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1. Introduction

Hydrogen is heralded as a future global energy carrier [1–9]. The development
of hydrogen as a clean energy solution is gaining unprecedented global attention, as
many countries are now recognising its potential in various applications and including
hydrogen in its energy portfolio. This includes stationary, portable, and transport use
today, including hydrogen fuel cell vehicles, trains, and ferries. However, hydrogen storage
remains a critical challenge in expanding infrastructure for hydrogen-based transportation
and industrial utilisation.

Metal hydrides have received much interest over the past several decades, which is
evident from a previous related Special Issue published in Inorganics: “Functional Mate-
rials Based on Metal Hydrides” [10]. Reversible solid-state hydrogen storage at ambient
conditions with moderate energy exchanges with the surroundings is the ultimate challenge
to realise a hydrogen-based society. Varieties of novel hydrogen-rich materials have been
investigated in the past decades, which has provided many novel compositions, fascinating
structures, and functionalities [8,11–14]. Today, metal hydrides are explored for a range of
applications, including hydrogen exports, remote area power systems, solid-state batteries,
thermochemical energy storage, and hydrogen diffusion [15–23]. Indeed, the International
Energy Agency (IEA) is involved in the development of hydrogen and hydrogen storage
materials, where Task 40 “Energy Storage and conversion based on hydrogen” has recently
released a number of review articles on the research being conducted in this area [24–30].

The aim of this Special Issue of Inorganics, entitled “State-of-the-Art and Progress in
Metal-Hydrogen Systems”, is to inspire continued research within this important class of
materials, in particular for energy-related applications. This Special Issue also serves as a
collection of contributions presented at the International Symposium on Metal-Hydrogen
Systems, held in Perth, Western Australia, 30 October–3 November 2022 [31]. This meeting,
MH2022, is the 17th meeting in a distinguished series of conferences dating back to 1968.
This conference was due to be held in 2020; however, COVID forced it to be postponed
to 2022. The conference Chair was Prof. Craig Buckley, and the Vice-Chair was Assoc.
Prof. Mark Paskevicius, both from Curtin University, Australia. MH2022 had a total of
159 participants from 22 countries. Five plenary talks were presented by Prof. Ping Chen
(Dalian Institute of Chemical Physics, Chinese Academy of Sciences), Prof. Petra E de Jongh
(Utrecht University, The Netherlands), Prof. Evan Gray (Griffith University, Australia),
Dr Patrick Hartley (CSIRO, Australia), and Dr Michael Hirscher (Max Planck Institute
for Intelligent Systems, Germany). There were 40 invited and 87 contributed talks and
30 posters on the topic of the fundamentals and applications of metal–hydrogen systems.
The contributions covered a wide range of materials topics, including complex hydrides,
metal hydrides, and chemical, organic, and nanoporous materials.

The Guest Editors would like to sincerely thank the Scientific Program Committee
members for MH2022, the Local Organizing Committee, and the MH series International
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Steering Committee for their help in planning and successfully organizing the sympo-
sium. We gratefully acknowledge the sponsors and supporting partners of MH2022:
Curtin University, The Australian Renewable Energy Agency (ARENA), Toyota, and the
exhibitors Anton Paar, Hidden Analytical, Hidden Isochema, John Morris Group, and
Suzuki Shokan. Furthermore, the Guest Editors would like to thank all the reviewers who
spent their valuable time thoroughly reviewing and improving the articles published in
this Special Edition.

2. An Overview of Published Articles

As expressed above, the field of metal hydrides is diverse, and this is exemplified by
the varied topics covered in the 14 articles published in this Special Edition. This section
provides a brief overview of the included manuscripts, of which they are divided into
discreet, albeit cross-cutting, subsections that include: Hydrogen Release and Uptake,
Electrolytes, Physical Properties, and Metallic Alloys.

2.1. Hydrogen Release and Uptake

Varieties of novel hydrogen containing compounds with fascinating compositions and
structures are continually discovered [1,13,32–37], well-illustrated by the
Na[BH3(CH3NH)BH2(CH3NH)BH3] material presented by Zhang et al. (in contribution 1).
This compound releases 4.6 wt.% of pure hydrogen below 150 ◦C contrary to the parent
counterpart Na[BH3NH2BH2NH2BH3]. This work illustrates a new route to suppress the
release of unwanted gaseous by-products by the introduction of organic methyl groups
bonded to nitrogen.

