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Abstract: Lycorine (LYC) is an active alkaloid first isolated from Narcissus pseudonarcissus and
found in most Amaryllidaceae plants. It belongs to the same family as galantamine, which is the
active component of a drug used for the treatment of Alzheimer’s disease. Similarly to galantamine,
LYC is able to suppress induced amyloid β (Aβ) toxicity in differentiated SH-SY5Y cell lines and it can
weakly interact with the N-terminal region of Aβ via electrostatic interactions. The N-terminal Aβ

domain is also involved in Cu(II)/Cu(I) binding and the formed complexes are known to play a key
role in ROS production. In this study, the Aβ–LYC interaction in the absence and in the presence of
copper ions was investigated by using the N-terminal Aβ peptide encompassing the first 16 residues.
NMR analysis showed that Aβ can simultaneously interact with Cu(II) and LYC. The Cu(II) binding
mode remains unchanged in the presence of LYC, while LYC association is favored when an Aβ–
Cu(II) complex is formed. Moreover, UV-VIS studies revealed the ability of LYC to interfere with the
catalytic activities of the Aβ–Cu(II) complexes by reducing the ascorbate consumption monitored at
265 nm.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the
most common cause of dementia in the world. It is characterized by a gradual decline in
cognitive function, including memory, language, problem-solving, and judgment. As the
disease progresses, people with AD may have difficulty performing everyday tasks and
may become dependent on others for care [1].

Presently, over 55 million individuals globally are affected by dementia, with the
majority, exceeding 60%, residing in low- and middle-income nations, as reported by
the World Health Organization (WHO). Additionally, each year witnesses the onset of
nearly 10 million new cases. Beyond the severity of the inexorable increase in cases of
neurodegenerative diseases, it is important to ascertain the incidence of the costs involved.
In fact, during the year 2019, dementia incurred a global economic cost of 1.3 trillion US
dollars. Around half of this financial burden is associated with informal caregivers (such as
family members and close friends) who, on average, devote 5 h per day to caregiving and
supervision [2,3].

In addition to the suffering of patients and family members, the socioeconomic impact
is devastating. Prevention must therefore be strengthened in order to delay and slow down
symptoms. At the same time, it is necessary to invest in drug research even if developing
a drug takes 13 years from preclinical studies to FDA approval. The high rate of failure
of AD drug development is partly responsible for the high costs of advancing AD drug
development [4–6]. It is advisable to increase research funds to counter this inexorable
trend and at the same time not to neglect research on natural molecules that can offer a
valuable therapeutic contribution [7–10].
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The exact cause of AD is unknown, but it is thought to be caused by a combination
of genetic and environmental factors. Some of the known risk factors for AD include
(1) age: AD is most common in older adults, with the risk of developing the disease
increasing with age [11–13]; (2) family history: people with a family history of AD are
more likely to develop the disease themselves [14,15]; (3) genetic mutations: some genetic
mutations have been linked to an increased risk of developing AD [16,17]; (4) head injuries:
a history of head injury may increase the risk of developing AD [18]; and (5) cardiovascular
disease: cardiovascular disease risk factors, such as high blood pressure, high cholesterol,
and diabetes, have been linked to an increased risk of AD [19].

