydrocarbons, n-alkanes,
racemates, and positional isomers. By stabilizing twisted amides into the cavity of Pd (II)
or Pt (II) octahedral metallacages, the reactivity toward hydrolysis under basic conditions



Inorganics 2023, 11, 54 3 of 21

through the noncovalent trapping of reactive guests was enhanced by Fujita [42]. As shown
in Figure 1d, the planar conformation of the amine group was distorted from planar to
twisted due to spatial constraints. As a result, the hydrolysis of amides was obviously
accelerated upon encapsulation. Recently, they fixed a 2-biphenylacetylene moiety into the
confined cavity of M4, in which a regioselective spirocyclization was performed in the pres-
ence of an electrophile [43]. In addition, a semiflexible metallacage M7 with a double wall
was also constructed [44], which was able to recognize and encapsulate tetrachloromethane
in CD3CN/D2O solution through the adaptive portal and expansionary cavity.

Larger molecules, such as fullerene [32,45–47] and proteins with a smaller size than
the inner diameter [48], have also been used to explore the encapsulation capability of
metallacages. A cubic metallacage M8 with electron-deficient walls was reported [49]. It
can selectively bind C60-indene or C60-anthracene, whereas encapsulation does not occur
in unfunctionalized fullerenes or monoadducts. A cuboctahedron metallacage and the
encapsulation of a single-molecule protein are shown in Figure 1e [48], which provides a
useful platform for protein-based nanobiotechnology in stabilization and drug delivery.
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Figure 1. Encapsulation and separation of metallacycles and metallacages. (a) The structures of
M1−M8. (b) Selective liquid-liquid extraction of ReO4

- from water into nitromethane in the existence
of other anions. (c) Schematic of the encapsulation of CO2 by M5 in solution. (d) Schematic of the
inclusion of diaryl amide within cage M4. (e) The encapsulation of a single-molecule protein. Adapted
with permission from refs. [25,33,37–42,44,49]. Copyright 2017, 2018, 2019 and 2020 American
Chemical Society; 2021 Royal Society of Chemistry; 2018 and 2022 Wiley-VCH; 2017, 2020 Nature
Publishing Group.
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2.2. Catalysis

Due to their designable structure, nanoscale sizes, and adjustable properties, metal-
lacycles and metallacages have excellent potential for application in catalysis and have
exhibited catalytic activities for multiple chemical reactions. Hydrogen evolution from the
catalysis of metallacages has been studied by different groups. Boomishankar and cowork-
ers used M9 (Figure 2a) as an efficient photocatalyst with the assistance of a photosensitizer
and sacrificial electron donor [30], in which the incorporated dye molecules were used
to construct a photocatalytic system. By combining with the catalytic sites of Pd2+ and
two encapsulated fluorescein molecules, heterogenized M10 was designed by Huang and
exhibited a high H2 production rate under visible light [50]. Liu developed a dual-function
photocatalyst based on hybrid materials [51], which were composed of metallacages M11
and TiO2. After loading ReP, the hybrid materials showed selective activity for the pho-
toreduction of CO2 to CO and produced syngas of CO/H2 in a CO2-saturated aqueous
solution of dimethylformamide (Figure 2b).

The water oxidation process based on ruthenium catalysis has attracted much attention
over the last few years [52,53]. Würthner reported a series of Ru-based trinuclear metalla-
cycles and investigated the impact of substituents [54], sizes [55,56], photosensitizers, and
reaction media [57] on the catalytic activity, which deliver excellent supramolecular cata-
lysts for the development of water oxidation. Li prepared a series of Co-based metallacages
that could drive water oxidation under visible light [58]. Based on the relationship between
the structure and activity, metallacage M12 containing Co-based active sites displayed
high catalytic activity and initial oxygen evolution rate. Other catalytic reactions related
to metallacycles and metallacages have also been explored. Stang’s group constructed
two chiral Pt-based metallacycles M13a and M13b and successfully used them for the
asymmetric addition reaction of various α,β-enones with styrylboronic acids in high yields
(40−98%) and with high enantioselectivities (87−96% ee) [9]. Su constructed an Fe4L6
metallacage, M14 [59], which was sufficiently stable under different pH conditions as well
as in redox processes. M14 not only acted as a catalyst for the dehydrogenation reaction but
also exhibited remarkable continuing and recycling performance. Su prepared metallacage
M15 by incorporating the metal complex Ir-6-(4-carboxy-phenyl)-nicotinic acid (Ir-ppyc)
into a Zr-based cage [60]. M15 showed a higher selectivity in converting CO2 reduction
under visible light irradiation than the classical metal-organic framework counterpart.

In addition to the above examples, many other metallacycles and metallacages can
exhibit excellent catalytic performance regarding different reactions, such as Michael addi-
tion reactions [61], the solvolysis of acetal [23], cascade reactions [27], oxygen reduction
electrocatalysis [62], and the Strecker reaction [63] among others [62,64,65].