Lithium and sodium borohydride, LiBH4 and NaBH4, are known to possess high gravi-
metric and volumetric hydrogen densities of 18.5 and 10.6 wt.% and 121 and 113 kg·m−3,
respectively [37–43]. However, their high thermal stabilities hamper utilisation as hydrogen
storage materials for practical applications. Interestingly, F. Peru et al. investigated the
composite 0.71LiBH4–0.29NaBH4 with a eutectic melting point of 219 ◦C, which allows
convenient melt infiltration into a nanoporous carbon material (CMK-3) with a pore size
of ~5 nm (contribution 2) [44]. This material reveals an uptake of ~3.5 wt.% H2 after five
hydrogenation/dehydrogenation cycles facilitated by carbon–hydride surface interactions
and possibly enhanced heat transfer.

Magnesium hydride, MgH2, has attracted much attention during the last few decades
owing to a high hydrogen content of 7.6 wt.% and possesses good reversibility [23,24,45–48].
However, hydrogen release and uptake occur at temperatures higher than 300 ◦C and
with slow kinetics. The third and fourth paper contributed to this collection reveals new
strategies for improving both kinetic and thermodynamic properties of magnesium hydride.
Huang et al. (contribution 3) demonstrated that the operating temperature for pristine
MgH2 can be decreased from 322 to 214 ◦C through the employment of Ti3CN. Furthermore,
the hydrogen-release kinetics of MgH2 are also improved, as observed by a decrease in
activation energy from 121 to 80 kJmol−1 for the release of hydrogen. Another strategy,
developed by Qin et al. (contribution 4), is to use hydrogen-containing additives such as
lithium borohydride in magnesium hydride. A new composite of MgH2-LiBH4 (5 wt%)
released ~7.1 wt.% H2 within 40 min at 300 ◦C, where a reference sample of MgH2 only
released <0.7 wt.% H2. Importantly, the kinetics of hydrogen release are improved by a
factor of ten (×10) compared to that of the pure MgH2 material. This effect is suggested
to be due to the creation of ion transfer channels, which can inhibit the agglomeration of
MgH2 particles.

TiFe is a well-established hydrogen storage material due to its low cost, elemental abun-
dance, and near-ambient temperature and mild pressure for hydrogen absorption [15,49].
This makes it perfect for stationary applications [50]. The main hindrance is the difficulty to
activate the material for the absorption of hydrogen in the first cycle, where high pressures
of ~50 bar and high temperatures of ~400 ◦C are often required. Contribution five by
Sartori, Amati, and Gregoratti et al. studied the influence of adding 4 wt.% Zr to the
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material and found that the kinetics of the first hydrogenation are greatly improved. The
authors employed scanning photoemission microscopy to investigate the composition
and chemical state of the various phases present in this alloy and how they change upon
hydrogenation/dehydrogenation and found the presence of different oxide phases that
were not seen by conventional SEM investigation.

2.2. Electrolytes

Recently, a variety of new complex hydride-based electrolytes were discovered [51–56].
They deviate from classical ionic compounds by offering high cationic conductivity at mod-
erate temperatures, also with divalent cations. The high cationic conductivity is often
assigned to weak interactions, such as dihydrogen bonds, providing structural flexibil-
ity [26,57]. A new example is magnesium borohydride, templated by isopropylamine,
Mg(BH4)2·(CH3)2CHNH2, which also has hydrophobic domains, presented by Kristensen
et al. (contribution 6). Aluminium oxide nanoparticles and heat treatment produce a highly
conductive composite, σ(Mg2+) = 2.86 × 10−7 and 2.85 × 10−5 S cm−1 at −10 and 40 ◦C,
respectively, with a low activation energy, Ea = 0.65 eV. Nanoparticles stabilise the partially
eutectic molten state and prevent recrystallisation even at low temperatures and provide a
high mechanical stability of the composite.

