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Abstract: During the last two decades, metal-organic cages (MOCs) have been extensively inves-
tigated and well documented. Meanwhile, phosphorescent MOCs have emerged as a kind of
new MOC material but have not been given much attention. The diversity of their structures and
their flexibility of self-assembly result in various luminescent behaviors. Additionally, their special
photoactive properties are quite attractive in the background of photochemistry and worthy of
discussion. Here, we would like to introduce the recent development of phosphorescent MOCs,
including their structures, syntheses, photophysical properties and possible applications. This minire-
view may hopefully inspire the development of novel phosphorescent MOCs and also facilitate
promising applications.
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1. Introduction

Porous materials, such as metal-organic frameworks (MOFs), have drawn extensive
attention in the last few decades [1,2]. In addition, metal-organic cages (MOCs) or metal-
organic polyhedrons (MOPs) have also aroused the growing interest of chemists as they
have a similar structure to MOFs along with discrete self-assembly, well-defined shapes,
extensive porosity and a superior solubility to that of MOFs [3-8]. Since the pioneering work
of modern MOCs reported by Saalfrank in 1988 [9], a number of efforts have been devoted
to the library of MOCs by Stang [10], Fujita [11], Raymond [12], Cotton [13], Cook [14],
Mirkin [15], Hosono and Kitagawa [16], Nitschke [17] and others. A variety of excellent
works about these delicate cages have emerged in rapid succession since 2008 (Figure 1,
blue column). Among these cages, photoactive cages have recently become a research
focus. The high concentration of chromophores and tunable cavities in luminescent MOCs
results in host-guest optoelectronic interactions, which have various potential applications,
such as in imaging, nonlinear optics, sensors and photocatalysis [18]. However, works on
luminescent MOC:s are still sparse (Figure 1, shadow column).

Luminescence usually includes fluorescence and phosphorescence. Fluorescence is
produced by the radiative electronic transition from the lower vibrational energy level of an
excited singlet (S1) to the ground state (Sp). Phosphorescence is generated from the excited
triplet state (T7) to the ground state (Sp). According to the mechanism of luminescence in
metal-organic porous materials, it commonly results from direct metal-centered emissions
(usually examined in lanthanide metals), organic ligand excitation (especially from highly
conjugated ligands) and charge transfer, including metal-to-ligand charge transfer (MLCT)
and ligand-to-metal charge transfer (LMCT). Moreover, the guest molecules in porous
materials can also cause luminescence [19-21].
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Figure 1. The annual growth of publications in the research of metal-organic cages in Web of Science
on the topics of “metal-organic cages” and “luminescent metal-organic cages”, respectively.

Since the rational design and synthesis of MOF materials by researchers, luminescent
MOF materials have made great strides. Although people do not often distinguish between
the luminescence mechanisms (fluorescence, phosphorescence, etc.) of MOF materials
in this field, long-lived luminescent MOF materials (mostly phosphorescence), especially
those built with classic ruthenium(II) and iridium(III) metal organic units, combining their
adjustable pore structures, have been developed for wide applications in photocatalysis,
biological imaging and photodynamic therapy, among other fields [19-21]. MOF mate-
rials cannot be dissolved in a solution in a discrete state, which limits their processing
and efficient application. However, as porous MOC materials are built by metal organic
coordination bonds and their molecularly structured discrete cages can be dissolved in
solvents, they hold promise for solving these problems.