2.3. Biomedical Applications
2.3.1. Drug Encapsulation and Delivery

As host-guest containers, metallacycles and metallacages exhibit fascinating potential
in drug delivery applications. Mukherjee and coworkers reported that the hydrophobic
cavity of M16 (Figure 3a) with large windows strong candidate for encapsulating and trans-
porting small molecule hydrophobic drugs such as curcumin in an aqueous solution [66]. In
addition to enhancing the solubility of curcumin, its inclusion in the cavity prevents it from
photodegrading. Mirkin constructed the allosterically regulated metallacage M17 [67]. The
asymmetric structure of the receptor was able to transform between a rigid cationic config-
uration and a flexible neutral configuration using a simple ion, which allowed β–estradiol
and dextromethorphan to be selectively bound and reversibly encapsulated into M17.
Nanoparticles based on metallacages were also designed for drug encapsulation and de-
livery. Figure 3b displays the fluorescein-conjugated fluorescein-Pt(IV) prodrug loaded
into M4 via host–guest interactions [68]. In addition, Therrien’s group has demonstrated
the enormous potential of Ru-based metallacages to transport guest molecules such as
photosensitizers to cells [69–71]. Research on metallacages as drug carriers was also in-
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vestigated, in which other small-molecule drugs, including 5-fluoracil and cisplatin, were
transported [72,73].
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Figure 2. Catalysis of metallacycles and metallacages. (a) The structures of M9−M15. (b) Histogram
of CO/H2 generation by ReP/TiO2-M11 in CO2-saturated DMF solutions with different water
contents for 5 h under visible light. Adapted with permission from refs. [9,30,50,51,58–60]. Copyright
2017, 2020, 2021, and 2022 American Chemical Society.

Metallacages that are capable of selectively binding two or more different guests
have tremendous advantages in numerous potential applications. In this regard, Crow-
ley designed a Pd2L4 multicavity tube-like metallacage M18 based on pentapyridyl and
hexapyridyl ligands [74]. With multiple discrete binding sites, it was exploited to selectively
bind two or more guest molecules (Figure 3c). Nitschke prepared triangular-prismatic
Ni(II)-based metallacages from two different ligands that were able to bind more than
twenty different drugs, natural products, and steroid derivatives within their prolate
cavity [75].
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Figure 3. Drug encapsulation and delivery of metallacycles and metallacages. (a) The structures of
M16−M18. (b) The nanoformulation of M4 for Pt drug delivery. (c) Selective binding of cisplatin
and triflation in cavities. Adapted with permission from refs. [66–68,74]. Copyright 2017 American
Chemical Society; 2018 Royal Society of Chemistry.

2.3.2. Biological Recognition and Sensing

The recognition and isolation of metallacycles and metallacages toward complex
biomolecules, including amino acids, sucrose, small molecule drugs, etc., make them po-
tential candidates for chemical sensing and biotechnology. Cui et al. synthesized three
chiral NH-functionalized fluorescent Zn-based metallacycles, M19a-c (Figure 4a) [31] and
demonstrated their high binding affinity and enantioselectivity toward small-molecule
pharmaceuticals (L-dopa, D-penicillamine), amino acids, and α-hydroxycarboxylic acids.
The strong fluorescence allowed its application in chiral sensing (Figure 4b). Yoshizawa
prepared a Pt-based metallacage M20 and reported the efficient and selective encapsula-
tion of D-sucrose from natural disaccharide mixtures in water [76]. Zhang constructed
a fluorescent metallacycle-cored supramolecular network by linking metallacycle M21
via a dynamic covalent reaction and showed that it can be used as a chemical sensor to
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detect picric acid and halogen ions [77]. Stang and coworkers prepared three multicom-
ponent Pt-based metallacages, M22a-c [78]. Figure 4c demonstrates strong fluorescence
sensing and has been utilized as a “turn-on” fluorescent sensor for the detection of thiol-
containing amino acids, including cysteine and glutathione, in methanol/water, which
follows a self-destructive mechanism. Moreover, M22 can also be regenerated by adding
Pt(II) acceptors. Then, they designed a triangular metallosalen-based metallacycle M23,
constructed a Pt(II) metallacycle-cored supramolecular network [34], and examined the
amino acid sensing capability. The limits of detection for cysteine and glutathione were
79.1 and 15.4 µM, respectively.
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Figure 4. Biological recognition and sensing of metallacycles and metallacages. (a) The structures
of M19−M23. (b) Fluorescence emission spectra of (R)- and (S)-M19a (2.0 × 10-6 M in THF) upon
titration with L-dopa. (c) Fluorescence spectra of M22 with increasing amounts of thiol-containing
amino acids. Adapted with permission from refs. [31,34,76–78]. Copyright 2017 and 2021 American
Chemical Society; 2020 Royal Society of Chemistry; 2017 American Association for the Advancement
of Science.
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2.3.3. DNA Binding

Terenzi engineered three Pt-based quadrangular metallacycles with different sizes
and evaluated their affinity for G-quadruplex DNA [79]. The findings showed the interac-
tion between metallacycles and ligands with double-stranded DNA. Sleiman generated a
series of square metallacycles of platinum and examined their binding to guanine quadru-
plexes [80], including oncogene, DNA, and RNA guanine quadruplexes associated with
telomeres. This work proved that it is feasible to regulate the binding activity between
DNA and metallacycles.