AD is characterized by two hallmark neuropathological features: amyloid plaques and
tau tangles. Amyloid plaques are formed by the buildup of amyloid beta protein outside of
the nerve cells. Tau tangles are formed by the buildup of tau protein inside of the nerve
cells. Amyloid beta (Aβ) is a peptide that is produced by the normal processing of the
amyloid precursor protein (APP), leading to the formation of Aβ42 and Aβ40 peptides.
These fragments differ in length, aggregation propensity, and toxicity, the former being
more prone to form aggregates [20]. APP is a protein that is found on the surface of the
nerve cells. Aβ is normally produced and cleared from the brain, but in people with AD,
Aβ accumulates in the brain and forms plaques [21]. Although the exact role of Aβ in
AD is not fully understood, there is evidence supporting its central role in the disease
process, showing a correlation between the amount of Aβ in the brain and the severity of
AD symptoms [22]. The accumulation and formation of beta-amyloid plaques in the brain
is also correlated to the oxidative damage caused by Reactive Oxygen Species (ROS). ROS
are chemically reactive molecules (superoxide anions, hydroxyl radicals, and hydrogen
peroxide) that can cause damage to various cellular components, including DNA, proteins,
and lipids. The body has defense mechanisms, such as antioxidants, to neutralize ROS
and prevent their harmful effects. However, when ROS levels are chronically elevated or
antioxidant defenses are overwhelmed, it can lead to pathological conditions [23–26]. ROS
can trigger oxidative stress processes that damage brain cells and induce inflammatory
reactions. At the same time, amyloid accumulation can lead to an imbalance in brain metal
homeostasis, creating conditions that favor ROS production. This detrimental cycle can
amplify cellular damage and the cognitive decline observed in neurodegenerative diseases.

Nowadays, there is no cure for Alzheimer’s disease, and the available treatments
focus on alleviating symptoms, slowing the progression of the disease, and enhancing the
individual’s quality of life [27]. The currently approved medications are cholinesterase
inhibitors. Acetylcholinesterase is an enzyme that breaks acetylcholine in the synaptic
cleft, reducing its availability for nerve communication with negative consequences for
memory, learning, and other cognitive functions [28]. Cholinesterase inhibitors, including
drugs like donepezil, rivastigmine, and galantamine, work by blocking this enzyme’s
activity to promote greater availability of the neurotransmitter to the neurons [29,30].
Memantine is the ultimate drug approved by the FDA for moderate to severe AD and
works by blocking excessive activity of glutamate, an excitatory neurotransmitter [31]. It
helps regulate glutamate levels in the brain, potentially protecting nerve cells from further
damage. Memantine is often used in combination with cholinesterase inhibitors for a more
comprehensive approach to symptom management.

Among the four approved drugs, galantamine (GAL) is the only one of natural origin;
in fact, it is an alkaloid that derives from the family of Amaryllidaceae plants [32]. We
recently investigated and compared the behavior of GAL with lycorine (LYC), another
alkaloid from the same family plant [33]. The interest in LYC is derived from the interesting
features exhibited by this natural alkaloid against different pathologies [34–36]. GAL
and LYC were studied by evaluating their neuroprotective effects, antioxidant properties,
and beta-amyloid-binding abilities [33]. Using a combined ligand- and peptide-based
approach, we analyzed the atomic and molecular interactions of LYC and GAL with the
pathogenic Aβ40 peptide, revealing that both alkaloids possess the ability to selectively
induce changes in Aβ40 resonances [33]. The protective effect of these two alkaloids
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on SH-SY5Y differentiated cells previously intoxicated with Aβ42 were also evaluated.
Surprisingly, our data indicated that LYC exhibits a greater ability to attenuate Aβ42-
induced cytotoxicity in SH-SY5Y cells compared to GAL [33]. In this study, according to
the investigation methods, Aβ42 or Aβ40 isoforms were differentially used. Spectroscopic
analysis was mainly performed on Aβ40, which is less prone to aggregation compared to
Aβ42 and therefore more stable and easy to handle. On the other hand, cellular studies
were performed by using Aβ42, exhibiting a greater tendency to form aggregates and being
more toxic than Aβ40.

Given the highly promising outcomes exhibited by LYC, particularly its capability
to engage with the N-terminal section of Aβ via electrostatic interactions with residues
also involved in copper binding [37], we opted to focus our study on a comprehensive
exploration of the molecular interactions between LYC and Aβ, both in the presence and
absence of copper(II). For this study, we decided to utilize the Aβ16 peptide, a fragment
encompassing the N-terminal domain of Aβ, acting as the minimal binding motif for
Cu(II) [38]. The interactions of LYC with the apo- and copper(II)-bound forms of Aβ16
were investigated by using NMR and UV-VIS techniques, providing new insights into the
chemical and reactivity features of Aβ–Cu(II)–LYC associations.