Even though luminescent MOC materials are often reported in the literature, the issue
of not distinguishing and discussing their luminescence mechanisms (fluorescence, phos-
phorescence, etc.) still exists. While a number of fluorescent MOCs have been developed
by many research groups [22,23], less attention has been paid to the phosphorescence of
MOCs. Phosphorescence is widely observed in d-block metal-organic cages, in particular,
those containing d®, d® and d'° electronic configurations of second and third-row transition
metal ions. These heavy metal atoms not only strengthen spinorbit coupling which could
result in efficient intersystem crossing (ISC) from S; to Ty manifolds under photoexcitation,
but also relax the spin selection rule which could improve the spin forbidden transition
from T; to Sy [24]. Zysman-Colman and his colleagues presented photoactive coordination
cages incorporating d-block ruthenium(II) and iridium(IIl) transition metal complexes in
2018 [18]. In this minireview, we will mainly focus on MOCs derived from phosphorescent
organometallic skeletons, especially those incorporating d-block transition metal complexes,
and provide an outlook for the basic research and applications of these phosphorescent
MOCs. The classification of phosphorescent MOCs mentioned in this minireview is based
on the metal type and photophysical properties (Table 1).
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Table 1. Summary of phosphorescent MOCs based on the metal type and photophysical properties.

Entry MOCs (Metallo) Ligand Node Precursor Aem (nm) ¢ Ppy, (%) TpL (ns) Applications
MOC-Ru-1 [25]
1 - 745 1 135 -8
[Ruy] (PFe)e
N = ‘
L AW
N, | P
MOC-Ru-2 [26] NN R 577 r
2 [Lg Rug]Clyn | 7N ‘ cl 689" <0.1 2,790
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N~ N ‘ PZ
2 Ru3
' N j 2+
N7 NH
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MOC-Ru-3 [27] = = c g Photocatalysis and
3 [RusPd.] (B N [Pd(MeCN),](BFy), 610 484 bio-imaging
NP Y, N
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Table 1. Cont.

Entry MOCs (Metallo) Ligand Node Precursor Aem (nm) 4 Ppy, (%) TpL (ns) Applications
o

MOC-Ru-4a [28] (\led/OTf

4 - 640 -8 1.21 -8
[RugPds] (PFs )24 L
MOC-Ru-5 [29] d h

5 Pd(MeCN),] (BE 710 6.9 151 and 700 -8
[RugPdy] (BF4)24 [P 4l (B, an

6 MOC-Ru-6a [30] [Pd(MeCN),] (BE,), 638 ¢ 26 659 -8

[RuyPdy] (BF4)12
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Table 1. Cont.

Entry MOCs (Metallo) Ligand Node Precursor Aem (nm) 4 Ppy, (%) TpL (ns) Applications
MOC-Ru-7b [31]
7 Pd(MeCN),] (BF. 640 € 66 -8 -8
[RU4Pd2] (BF4)12 [ ( )4] ( 4)2
(o]
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4
N | XN
MOC-Ir-8 [32] | e, |
8 S an 75 f 4 8 -8
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MOC-Ir-9 [33] 9a 655, 9a5, 9a 202 g
? [IrsPd4] (BF4)16 [PA(MeCN)41(BEy)2 9b 569 ¢ 9b 14 9b 825 i
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Table 1.
Ent MOCs (Metallo) Ligand Node Precursor Aem (nm) ¢ Dpr, (%) Tpr, (ns) Applications
ry 8 pp
N\
.
10a
10 MOC-Ir-10 [34] Mo 10a 604, ¢ 10a 1, 59 and 129, " g
[LoIrs] (PFg)3 10b 485 ¢ 10b 15 10b
523 and 887 "
Bio-imaging and
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glidy 4)16 therapy
MOC-0s-12 [36]
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12 [L12(Os)4(Cd)4] CA(CIOy)y-6H,0 625 25 156 and 73
(ClO4)16
MOC-Pt-13b [37] Etlph
13 e C L ~OTf 527 16.7 15,500 -8
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Table 1. Cont.