2.3.4. Antibacterial Activity

Some efficient antibacterial systems based on metallacycles and metallacages have
been established in recent years [24,81,82]. Li designed and synthesized three nest-like
metallacycles and two hexagonal metallacages [83,84], and they all showed remarkable
antimicrobial activity. Niu et al. prepared Pt(II)-based metallacycle M24 (Figure 5a) that
exhibited aggregation-induced emission (AIE) activity and self-assembled it with tobacco
mosaic virus coat protein [85]. The assembly displayed strong membrane-intercalating
ability and reactive oxygen species (ROS) generation in bacteria under light irradiation,
which resulted in excellent antibacterial activity against gram-positive bacteria. Mukherjee
presented a Pd-based metallacage, M25 [86], which exhibited oxidase-like enzymatic behav-
ior even at very low concentrations under white light irradiation. As shown in Figure 5b,
exogenous ROS generation has been exploited in efficient photocatalytic and antibacterial
activity toward S. aureus. Yang’s group synthesized a heterometallic triangular necklace-
like metallacycle M26 containing Cu(I) and Pt(II) ions [87]. The existence of two metal
centers endowed M26 with superior antibacterial activity and nuclease properties, in which
bacterium-binding and bacterium-damaging activities against drug-resistant pathogens
were shown.

Some metallacycles and metallacages with unique special structures and compositions
have antiseptic effects as well as fluorescence imaging. Zhang prepared supramolecular
networks by cross-linking hexagonal metallacycle M27 with poly (N-isopropylacrylamide)
(PNIPAAM) [88]. M27 exhibits strong fluorescence signals and antibacterial activity for
supramolecular networks. Benefiting from the improved bioavailability, supramolecular
networks can act as imaging and killing reagents for bacteria. Sun and coworkers designed
a hexagonal Pt(II)-based metallacycle M28 [89] and constructed a supramolecular photo-
sensitizer by functionalizing it with pillar [5] arenes through host-guest interactions. The
supramolecular photosensitizer showed enhancement in both fluorescence imaging and
ROS production capabilities. The results suggested that it can not only track S. aureus
in situ but also guide the treatment of S. aureus-infected mice by fluorescence imaging,
and there were no detectable low adverse effects in vitro and in vivo. They also prepared
a Ru(II)-based metallacycle M29 with an emissive wavelength beyond ~1000 nm, which
showed outstanding optical penetration and excellent antibacterial activity while exhibiting
low cytotoxicity to normal mammalian cells [90]. When M29 was prepared in nanoparti-
cles (NPs), accurate bacterial diagnosis and effective phototherapy were performed on S.
aureus-infected mouse models by NIR-II fluorescence-guided imaging and photoinduced
treatments (Figure 5c).
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Figure 5. The antibacterial performance of metallacycles and metallacages. (a) The structures of
M24−M29. (b) Pictures of the bacterial colonies of S. bacteria after exposure to M25 in 0.1 M
acetate buffer with white light irradiation. (c) Photographs showing the infected wound after dif-
ferent treatments. Adapted with permission from refs. [85–90]. Copyright 2019 and 2022 National
Academy of Sciences (USA); 2020 and 2022 Wiley-VCH; 2020 Nature Publishing Group; 2020 Ameri-
can Chemical Society.