2. Results

The interaction between Aβ16, LYC, and Cu(II) ions was first evaluated using NMR
spectroscopy. Compared to the longest Aβ fragments, Aβ42 and Aβ40, Aβ16 has a good
solubility in water at a physiological pH and does not form oligomeric or aggregated species
in solutions. The NMR assignment of the Aβ16 signals was obtained via the analysis of
1H-1H TOCSY and NOESY spectra and it is reported in Table S1. From the analysis of
the NMR spectra, the lack of the amide signals corresponding to Ala2, His6, Asp7, Ser8,
His13, His14, and Gln15 is evident. The absence of NH resonances is generally observed
for flexible peptides at a physiological pH due to their lability and exchange with water
protons. In this case, the NMR data are consistent with a larger solvent exposure of Ala,
Asp, His, Ser, and Gln residues leading to faster amide proton exchange rates known to be
dependent on the amide pKa [39]. On the other hand, NMR investigations performed on
an acetylated Aβ16 system at a lower temperature (T = 278 K) revealed the presence of all
nitrogen backbone main-chain protons, strongly indicating the influence of temperature on
amide–water proton exchange [40].

2.1. Study of Aβ16–LYC Interaction

Upon the full NMR assignment of the Aβ16 spectra, the effects of LYC were evaluated
by looking at the variations in the chemical shifts and line broadening of both the Aβ16 and
LYC signals. As shown in Table 1 and Figure 1, the LYC protons were slightly perturbed in
presence of Aβ16 and, as expected, the chemical shift variations were more pronounced at
a the larger Aβ16:LYC ratio. Moreover, Table 1 points out that larger effects are exhibited
by the protons in the proximity of the nitrogen atom in position 6, in agreement with the
data recorded for the system Aβ40L–YC [33].

Table 1. Chemical shifts of LYC protons in absence and in presence of different Aβ concentrations.
T = 298 K, pH 7.5, phosphate buffer 30 mM.

Atom Type ppm Values

LYC Protons LYC LYC (0.4 eqs) + Aβ LYC (1.0 eqs) + Aβ

H12 7.03 7.03 7.03
H8 6.84 6.83 6.83
H10 6.01 6.00 6.00
H3 5.74 5.73 5.73
H1 4.65 4.65 4.65
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Table 1. Cont.

Atom Type ppm Values

LYC Protons LYC LYC (0.4 eqs) + Aβ LYC (1.0 eqs) + Aβ

H2 4.34 4.33 4.33
H7′′ 4.25 4.24 4.24
H7′ 4.02 3.99 (−0.03 ppm) 1 4.00
H5′′ 3.50 3.49 3.49
H3a1 3.33 3.29 (−0.04 ppm) 1 3.30
H12b 2.88 2.87 2.87

H4 2.82 2.81 2.81
H5′ 2.75 2.74 2.74

1 Chemical shift variations are calculated by subtracting the chemical shift ppm values of LYC in presence and in
absence of Aβ16.
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Figure 1. Superimposition of selected regions of 1H-NMR spectra of Aβ16 0.5 mM (lower trace), LYC
(upper trace), and Aβ16:LYC solutions (middle traces) at different ratios. Aβ16:LYC ratios are shown
as the following: violet 1.0:0.2; green 1.0:0.4; red 1.0:0.6; cyan 1.0:0.8; magenta 1.0:1.0; and blue 1.0:1.2.
T = 298 K, pH 7.5, 30 mM phosphate buffer.

Beyond the results obtained on the LYC resonances, the comparison between the NMR
spectra of the Aβ16 in the absence and in the presence of LYC indicates His residues as the
most affected ones, being weakly downfield-shifted by increasing the LYC concentration
up to 1.2 eqs. (Figure 2A). On the other hand, LYC causes the line broadening of selected
Aβ16 cross-peaks of the 1H-1H TOCSY (Figure 2B,C). In particular, upon LYC addition,
we observed the disappearance of the correlations belonging to Asp1, Glu3, Arg5, Glu11,
Val12, and Lys16. The observed variations agree with the effects recorded on the Aβ40–
LYC system, strongly indicating that the Aβ–LYC interaction occurs at the N-terminal Aβ