Entry MOCs (Metallo) Ligand Node Precursor Aem (nm) 4 Ppy, (%) TpL (ns) Applications
X
| ~-N
)
=
I
MOC-Pt-14 [14] Et;P-Pt-PEt;
14 Zn(NOg3),-6H,0 545 10 95,000 -8
[PteZny] (PFe)s Il n(NOs)z 6H,
a
N
A N
S \
Pt19
AR
R TR
?(P/D 403\?/0
MOC-Pt-16 [38]
15 Cd(NO 567 -8 218 -8
[PtsCara] (PF)sg (NO3)2
16 MOC-Au-17 [39] thp/—\P/—\Pth Chloro(tetrahydrothiophene) 485 g 10 g
[L4Au6Br] (SbF6)5 Ph gOld KBr

2 In MeCN, at 298 K; ¥ at 77 K; ¢ in DMSO; ¢ in DCM; ¢ in DMF;/ in tetrachloroethane; ¢ Not mentioned in the literature; and " bi-exponential photoluminescence decay.
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2. Metal-Organic Cages Based on Phosphorescent Organometallics
2.1. Phosphorescent MOCs Incorporating d® Metal Ton

As important luminophores, phosphorescent transition-metal complexes with a d®
electronic configuration, especially ruthenium(Il) and iridium(IIl) complexes, whose excited
states include metal-to-ligand charge transfer (MLCT), exhibit superior photophysical, ther-
mal and chemical stabilities [40]. Therefore, phosphorescent d° transition-metal complexes
are usually used for the self-assembly of phosphorescent MOCs.

In 2017, Campagna, Hanan and their colleagues reported a photo-induced luminescent
tetraruthenium square, MOC-Ru-1, assembled from four terpyridine and four bipyridine
ligands with Ru(Il) ions as nodes (Scheme 1) [25]. MOC-Ru-1 possesses the typical SMLCT
emission of Ru(ll) polypyridine complexes at 745 nm with an emission lifetime (7pr,) of
135 ns (40 times greater than that of its mononuclear precursor) and a quantum yield (®pr)
of 1% in acetonitrile solution at room temperature (Figure 2). This case offers a new route
for the assembly of supramolecules via photochemical techniques.

hv =452 nm

B ——
20 °C, acetone

MOC-Ru-1

Scheme 1. The luminescent tetraruthenium square MOC-Ru-1 [25].
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Figure 2. Absorption, excitation and emission spectra of MOC-Ru-1 in acetonitrile solution at room
temperature (adapted from data of [25]).

Another ruthenium(II) cage (MOC-Ru-2) with Ru(II) polypyridine complexes as nodes
was synthesized by Cook and co-workers through the coordination of 2,4,6-tris(4-pyridyl)-
1,3,5-triazine (TPT, 2) with cis-bis(2,2-bipyridine)ruthenium(Il) Ru3 (Scheme 2) [26]. They
investigated the photophysical properties of MOC-Ru-2 in acetonitrile at two different
temperatures. The Apnax of emissions was 577 nm and 689 nm at room temperature and
77 K, respectively, with a very low ®py, value of less than 0.1% and biexponential excited
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state lifetimes (7pr,) of 2 ns and 790 ns. There is still a red shift of about 0.35 eV (~112 nm)
and a biexponential decay in the 77 K emission spectrum compared with those of the room
temperature emission, which probably accounted for the existence of two separate but
thermally equilibrated triplet excited states, >ML(bpy,+)CT and SML(TPT)CT (Figure 3).
The thermal population of this high-energy ML(bpy +)CT did not happen at 77 K, and
the lower-energy >ML(TPT,+)CT became mainly populated. It is the two separate triplet
excited states that give the cage its unique photophysical properties, which encourages the
design of new MOCs.

4
‘ N\ ‘ A \N
= =N, ‘ Cl
9 R MeOH/H,0 1:1
N - | Ny ——mm
N N N Cl
| | N reflux 1 week
Y)Y T
N~ N =
2 Ru3
ratio = 4:6

Scheme 2. Coordination-driven self-assembly of the truncated tetrahedral cage MOC-Ru-2 [26].
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Figure 3. Absorption and emission at 298 K (red; excitation at 430 nm) and 77 K (blue, excitation at
430 nm) of MOC-Ru-2 in acetonitrile (adapted from data of [26]).