2.3.5. Tumor Imaging and Treatment

Pt-, Pd-, and Ru-based metallacycles and metallacages are widely used in cancer
diagnosis and treatment [18,91–94]. Das generated two Pt(II)-based irregular hexagonal
metallacycles and studied their cytotoxicity using various cell lines, including the A549, KB,
MCF-7, and HaCaT cell lines [95]. The results showed that the smaller metallacycle exhibits
better cytotoxic effects. They also prepared two other Pt(II)-based metallacycles with
hexagonal shapes and confirmed their anticancer efficiency in comparison to cisplatin [96].
Stang and coworkers produced an effective drug delivery system based on the water-
soluble hexagonal metallacycle M30 (Figure 6), which transports curcumin into different
cancer cells. The encapsulation of curcumin results in the synergistic enhancement of
M30 [97]. Yang presented porphyrin-functionalized star polymers through post-assembly
polymerization of a hexagonal Pt(II)-based metallacycle M31 cisplatin [98]. The obtained
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metallacycle-linked star polymer showed an excellent ability to enhance cellular uptake
and generate 1O2, and therefore, superior antitumor activity was observed under light
irradiation. Combining the fluorescence, anticancer and targeted properties into a single
entity, Zhang’s group prepared two biotinylated fluorescent Pt(II)-based metallacages,
which were successfully employed for bioimaging, cancer treatment, and targeting [99].
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The metallacycles and metallacages incorporated anticancer drugs showed better
anticancer activity in vitro than the precursors, such as cisplatin. Casini et al. designed
Pd(II)-based metallacage M32 and constructed an integrin-selective drug delivery system
by conjugating it to different integrin-binding ligands [18]. After encapsulation of cisplatin,
the conjugated metallacages exhibited increased anticancer activity in vitro, overexpressing
αvβ3 integrins. Lee prepared four Pd(II)-based metallacycles with triangular or square
architectures bearing boron dipyrromethane (BODIPY) ligands [100]. Compared with
cisplatin, these metallacycles are highly cytotoxic against U87 glioblastoma cells. In an-
other work, they reported four Pt- or Pd-based octacationic metallacycles from BODIPY
ligands [101]. The activities against cell lines showed strong cytotoxicity toward cancer
cells compared to cisplatin but exhibited 7.0–15.2 times lower toxicity in normal cells.
Mukherjee synthesized four octanuclear Ru(II) metallacages and compared the in vitro
antitumor effect with that of cisplatin [102]. The very low micromolar IC50 values indicated
that their metallacage that can generate ROS has the greatest anticancer effect against the
selected cancer cell lines. Stang synthesized six tetranuclear metallacycles and hexanuclear
metallacages by coordination-driven self-assembly and evaluated their cytotoxicity toward
human normal and cancer cell lines [103].

To further explore the in vivo biological application of metallacycles and metallacages,
much research has been carried out. In this respect, Stang and coworkers have published
a series of excellent works. They synthesized a four-armed amphiphilic polymer consist-
ing of an AIE metallacycle M33 (Figure 7a) core and GSH-responsive arms [104]. After
self-assembly into NPs and vesicles, the small molecule anticancer drugs doxorubicin or
doxorubicin hydrochloride were further encapsulated. The results showed that the drug
delivery system has a synergistic anticancer effect both in vitro and in vivo. A suite of
Pt(II) drug-loaded metallacycle M34 was designed and synthesized for combination with
cancer chemotherapy [105], in which the chemotherapy drugs camptothecin (CPT) and
combretastatin A4 (CA4) were loaded in metallacycles. Nanoformulations (NFs) were
fabricated by encapsulating M34 into folic acid (FA)-functionalized diblock copolymers,
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which exhibited high anticancer efficacy as well as few side effects (Figure 7b). In another
study, they prepared NPs by self-assembly of an amphiphilic copolymer, which consisted
of H2O2-responsive diblock copolymer arms and a hexagonal metallacycle M35 core [106].
The NPs can not only encapsulate doxorubicin and palmitoyl ascorbate but also show
excellent antitumor performance with negligible systemic toxicity. The group also prepared
a theranostic nanoprobe that incorporated rhomboidal Pt-based metallacycle M36 and
NIR-II molecular dye. The applications for cancer diagnosis and treatment are shown
in Figure 7c [107]. The nanoprobe provides accurate diagnosis with high resolution and
can inhibit tumor growth with fewer adverse reactions than cisplatin via the enhanced
permeability and retention (EPR) effect. A dual-emissive Pt-based metallacage M37 was
reported [108]. The NPs formed by M37 and amphiphilic diblock copolymers demonstrate
hypoxia imaging as well as chemotherapy in vivo. Mao et al. constructed a theranostic NIR
metallacage M38 and developed it in MNPs for imaging-guided cancer radiochemother-
apy, which revealed better antitumor performance against cisplatin-resistant tumors [109].
Zhang synthesized metallacycles M39a-c cored amphiphilic NPs formed by β-CD [110],
which not only acted as contrast agents for cell imaging but also displayed increased
anticancer activity.
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Figure 7. (a) The structures of M33−M39. (b) The cellular uptake of M34-NF-FA and the intracellular
release of drugs in response to GSH. (c) NIR-II fluorescence images detecting M36 in tumors. Adapted
with permission from refs. [104–110]. Copyright 2017 and 2020 American Chemical Society; 2019 and
2022 National Academy of Sciences (USA); 2020 and 2022 Wiley-VCH.
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Due to its excellent therapeutic effects, negligible side effects, and noninvasiveness,
photodynamic therapy (PDT) has recently gained increasing attention in cancer treatment.
Through the ingenious design of structures, Therrien and coworkers incorporated photo-
sensitizers into Ru-based metallacages and widely investigated their applications in PDT,
in which the metallacages showed good therapeutic effects in cancer as well as rheumatoid
arthritis [111–113]. Tang synthesized two amphiphilic Pt(II)-based metallacycles, which
can potentially be applied to PDT [114]. Stang designed and synthesized Ru-Pt metalla-
cycles and octahedral metallacage M40 (Figure 8a) via a photosensitizer based on Ru(II)
and building blocks based on Pt(II), which demonstrated a large two-photon absorption
cross-section as well as high efficiency of ROS generation [115]. After encapsulation into
a polymer and the formation of NPs, excellent PDT performance was demonstrated in
three-dimensional MCs and in vivo studies. They also described two porphyrin-containing
Pt(II) metallacages, M41a and M41b, and examined their potential in PDT [116]. In vivo
and in vitro investigations indicate the NPs containing M41a and M41b display enhanced
antitumor effects with lower dosage requirements and very few adverse effects compared
with the precursors. Dong reported an indocyanine green (ICG)-involved photoactive
antitumor hexagonal nanoplate based on Pd(II) metallacage M42, which served as an
efficient antitumor photosensitizer via PDT for increased NIR light-induced 1O2 generation,
enhanced cellular uptake, and selective targeting ability of lysosomes [117]. Yang designed
a dual-stage metallacycle M43 and constructed M43-loaded NPs that realized reversible
control of 1O2 generation [118]. As a promising platform for selective PDT, the dual-stage
system exhibits promising anticancer applications.