region [33].
In order to better evaluate the LYC-induced structural rearrangements, the CD spectra

of Aβ16 in the presence and in the absence of LYC were collected. The CD spectra of
Aβ16 showed the typical features of a disordered and flexible peptide exhibiting a negative
absorption at 198 nm (Figure S1). The addition of 0.5 and 1.0 LYC equivalents lead to subtle
changes in the CD spectra. In both cases, we observed a slightly increased absorption at
198 nm. No new absorptions were visible strongly indicating the absence of significant
structural rearrangements of Aβ16 (Figure S1).
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Figure 2. Superimposition of selected regions of NMR spectra of Aβ16 alone and with LYC. (A) Aro-
matic region of 1H NMR spectra of Aβ16 0.5mM in absence (black) and in presence of 0.16 (mauve),
0.32 (lime), 0.48 (red), 0.64 (cyan), 0.80 (magenta) and 0.96 (blue) LYC eqs. (B,C) 1H-1H TOCSY
NMR spectra of Aβ16 0.5 mM in absence (black traces) and in presence of 1.0 LYC eqs. (blue traces).
T = 298 K, pH 7.5, 30 mM phosphate buffer.

2.2. Study of Aβ16–Cu(II) Interaction

Cu(II)/Cu(I) binding to Aβ peptides has been extensively investigated in recent years
as nicely described in recent review papers [23,41–43]. The binding domains of both copper
oxidation states are located at the N-terminus, and it is well accepted that His acts as a
copper-anchoring site. In order to evaluate the ability of LYC to interfere with the Aβ–
Cu(II) interaction, 1H-NMR analysis on the Aβ16–Cu(II) system was first performed. In
agreement with previous studies, the presence of substoichiometric Cu(II) ions in the Aβ16
solutions caused extensive line broadening on the His residues (Figure S2). In addition to
the effects recorded on the His protons, the disappearance of the 1H-1H TOCSY correlations
belonging to Asp1, Glu3, Arg5, Val12, Gln15, and Lys16 was observed (Figure 3). All these
findings confirmed the involvement of the N-terminal and imidazole nitrogen in the copper
coordination sphere, together with the carboxylate oxygens of Asp1 and Glu3.

2.3. Study of the Ternary Association between Aβ16, Cu(II), and LYC

The NMR spectra of the ternary systems were compared with the correspondent
NMR spectra recorded only in the presence of Cu(II) or LYC. Both Aβ16 and LYC NMR
signals were monitored for insights into the formation of ternary adducts. As shown in
Figures S3 and 4A, the copper-induced line broadening was completely conserved in the
sample containing LYC as well, strongly indicating that copper coordination is unaltered
by the presence of LYC, and pointing out the ability of copper to bind Aβ16 regardless
of LYC’s presence. In fact, the two 1H-1H TOCSY experiments of Aβ16 recorded using
Cu(II) and LYC or using Cu(II) only almost overlapped, except for the LYC signals that
were present in the sample containing LYC only (Figure 4A). At the same time, the LYC
NMR signals were monitored in the presence and absence of Cu(II) ions. As shown in
Figure 4B,C, LYC protons experience a larger up-field shift when Cu(II) is coordinated
to Aβ16. These findings suggest that upon Cu(II) coordination, Aβ16 retains its ability
to associate with LYC. Moreover, the large shift observed in the LYC protons (Figure 5)
suggests that the Aβ16–LYC interaction is more efficient when the peptide is bound to
copper ions.
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Figure 4. Comparison of NMR spectra of Aβ16, Cu(II), and LYC systems at different concentrations
(A) 1H-1H TOCSY spectra of Aβ16 0.5 mM alone (black contours), in presence of 0.1 Cu(II) eqs. (red
contours), and in presence of 0.1 Cu(II) and 1.0 LYC eqs. (blue contours). (B) 1D and (C) 1H-1H
TOCSY spectra of LYC 0.5 mM alone (blue), in presence of 1.0 Aβ16 eqs. (magenta), and in presence
of 1.0 Aβ16 and 0.1 Cu(II) eqs. (black). T = 298 K, pH 7.5, 30 mM phosphate buffer.
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Figure 5. Comparison of the significant chemical shift variations of LYC protons upon Aβ16 and
Aβ16/Cu(II) additions. The most shifted protons are shown as colored circles; the larger the variations,
the more intense the color.