Besides being metal nodes, ruthenium(Il) complexes can also be used as ligands for
the construction of MOCs. In 2014, Su’s group designed and synthesized a nanosized
heteronuclear homochiral PdgRug metal-organic cage (MOC-Ru-3, Scheme 3) [27,41]. A
series of functional and practical applications using this MOC were developed for chiral
separation [41], photochemical hydrogen production [42,43], biological imaging [44] and
enantioselective photocatalysis [45—47]. The single-crystal X-ray diffraction of this cage
exhibited a truncated octahedral, or more accurately, a rhombododecahedron structure with
eight metalloligands with Ru4 comprising the eight faces and six PdNy planes truncating
the six vertices of the octahedron. The enantiomers A- or A-MOC-Ru-3 were generated fol-
lowing four steps. Starting with the chiral induction agent, K, {Sb,[(+)-tartrate],}-3H,0O, the
racemate [Ru(phen)3]?** was first isolated into a pair of enantiomers (A- or A-[Ru(phen);]**).
After oxidizing into A- or A- [Ru(phendione)3]2+, A- or A-Ru4 metalloligands were ob-
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tained from A- or A[Ru(phendione);]** reacting with 3-pyridinecarboxaldehyde. The final
step was the coordination of A- or A-Ru4 metalloligands and Pd?* ions to form homochi-
ral A- or A-MOC-Ru-3, respectively. The circular dichroism (CD) spectra of homochiral
A- or A-MOC-R-3 were measured to monitor their chirality (Scheme 3). Compared with the
free Ru4 metalloligand, MOC-Ru-3 displayed a similar absorption and emission spectrum
in DMSO (Figure 4). The emission maxima at ca. 610 nm stems from Ru(phen)s-centerd
triplet SMLCT states with a Tp, of 601 ns for Ru4 and 484 ns for MOC-Ru-3. A strong
7-7* transition from the intraligand (at 290 nm) in the ultraviolet region and a broad peak
corresponding to the metal-to-ligand charge transfer ({MLCT from Ru to Phen) in the
400-550 nm visible region were observed. The molar absorptivity was intensified at every
wavelength, which indicated that the assembly of multiple chromophoric RuL3 units could
form a good light absorber. However, the emission intensity of MOC-Ru-3 was decreased
by ~32% because of the intramolecular charge transfer from RuLg3 to the Pd(pyridine),
moieties. In addition, both the DFT calculations and ultrafast transient absorption spectrum
demonstrated the electronic structure of MOC-Ru-3. At the beginning, the electron was
excited from the [Ru(phen)3]2+ chromophore at 400 nm to the IMLCT state, then it trans-
ferred into the SMLCT state of the phenanthroline via intersystem crossing (ISC). Followed
by the intraligand charge transfer (ILCT) process from phen to biim-py, the excited state
relaxation occurred and subsequently arrived to the Pd catalytic center through a much
slower process of ligand-to-metal charge transfer (LMCT) (Scheme 4).

Fety | Jiy )
o 12 B N 5 a3
r ey AN L G
N7 NH SR DRSS RO A~ O 3 }v
6 [Pd(MeCN)](BF ) 2 < 4 o« RN
8 /_ \ # R ) 4 { o7 : R 4 A
N £= K N , LN PPy <& > |
@ A= RS 3 % r‘i?sﬁ‘ -
4 Ru—N - 8 ~ .
» A & s AU 0 @
N Y N My M w @rd
OAN . o I i \ LY @
> N G o el | o
; ooy IR - S . &
D-or L-Ru, N D-MOC-Ru-3 L-MOC-Ru-3
~ 1,000,000 - - 7 300
= —— UV-vis absorption spectrum
_IQ ——CD spectrum of A-MOC-Ru-3 4 600
E 800,000 ——CD spectrum of A-MOC-Ru-3
e - 400
~ —":
5 600,000 4200 °
2 =
k> o &
8 =
= 400,000 3
g 4200 §
&
2 4-400
& 200,000
b
= - -600
=
0 T T T T T T -800
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Wavelength / nm