Some metallacycles and metallacages have been used as therapeutic agents for PTT.
Stang et al. reported a rhombic Pt(II)-based metallacycle M44 with high photothermal
conversion capacity and encapsulated it into NPs via Pluronic F127, which presented
excellent hydrophilicity and biocompatibility [119]. The F127/M44 NPs exhibited enhanced
photothermal effects and excellent antitumor PTT behavior in vivo. Zhao and coworkers
synthesized a series of Pt(II)-based metallacycles with high photoconversion efficiency for
synergistic PDT/PTT therapy [120]. Compared with their precursors, the in vitro studies of
M45-NPs showed significant photoconversion, which promoted photoinduced cell injury
and subsequently realized tumor ablation.

Multifunctional nanocarrier systems based on metallacycles and metallacages for
cancer diagnosis and treatment have undergone great development in recent years. Chen
et al. integrated a chemotherapy and PDT strategy utilizing a porphyrin- and Pt(II)-based
metallacage M46 (Figure 9a) via multicomponent self-assembly, in which M46 served as a
multimodality theranostic platform to fabricate NPs [121]. The cooperation of chemother-
apy and PDT exhibited remarkable synergistic antitumor efficacy in vitro and in vivo. Kim
constructed an NIR-II nanotherapeutic platform through the incorporation of Pt(II)-based
metallacycle M47 and NIR-II dye into F127 [122]. The designed NPs showed high tumor
uptake with superior photostability and a high signal-to-noise ratio for real-time guiding
therapy, increasing the antitumor efficacy as well as reducing the adverse effects in the
U87MG glioblastoma model.
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Figure 8. (a) The structures of M40−M45. (b) Schematic illustration of the fabrication, uptake,
and accumulation of M40NPs, and their applications in PDT. (c) A schematic illustration of the
application of F127/M43 NPs in imaging-guided photothermal therapy. Adapted with permission
from refs. [115–120]. Copyright 2019 and 2020 American Chemical Society; 2019 National Academy
of Sciences (USA); 2021 Royal Society of Chemistry; 2022 MDPI.
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Considering the flexibility and compatibility of photoacoustic (PA) imaging and
NIR-II fluorescence imaging, Stang et al. described a dual-modal imaging and chemo-
photothermal synergistic therapy nanoagent that incorporates metallacycle M48 and NIR-II
fluorescent dye into molecular-dye-modified melanin dots [123]. Nanoagents showed both
favorable stability and optical properties in vivo, as well as passive targeting ability for
tumors, and provided a remarkable multifunctional theranostic platform for biomedicine.
In addition, they utilized Pt-based metallacage M49 to encapsulate a photosensitizer and
constructed a dual-functionalized system by wrapping it into NPs [16]. The in vivo results
revealed that synergistic PDT and chemotherapy displayed excellent anticancer behavior
toward drug-resistant tumors.