Electrochemical reactions taking place in a solid-state battery cell can be considered
multi-phase reactions taking place at interfaces, involving cationic diffusion in the solid
state [26,58]. Hydrogen storage systems based on complex hydrides, such as metal borohy-
drides or metal alanates, reveal similarities. In both cases, multiple solid phases nucleate
and grow or are consumed as hydrogen is released or stored or electrochemical reactions
take place in a battery. These reactions are limited by the kinetics of atoms or ion diffusion
at grain boundaries in the solid state and also by solid state transformations. Thus, Vajo
and co-workers (contribution 7) proposed to explore these challenges by investigating
combined electrolytes and hydrogen storage systems. This includes the use of eutectic
molten composites. An increase in reaction rates was observed in several cases, but the
kinetics may become more complex. A reduction in reaction temperature may be observed,
but the results also suggest that electrolytes improve intraparticle transport phenomena.

2.3. Metallic Hydrides for Hydrogen Purification and Compression

If the world is to move towards a hydrogen economy, hydrogen must be produced
in high purity to avoid any poisoning of catalysts during consumption, e.g., in a fuel
cell [59]. Palladium has been determined to be extremely effective towards the application
of hydrogen-purification/separation membranes. In contribution 8, Endo et al. discusses
the preparation of high-purity palladium (Pd) films using the electroplating method, which
is considered a simple and cost-effective technique. However, electroplating can result in
stress accumulation in the film, making it challenging to obtain a dense single Pd film. This
study successfully addressed this issue by optimising the electroplating process, resulting in
a high-purity Pd film with unique surface characteristics. Notably, the plated film exhibited
superior mechanical properties compared to rolled Pd films, including twice the displace-
ment and four times the breaking point strength. As such, this research demonstrates the
practical feasibility of using electroplating to produce Pd-based membranes for hydrogen
purification applications.

For practical applications of hydrogen gas, convenient compression using low amounts
of energy is crucial. Metallic hydrides have proven useful for the development of metal
hydride–hydrogen compressors [15,30,60]. This is successfully demonstrated by X. Zhang
et al. (contribution 9) where the rare earth series AB5 and Ti/Zr-based AB2 hydrogen storage
materials are investigated. A four-stage compressor is developed with output pressures of
8.90, 25.04, 42.97, and 84.73 MPa operating at 363 K. The first pressure stage was achieved
by a CaCu5-type hexagonal structure, the others by TiCr2 and ZrFe2 type alloys.

There are many aspects to overcome to enable metal hydrides to be the ideal hydrogen
storage medium, but several researchers are utilising a variety of methods to overcome
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these problems. Large volume expansions within these powders are observed upon cycling
of hydrogen, and this can lead to the occurrence of stress on the walls of the container and
the possibility of catastrophic failure [15,30,49]. Zheng et al. (contribution 10) used silicone
oil as a glidant to promote stress-free conditions for V-based BCC metal hydrides and have
reported that the addition of 5 wt.% silicone oil slightly reduced the initial hydrogen storage
capacity of V40Ti26Cr26Fe8 (particle size ~325 µm) but improved the absorption reversibility,
regardless of the oil viscosity. The maximum strain on the surface of the hydrogen storage
container decreased by ≥22.5% after adding 5 wt.% silicone oil.

During absorption and desorption of hydrogen, metal hydrides interact with hy-
drogen via multiple bonding interactions, including covalent, ionic, and van der Waals
forces [61]. This inherently produces heat during absorption and absorbs heat during
desorption [22,27]. This heat must be dissipated if a steady reaction rate is to occur and
avoid physical degradation, including agglomeration or side reactions that are more
favourable at high temperatures. Liu et al. (contribution 11) submitted a review on
improving heat transfer and stability for hydrogen storage and compression applications.
Currently, several researchers have adopted the method of forming composites of alloy
powders with high thermal conductivity materials, such as exfoliated natural graphite
(ENG), but there are many options, including liquid-based methods, polymers, and metal
foams. This article highlights the state of the art in this field of research.