Although NMR experiments provided evidence of a ternary interaction between Aβ16,
Cu(II), and LYC, further analysis was needed for a better understanding of the features
associated with these adducts. By considering the ability of Aβ16–Cu(II) complexes to
generate ROS, we decided to gain more insights into the impact of the Aβ16–Cu(II)–LYC
system by analyzing the effects of LYC on the ascorbate prooxidant activity, both in the
presence and absence of Aβ16. Redox active metal ions, like Cu(II), have the capacity to
expedite the oxidation process of ascorbate when exposed to oxygen. This acceleration
results in the generation of ROS via Fenton-type reactions [44,45]. The consumption of
ascorbate can be effectively monitored by measuring its absorption at 265 nm as a function
of time. This method provides a characteristic kinetic curve, the slope of which is directly
associated with the reaction rate.

Figure 6 shows that LYC delays the consumption/oxidation of ascorbate, strongly
indicating a protective role of LYC against ROS species, usually formed by ascorbate in the
presence of copper(II) and molecular oxygen [44–46]. Such effects are dependent on the
LYC concentration and are much more evident in the system containing Aβ16 and LYC. In
particular, the changes observed on the slope of the kinetic curve (Figure 6A) reveal that
the Aβ16–Cu(II)–LYC adduct is able to impact the kinetic rate of the ascorbate oxidation.
Finally, the effects measured on LYC alone allowed us to independently evaluate LYC’s
impact on the ascorbate–Cu(II) system. As shown in Figure 6B, the absence of Aβ16 results
in a completely different LYC behavior, thus indicating that the observed ROS protection
is mainly dependent on the Aβ1–LYC interaction. These findings agree with the NMR
observations and indicate that the Aβ–LYC association, albeit weak, is able to interfere
with Aβ16’s ability to generate ROS.
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3. Discussion

In this study, the ability of LYC to interact with Aβ16 in the absence and presence of
Cu(II) was investigated using NMR spectroscopy. Our findings indicate that LYC weakly
associates with Aβ16 as shown by the variations in the NMR parameters of both LYC and
Aβ16 (Figures 1 and 2). In fact, the NMR signals of LYC showed slight chemical shift
variations together with the His aromatic protons of Aβ16, while other Aβ16 residues,
like Asp1, Glu3, Arg5, Glu11, and Val12, exhibited decreased intensity signals upon LYC
addition. These data are in good agreement with the recent features shown by an Aβ40–LYC
system [33] and indicate that LYC is also able to interact with the monomeric, disordered,
and flexible Aβ16 form. The interaction takes place at the N-atom at position 6 of the LYC
as shown by the largest effects displayed by the protons located nearby (Figure 5).

The NMR data collected on the Aβ16–LYC and Aβ16–Cu(II) systems indicate that both
LYC and Cu(II) share a similar Aβ16-binding domain, mainly encompassing the N-terminal
and His residues (Figures 2 and 3). Despite the evidence of a correspondence between
the LYC and Cu(II) association sites, the two species experience different binding modes
since Cu(II) is able to form very stable coordination complexes while LYC weakly interacts
with Aβ16 via electrostatic interaction. In this scenario, the NMR behavior of solutions
containing Aβ16, copper, and LYC was investigated with the aim to evaluate the possible
existence of a ternary association involving all three analyzed species.

The analysis of the NMR spectra reported in Figures 3 and 4 points out that LYC’s
association with Aβ16 is also conserved in presence of Cu(II). Moreover, the largest shifts
measured in the ternary system containing Aβ16, Cu(II), and LYC (Figures 4 and 5) gave
evidence of stronger Aβ16–LYC associations when the peptide was bound to the cupric ion.
This phenomenon could be explained by considering the different conformation assumed
by the peptide in the apo- or metal-complexed form. In fact, previous CD investigations
have shown that upon Cu(II) binding, both Aβ16 and Aβ26 assume a more ordered
structure [47], which in turn might favor the interaction with LYC.