2.4. Other Applications of Metallacycles and Metallacages

Stang’s group described Pt(II)-based metallacycles and metallacages that can be used
as artificial light-harvesting systems [15,124]. Inspired by the planar chirality of pillararenes,
they also prepared metallacycles with chiral optical activities [8]. Metallacycles with high
quantum yields and tunable fluorescence wavelengths have been developed in versatile
fluorescent materials [125]. A certain quantity of metallacycles and metallacages with
specific stimulus-response properties have been made by designing building blocks incor-
porating functional moieties, such as metal ions [126], temperature [127–130], ligands [131],
light [132,133], and enzymes [134].
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3. Conclusions and Outlook

Metallacycles and metallacages have attracted widespread attention, not only because
of their precise stoichiometry but also due to the flexibility and viability of their design.
Specific applications of metallacycles and metallacages have been discussed herein. The
diversification in sizes, geometries, and properties, metallacycles, and metallacages have
been widely applied in the field of encapsulation, separation, catalysis, biomedicine, and
so on. In particular, the employment of metallacycles and metallacages as drug delivery
systems, imaging and theranostic platforms have received a lot of attention. Because of
their well-defined structures, the cavities of metallacycles and metallacages can encapsulate
drugs and transport them to tumor cells, which enhances the bioavailability of hydrophobic
drugs and shows good anticancer activity. Through rational design and encapsulation
in amphiphilic block copolymers, NPs based on metallacycles and metallacages can also
provide a multimodal and synergistic therapeutic platform for precise cancer diagnosis
and treatment, including imaging, chemotherapy, PDT, and PTT.

A wide variety of metallacycles and metallacages have been constructed and applied
in various fields. However, there are still many challenges. On the one hand, metallacycles
and metallacages with more complicated structures and other metal centers in addition to
the commonly used Pt and Pd need to be further explored. However, there is an urgent
need to translate the existing research into clinical practice, which is an indispensable part
of biological applications. To conclude, metallacycles and metallacages are expected to
remain attractive and hot topics in materials science.
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14. Fink, D.; Orth, N.; Linseis, M.; Ivanović-Burmazović, I.; Winter, R.F. Ring size matters: Supramolecular isomerism in self-
assembled redox-active tetra- and hexaruthenium macrocycles. Chem. Commun. 2020, 56, 1062–1065. [CrossRef] [PubMed]

15. Li, Y.; Rajasree, S.S.; Lee, G.Y.; Yu, J.; Tang, J.-H.; Ni, R.; Li, G.; Houk, K.N.; Deria, P.; Stang, P.J. Anthracene-triphenylamine-based
platinum(II) metallacages as synthetic light-harvesting assembly. J. Am. Chem. Soc. 2021, 143, 2908–2919. [CrossRef] [PubMed]

16. Yu, G.; Zhu, B.; Shao, L.; Zhou, J.; Saha, M.L.; Shi, B.; Zhang, Z.; Hong, T.; Li, S.; Chen, X.; et al. Host-guest complexation-mediated
codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proc. Natl. Acad. Sci. USA 2019, 116, 6618–6623.
[CrossRef]

17. Ye, Y.; Cook, T.R.; Wang, S.-P.; Wu, J.; Li, S.; Stang, P.J. Self-assembly of chiral metallacycles and metallacages from a directionally
adaptable BINOL-derived donor. J. Am. Chem. Soc. 2015, 137, 11896–11899. [CrossRef]

18. Han, J.; Räder, A.F.B.; Reichart, F.; Aikman, B.; Wenzel, M.N.; Woods, B.; Weinmüller, M.; Ludwig, B.S.; Stürup, S.; Groothuis,
G.M.M.; et al. Bioconjugation of supramolecular metallacages to integrin ligands for targeted delivery of cisplatin. Bioconjugate
Chem. 2018, 29, 3856–3865. [CrossRef]

19. Sun, Y.; Yao, Y.; Wang, H.; Fu, W.X.; Chen, C.Y.; Saha, M.L.; Zhang, M.M.; Datta, S.; Zhou, Z.X.; Yu, H.X.; et al. Self-assembly of
metallacages into multidimensional suprastructures with tunable emissions. J. Am. Chem. Soc. 2018, 140, 12819–12828. [CrossRef]

20. Oldacre, A.N.; Friedman, A.E.; Cook, T.R. A self-assembled cofacial cobalt porphyrin prism for oxygen reduction catalysis. J. Am.
Chem. Soc. 2017, 139, 1424–1427. [CrossRef]

21. Paul, L.E.H.; Therrien, B.; Furrer, J. Interactions of arene ruthenium metallaprisms with human proteins. Org. Biomol. Chem. 2015,
13, 946–953. [CrossRef] [PubMed]

22. Fink, D.; Orth, N.; Ebel, V.; Gogesch, F.S.; Staiger, A.; Linseis, M.; Ivanović-Burmazović, I.; Winter, R.F. Self-assembled redox-active
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series of trinuclear metallosupramolecular ruthenium macrocycles. Energy Environ. Sci. 2017, 10, 2137–2153. [CrossRef]