Scheme 3. The synthetic route, UV-vis absorption and CD spectra (in HyO) of homochiral A- or
A-MOC-Ru-3 (adapted from data of [27,41]).
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Figure 4. UV-vis absorption and emission spectrum of Ru4 and 1/8 RuL3 concentration of MOC-Ru-3
in DMSO (adapted from data of [42]).
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Scheme 4. Photocatalytic reactions: (a) The 1,4-coupling of 3-bromo-2-naphthol in a stereochemical
control; (b) the selective intermolecular [2 + 2] cycloaddition; (c) E/Z selective Meerwein arylation,
catalyzed by MOC-Ru-3 with the multi-channel electron transfer routes between Ru and catalytic Pd
metal centers [45-47].

Various applications, especially in photocatalysis, have been developed with this
multifunctional MOC. The 1,4-coupling of 3-bromo-2-naphthol in a stereochemical control
was realized via photoinduction (Scheme 4a) [45]. Under A- or A-MOC-Ru-3, a major R-
or S-1,4'-bis(2-naphthol) product was obtained with both 56% ee, respectively. Another
photocatalytic reaction, the selective intermolecular [2 + 2] cycloaddition of o, 3-unsaturated
carbonyl compounds, was also achieved by MOC-Ru-3 (Scheme 4b) [46]. This highly
efficient and robust cage catalyst could acquire syn-HH diastereomers with an excellent
diastereoselectivity (up to 99%) and substrate tolerance. Recently, the same group continued
to further study photocatalytic reactions with MOC-Ru-3 and reported the Meerwein
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arylation of alkenes with controllable E/Z selectivity using this cage (Scheme 4c) [47]. The
desired products were obtained with a high stereoselectivity (E/Z up to 99/1). Moreover,
major Z-isomers could be formed through the control of the solvent.

Beves and his colleagues also designed Ru-Pd metal-organic cages (MOC-Ru-4) with
an inert [Ru(tpy),]** block (tpy = 2,2',6/ 2"-terpyridine) decorated with pendant pyridyl
rings, which were capable of coordinating to square planar Pd(II) complexes (Scheme 5) [28].
Only a single major species with a tetrameric structure in solution was generated in
the reaction of the Ru ligand complex Ru5 with two equivalents of Pd(dppp)(OTf),
(dppp = 1,3-diphenylphosphinopropane) in nitromethane at room temperature (Scheme 5a,
MOC-Ru-4a). A box-like structure (MOC-Ru-4a crystallized in the P1 space group) with
dimensions of ca. 21 x 21 x 32 A was observed with Pd(Il) centers at each end to con-
struct near-perfect squares (with Pd-Pd-Pd angles of 86.0-92.8° and Pd- - - Pd distances of
13.2-13.4 A). [Ru(tpy),] units were located at the center of the cage with alternating Ru- - - Ru
distances of 11.82 A and 8.78 A. The analogous reaction by using the Ru ligand complex
Ru6 obtained a trimeric structure instead of a tetrameric structure (Scheme 5b). These
cages have similar photophysical properties with corresponding Ru ligand complexes. The
maxima of the !MLCT absorption of Ru ligand complexes Ru5, Ru6, MOC-Ru-4a and
MOC-Ru-4b were at Apax = 490 nm (Figure 5a). And the SMLCT emission spectra were
weak at 640 nm with short mono-exponential excited state lifetimes of 1.26 £ 0.01 ns and
1.21 £ 0.01 ns, respectively (Figure 5b).

MOC-Ru-4a

MOC-Ru-4b

Scheme 5. Self-assembly of (a) MOC-Ru-4a and (b) MOC-Ru-4b [28].
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Figure 5. (a) Absorption spectra of Ru5, Ru6, MOC-Ru-4a and 4b; and (b) the SMLCT emission
lifetime peaks of Ru5, Ru6, MOC-Ru-4a and 4b, together with Instrument Response Function (IRF)
(adapted from data of [28]).