The formation of an Aβ16–Cu(II) –LYC adduct was also confirmed by the UV-VIS ki-
netic curve, indicating that the ternary system is capable of interfering with the prooxidant
activity of the ascorbate (Figure 6A). In fact, the protective effects of LYC are tangible only
in the presence of Aβ16, probably due to LYC’s influence in favoring peptide conforma-
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tions less suitable for Cu(II)/Cu(I) redox cycling. The importance of backbone structural
rearrangements is also supported by measuring the ascorbate oxidation in the presence of
the His–LYC system (Figure S4). The choice of using His was made in order to evaluate
the effects of LYC in a system able to strongly bind both Cu(II) and Cu(I), such as His, but
at the same time not able to interact with LYC or undergo structural changes upon LYC
association. The obtained UV-VIS kinetic curves point out that the same LYC amounts used
for the Aβ–LYC system lead to completely different results when Aβ is substituted with
His. In fact, the presence of LYC in the solution does not yield a slowing down of ascorbate
oxidation but it rather induces a mild increase. Moreover, the lack of LYC concentration
dependence suggests that the observed changes can be considered negligible.

The role of copper ions in AD is well documented in the literature [48–53]. Altered
copper levels have been measured in the serum, cerebrospinal fluid, and post-mortem
brains of AD patients [54,55]. Copper is also involved in several AD processes, such
as oligomer and fibril Aβ formation [56–58], Aβ proteolysis and clearance [59,60], and
oxidative stress [26,61–63]. At the same time, copper binding to Aβ peptides has been
extensively investigated in recent years. It is well accepted that copper forms stable metal
complexes at the N-terminal region of Aβ in both oxidation states, and the formed metal
complexes are able to catalyze ROS production in vitro in the presence of molecular oxygen
and ascorbate [26]. ROS production is mediated by the redox cycling between the Cu(II)
and Cu(I) oxidation states occurring in the presence of ascorbate. Recently, it has been
shown that ROS production is catalyzed by a low-populated copper binding state, different
from the Cu(II) and Cu(I) binding modes observed in the “resting state” [64].

The copper-induced line broadening of the NMR signals allowed us to identify and
compare the metal coordination sphere in the presence and absence of LYC. Our findings
indicate that LYC has no effect on a Cu(II) binding mode of Aβ16, consisting of the three His
imidazoles together with the Asp1 and Glu3 carboxylic groups, in agreement with previous
results reporting copper(II) coordination to N and O donor atoms from His, N-terminus
amine, and Asp and Glu carboxylate groups in a distorted square-pyramidal geometry [61].

In conclusion, our findings strongly suggest LYC’s ability to function against oxidative
stress via its interaction with Aβ–Cu(II) complexes, which are known to be able to catalyze
ROS production. Similarly to LYC, GAL was also found inhibit Aβ-mediated ROS accumu-
lation [65], thus possibly explaining the neuroprotection exhibited by both alkaloids against
Aβ toxicity and providing new insights into a deeper understanding of AD progression
and the molecular basis of GAL and LYC in neuroprotection.

4. Materials and Methods
4.1. Materials

The CuSO4 solution (4% w/v, prepared from copper(II) sulfate pentahydrate), ascorbic
acid (≥99%), lycorine hydrochloride (≥98% TLC), and L-Histidine, phosphate buffer and
water for chromatography (LC-MS-grade) were all supplied by Sigma-Aldrich (Schnelldorf,
Germany). The Aβ16 peptide was purchased from DBA Italia (Segrate, Italy).