56. Schindler, D.; Meza-Chincha, A.-L.; Roth, M.; Würthner, F. Structure-activity relationship for di-up to tetranuclear macrocyclic
ruthenium catalysts in homogeneous water oxidation. Chem. Eur. J. 2021, 27, 16938–16946. [CrossRef]

57. Meza-Chincha, A.-L.; Schindler, D.; Natali, M.; Würthner, F. Effects of photosensitizers and reaction media on light-driven water
oxidation with trinuclear ruthenium macrocycles. ChemPhotoChem 2021, 5, 173–183. [CrossRef]

58. Chen, Z.Y.; Long, Z.H.; Wang, X.Z.; Zhou, J.Y.; Wang, X.S.; Zhou, X.P.; Li, D. Cobalt-based metal-organic cages for visible-light-
driven water oxidation. Inorg. Chem. 2021, 60, 10380–10386. [CrossRef]

59. Lu, Y.L.; Song, J.Q.; Qin, Y.H.; Guo, J.; Huang, Y.H.; Zhang, X.D.; Pan, M.; Su, C.Y. A redox-active supramolecular Fe4L6 cage
based on organic vertices with acid-base-dependent charge tunability for dehydrogenation catalysis. J. Am. Chem. Soc. 2022, 144,
8778–8788. [CrossRef]

60. Qi, X.; Zhong, R.; Chen, M.; Sun, C.; You, S.; Gu, J.; Shan, G.; Cui, D.; Wang, X.; Su, Z. Single metal-organic cage decorated with an
Ir(III) complex for CO2 photoreduction. ACS Catal. 2021, 11, 7241–7248. [CrossRef]

61. Bhat, I.A.; Devaraj, A.; Howlader, P.; Chi, K.-W.; Mukherjee, P.S. Preparation of a chiral Pt12 tetrahedral cage and its use in
catalytic Michael addition reaction. Chem. Commun. 2018, 54, 4814–4817. [CrossRef] [PubMed]

62. Oldacre, A.N.; Crawley, M.R.; Friedman, A.E.; Cook, T.R. Tuning the activity of heterogeneous cofacial cobalt porphyrins for
oxygen reduction electrocatalysis through self-assembly. Chem. Eur. J. 2018, 24, 10984–10987. [CrossRef] [PubMed]

http://doi.org/10.1021/jacs.7b02950
http://doi.org/10.1002/anie.201800459
http://doi.org/10.1002/ange.202208866
http://doi.org/10.1021/jacs.9b04520
http://www.ncbi.nlm.nih.gov/pubmed/31265276
http://doi.org/10.1038/s41557-020-0455-y
http://www.ncbi.nlm.nih.gov/pubmed/32313238
http://doi.org/10.1002/ange.202203970
http://doi.org/10.1021/jacs.0c00459
http://doi.org/10.1021/acs.inorgchem.7b01967
http://www.ncbi.nlm.nih.gov/pubmed/28945436
http://doi.org/10.1021/jacs.0c06623
http://doi.org/10.1002/anie.201700832
http://doi.org/10.1016/j.chempr.2021.08.005
http://doi.org/10.1021/jacs.6b11523
http://doi.org/10.1021/acsami.1c17400
http://doi.org/10.1021/acssuschemeng.2c00488
http://doi.org/10.1021/acsenergylett.6b00560
http://doi.org/10.1038/nchem.2503
http://www.ncbi.nlm.nih.gov/pubmed/27219702
http://doi.org/10.1039/D0SC01097A
http://www.ncbi.nlm.nih.gov/pubmed/34094143
http://doi.org/10.1039/C7EE01557G
http://doi.org/10.1002/chem.202100549
http://doi.org/10.1002/cptc.202000133
http://doi.org/10.1021/acs.inorgchem.1c00907
http://doi.org/10.1021/jacs.2c02692
http://doi.org/10.1021/acscatal.1c01974
http://doi.org/10.1039/C8CC01487F
http://www.ncbi.nlm.nih.gov/pubmed/29691528
http://doi.org/10.1002/chem.201802585
http://www.ncbi.nlm.nih.gov/pubmed/29845658


Inorganics 2023, 11, 54 18 of 21

63. Liang, G.M.; Xiong, P.; Azam, K.; Ni, Q.L.; Zeng, J.Q.; Gui, L.C.; Wang, X.J. A discrete tetrahedral indium cage as an efficient
heterogeneous catalyst for the fixation of CO2 and the srecker reaction of ketones. Inorg. Chem. 2020, 59, 1653–1659. [CrossRef]
[PubMed]

64. Hong, C.M.; Bergman, R.G.; Raymond, K.N.; Toste, F.D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem.
Res. 2018, 51, 2447–2455. [CrossRef]

65. Jing, X.; He, C.; Zhao, L.; Duan, C. Photochemical properties of host-guest supramolecular systems with structurally confined
metal-organic capsules. Int. J. Antimicrob. Agents 2019, 52, 100–109. [CrossRef] [PubMed]