2.4. Physical Properties

Fundamental research into the physical properties of metal hydrides is required
if technological progress is to continue in the future [1,10,14,25,27]. Jacob, Babai, and
Bereznitsky et al. (contribution 12) have concentrated on determining the elastic moduli of
Zr(MoxFe1−x)2, x = 0, 0.5, 1, as well as hydrogen absorption in ZrMo2, in an attempt to shed
light on the unusual trend in hydride stabilities in this system. In general, the stabilities
of these hydrides exhibit a unique trend, with stability increasing from x = 0 to 0.5, but
destabilisation is observed for the end member ZrMo2 hydride. They found that the bulk
modulus (B) significantly increases from 148.2 GPa in ZrFe2 to 200.4 GPa in ZrMo2, which
is in contrast to the moderate variation in the shear modulus (G). The increase in B suggests
a bulk stiffening in ZrMo2.

Pan et al. (contribution 13) provided a study detailing how protons move within
yttrium-doped barium zirconate, which is known to be one of the fastest solid-state proton
conductors. This study used density functional theory with the Perdew–Burke–Ernzerhof
functional to calculate the total electronic energy for each proton pair in an effort to
catalogue and understand their motion, especially when the protons are in close proximity
to one another. Overall, it was determined that protons are in close proximity to each other
and the dopant in the lowest-energy configuration, significantly affecting the backbone
structure. This knowledge is important for developing superior materials for proton-
conduction applications.

The search for highly tuneable hydrogen storage materials is an ongoing field, espe-
cially as the addition of functional groups can produce novel materials with interesting
properties such as superconductivity, photoluminescence, etc. Alkali organometallic com-
plexes are known to have favourable thermodynamics and hydrogen capacities, but not
many transition metal–organic complexes have been reported. The contribution by Wang,
Pei, Yu, and Cui et al. (contribution 14) have demonstrated the formation of yttrium
phenoxide and lanthanum phenoxide via metathesis of sodium phenoxide with YCl3 and
LaCl3, respectively. Their properties were elucidated using theoretical calculations, quasi
in situ NMR, and UV-vis spectroscopies. Although the hydrogenation of these rare-earth
phenoxides was not successful, further research on these materials may lead to progress.

3. Conclusions

The necessity for reliable methods to store renewable energy is driving the develop-
ment of hydrogen production, utilisation, distribution, and storage. The most-efficient
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method of storing hydrogen is by using metal hydrides, whereas, simultaneously, many of
these metal hydrides are finding applications in a variety of functions, including solid-state
batteries, thermal energy storage, compression, etc.

The presentations, posters, and manuscripts that have arisen from MH2022 in Australia
are a testament to the world-class research being undertaken in this area. The Editors of
this Special Edition “State-of-the-Art and Progress in Metal-Hydrogen Systems” welcome
you to read the contributed articles in the issue.

Conflicts of Interest: The authors declare no conflict of interest.
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of Mg2+ conduction in ammine magnesium borohydride promoted by a neutral molecule. Phys. Chem. Chem. Phys. 2020, 22,
9204–9209. [CrossRef] [PubMed]

58. Hadjixenophontos, E.; Dematteis, E.M.; Berti, N.; Wołczyk, A.R.; Huen, P.; Brighi, M.; Le, T.T.; Santoru, A.; Payandeh, S.; Peru, F.;
et al. A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable
Energy as Hydrogen and Electricity. Inorganics 2020, 8, 17. [CrossRef]

59. Faye, O.; Szpunar, J.; Eduok, U. A critical review on the current technologies for the generation, storage, and transportation of
hydrogen. Int. J. Hydrogen Energy 2022, 47, 13771–13802. [CrossRef]

60. Gray, E.M.; Webb, C.J. Metal-hydride hydrogen compressors for laboratory use. J. Phys. Energy 2020, 2, 034004. [CrossRef]
61. Züttel, A.; Remhof, A.; Borgschulte, A.; Friedrichs, O. Hydrogen: The future energy carrier. Phil. Trans. R. Soc. A 2010, 368,

3329–3342. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acsaem.0c00113
https://doi.org/10.1039/D0CP00158A
https://www.ncbi.nlm.nih.gov/pubmed/32232248
https://doi.org/10.3390/inorganics8030017
https://doi.org/10.1016/j.ijhydene.2022.02.112
https://doi.org/10.1088/2515-7655/ab9314
https://doi.org/10.1098/rsta.2010.0113

	Introduction 
	An Overview of Published Articles 
	Hydrogen Release and Uptake 
	Electrolytes 
	Metallic Hydrides for Hydrogen Purification and Compression 
	Physical Properties 

	Conclusions 
	References