4.2. NMR Experiments

The NMR experiments were performed at 14.1 T using a Bruker Avance III 600 MHz
spectrometer and a 5 mm BBI (Broadband Inverse) probe. All the experiments were
collected and carried out at controlled temperature T = 298 K ± 0.2 K. The chemical shifts
were referenced against external 2-(Trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt
(TMSP-d4). The 1D spectra were recorded by using standard pulse sequences, and were
analyzed by using the TopSpin 4.1.4 software. The residual water signal was suppressed
using an excitation sculpting pulse program, applying a selective 2 ms long square pulse to
water [66]. The TOCSY spectra were obtained using the MLEV-17 pulse sequence with a
mixing time of 60 ms. The NOESY spectra were obtained using different mixing times to
ascertain the best one. The NMR tubes were prepared by using a stock solution of Aβ16
peptide to achieve a final concentration of 0.5 mM. LYC and Cu(II) stock solutions were
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used to obtained the desired stoichiometric ratios Aβ16:Cu(II) and Aβ16:LYC in the NMR
tubes. All the samples were prepared in phosphate buffer 30 mM at a pH of 7.5 with
10% D2O.

4.3. UV-VIS Measurements

The absorption spectra and the kinetic curves (45 min, 2700 s) were recorded on a
Perkin Elmer Lambda 900 UV/VIS/NIR spectrophotometer. The UV-VIS samples were
prepared by using ascorbate, Aβ16, L-His, and Cu(II) stock solutions to generate the final
concentrations 20 µM, 10 µM, and 1 µM for ascorbate, Aβ16/L-His, and Cu(II), respectively.
The stoichiometric ratios Aβ16/L-His:LYC were 1:0.5 and 1:1 during all the experiments.
The samples were prepared in phosphate buffer 1 mM, pH 7.5. In order to avoid any
sample contamination interfering with the ascorbate oxidation, all the stock solutions, the
buffer, and the UV-VIS samples were prepared by using water for chromatography.

4.4. CD Studies

The Circular Dichroism (CD) spectra were acquired using a Jasco J-815 spectropo-
larimeter at room temperature. A 1 cm cell path length was used for data between 190 and
260 nm, with a 1 nm sampling interval. Four scans were collected for each sample, with a
scan speed of 100 nm min−1 and a bandwidth of 1 nm. The baseline spectra were subtracted
from each spectrum and data were smoothed with the Savitzky–Golay method [67]. The
data were processed using the Origin 5.0 spread sheet/graph package. The Aβ16 samples
were prepared to obtain a final concentration 10 µM in the cuvette. LYC addition was
performed to obtain the Aβ16:LYC ratios 1:0.5 and 1:1. The samples were prepared in
phosphate buffer 1 mM, pH 7.5.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/inorganics11110443/s1: Figure S1: CD spectra of Aβ16 in absence (black
lines) and presence of 0.5 (red lines) and 1.0 LYC eqs. (blue lines). Aβ16 concentration 10 µM,
phosphate buffer 1 mM, T = 298 K; Figure S2: NMR spectra of Aβ16 0.5 mM in absence (black traces)
and presence of 1.2 LYC eqs. (blue traces), 1.0 LYC eqs. (magenta traces), 0.8 LYC eqs. (cyan traces),
0.6 LYC eqs. (red traces), 0.4 LYC eqs. (green traces), and 0.2 LYC eqs. (gray traces). T = 298 K, pH 7.5,
20 mM phosphate buffer; Figure S3: Superimposition of selected regions of 1H-1H TOCSY spectra of
Aβ16 0.5 mM (black), Aβ16 0.5 mM with 0.1 Cu(II) eqs. in absence (blue) and presence of 1.0 LYC
eqs. (magenta). T = 298 K, pH 7.5, 20 mM phosphate buffer; Figure S4: UV-VIS kinetic curves of the
systems composed of ascorbate 20 µM and Cu(II) 1 µM in the presence of His and LYC. The green
curve corresponds to ascorbate in the presence of only copper(II), while the other colors refer to
samples in the simultaneous presence of His and Aβ16, together or alone. Specifically, His 10 µM
(blue), His 10 µM + LYC 5 µM (black), His 10 µM + LYC 10 µM (black); Table S1: 1H chemical shift
assignment of Aβ16 0.5 mM, T = 298 K, pH 7.5, 20 mM phosphate buffer.
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