66. Bhat, I.A.; Jain, R.; Siddiqui, M.M.; Saini, D.K.; Mukherjee, P.S. Water-soluble Pd8L4 self-assembled molecular barrel as an aqueous
carrier for hydrophobic curcumin. Inorg. Chem. 2017, 56, 5352–5360. [CrossRef]

67. Mendez-Arroyo, J.; d’Aquino, A.I.; Chinen, A.B.; Manraj, Y.D.; Mirkin, C.A. Reversible and selective encapsulation of dex-
tromethorphan and beta-estradiol using an asymmetric molecular capsule assembled via the weak-link approach. J. Am. Chem.
Soc. 2017, 139, 1368–1371. [CrossRef]

68. Yue, Z.; Wang, H.; Bowers, D.J.; Gao, M.; Stilgenbauer, M.; Nielsen, F.; Shelley, J.T.; Zheng, Y.-R. Nanoparticles of metal-organic
cages designed to encapsulate platinum-based anticancer agents. Dalton Trans. 2018, 47, 670–674. [CrossRef]

69. Garci, A.; Mbakidi, J.-P.; Chaleix, V.; Sol, V.; Orhan, E.; Therrien, B. Tunable arene ruthenium metallaprisms to transport, shield,
and release porphin in cancer cells. Organometallics 2015, 34, 4138–4146. [CrossRef]

70. Mannancherril, V.; Therrien, B. Strategies toward the enhanced permeability and retention effect by increasing the molecular
weight of arene ruthenium metallaassemblies. Inorg. Chem. 2018, 57, 3626–3633. [CrossRef]

71. Gallardo-Villagrán, M.; Paulus, L.; Charissoux, J.-L.; Sutour, S.; Vergne-Salle, P.; Leger, D.Y.; Liagre, B.; Therrien, B. Evaluation of
ruthenium-based assemblies as carriers of photosensitizers to treat rheumatoid arthritis by photodynamic therapy. Pharmaceutics
2021, 13, 2104. [CrossRef] [PubMed]

72. Xu, W.-Q.; Fan, Y.-Z.; Wang, H.-P.; Teng, J.; Li, Y.-H.; Chen, C.-X.; Fenske, D.; Jiang, J.-J.; Su, C.-Y. Investigation of binding behavior
between drug molecule 5-fluoracil and M4L4-type tetrahedral cages: Selectivity, capture, and release. Chem. Eur. J. 2017, 23,
3542–3547. [CrossRef] [PubMed]

73. Woods, B.; Wenzel, M.N.; Williams, T.; Thomas, S.R.; Jenkins, R.L.; Casini, A. Exo-functionalized metallacages as host-guest
systems for the anticancer drug cisplatin. Front. Chem. 2019, 7, 68. [CrossRef] [PubMed]

74. Preston, D.; Lewis, J.E.M.; Crowley, J.D. Multicavity [PdnL4]2n+ cages with controlled segregated binding of different guests. J.
Am. Chem. Soc. 2017, 139, 2379–2386. [CrossRef]

75. Rizzuto, F.J.; Carpenter, J.P.; Nitschke, J.R. Multisite binding of drugs and natural products in an entropically favorable, heteroleptic
receptor. J. Am. Chem. Soc. 2019, 141, 9087–9095. [CrossRef] [PubMed]

76. Yamashina, M.; Akita, M.; Hasegawa, T.; Hayashi, S.; Yoshizawa, M. A polyaromatic nanocapsule as a sucrose receptor in water.
Sci. Adv. 2017, 3, e1701126. [CrossRef] [PubMed]

77. Hou, Y.; Li, S.; Zhang, Z.; Chen, L.; Zhang, M. A fluorescent platinum(II) metallacycle-cored supramolecular network formed by
dynamic covalent bonds and its application in halogen ions and picric acid detection. Polym. Chem. 2020, 11, 254–258. [CrossRef]

78. Zhang, M.; Saha, M.L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; et al. Multicomponent platinum(II)
cages with tunable emission and amino acid sensing. J. Am. Chem. Soc. 2017, 139, 5067–5074. [CrossRef] [PubMed]

79. Domarco, O.; Lötsch, D.; Schreiber, J.; Dinhof, C.; Van Schoonhoven, S.; García, M.D.; Peinador, C.; Keppler, B.K.; Berger, W.;
Terenzi, A. Self-assembled Pt2L2 boxes strongly bind G-quadruplex DNA and influence gene expression in cancer cells. Dalton
Trans. 2017, 46, 329–332. [CrossRef]

80. Garci, A.; Castor, K.J.; Fakhoury, J.; Do, J.-L.; Di Trani, J.; Chidchob, P.; Stein, R.S.; Mittermaier, A.K.; Friščić, T.; Sleiman, H.
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