Another phosphorescent Ru-Pd heteronuclear metal-organic cage (MOC-Ru-5) was
assembled featuring the metalloligand Ru7 [Ru(dtbubpy)(qpy)]** (qpy is 4,4':2',2/":4" 4" -
quaterpyridine and dtbubpy is 4,4’-di-tertbutyl-2,2’-bipyridine) and Pd?* ions by Zysman-
Colman’s group in 2018 [29]. It is a square arrangement with two ligands doubly bridg-
ing adjacent Pd(II) centers in a crown-like fashion, disposing of the four palladium ions
(Scheme 6). Different from those of Ruqpy (ApL = 674 nm, @pp, = 7.3%), the emission
properties of MOC-Ru-5 in DCM (Apy, = 710 nm, @py, = 6.9%) were broader and had a
greater red shift owing to the coordination of the Lewis acidic Pd ions to the ruthenium
complex (Figure 6). The 7gpy* orbital level involved in the emission could be stabilized
by their coordination, leading to the lower energy of the triplet state. The emission of
Rugpy and MOC-Ru-5 decayed biexponentially with lifetimes (Tpr) of 324 and 1047 ns,
151 and 700 ns, respectively (Figure 6), which indicated the Pd(II) ions in MOC-Ru-5 did
not adversely affect the photophysical properties of Ru ligand complexes.
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[Pd(MeCN),](BF 1),

2
DMSO, 85 °C, 16 h

Ru7

MOC-Ru-5

Scheme 6. The synthesis and structure of MOC-Ru-5 viewed down to the crystallographic a- (top)
and c-axes (bottom) [29].
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Figure 6. Normalized emission spectra and emission decays of Ru7 (black line) and MOC-Ru-5 (red
line) in degassed DCM at 298 K (adapted from data of [29]).

Although plenty of Ru-Pd cages have been reported, the emissive nature of these cages
is often partially or completely quenched by Pd(II) ions due to non-emissive charge-transfer
states between the Ru and Pd centers [18]. Thus, a feasible strategy is to separately append
the functionalized units as a pendant ligand at the exohedral [48] or endohedral [49] faces
of the assembled cage for electronically isolating the emissive Ru(ll) ligand complexes from
the Pd(II) ions. In 2016, Crowley, Gordon and their colleagues synthesized [Pd;L4] cages
with photoactive ruthenium complexes attached at the exohedral face (Scheme 7, MOC-
Ru-6) [30]. The exo-functionalized ligands were obtained by using the functional tolerant
group “click” reaction [50] of copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC).
The photophysical properties of MOC-Ru-6a and 6b (ruthenium-based >MLCT emissions;
ApL = 620 and 638 nm; @pp, = 0.2% and 2.6%; Tpy, = 20 and 659 ns, respectively) were almost
retained with their parent Ru ligand complexes Ru8 (Apy, = 620 and 638 nm; ®py, = 0.2%
and 6.5%; Tpr, = 21 and 943 ns, respectively) (Figure 7). This strategy offered a practicable
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way to keep the functionalization of the parent system in the assembled cages without
compromising their photophysical properties.

Scheme 7. Synthesis of [Pd,L4]** cages with photoactive ruthenium complexes [30].
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Figure 7. Absorption (solid lines) and emission (dash lines) spectra of Ru8, Ru9, MOC-Ru-6a and
MOC-Ru-6b (adapted from data of [30]).

Later, analogous exo-functionalized [Pd,L,4]*2+ cages were demonstrated with Ru(II)
pyridine complexes by Casini, Kithn and co-workers (Scheme 8) [31]. The pendant Ru(II)
terpyridine and Ru(Il) bipyridine moieties were connected by an amide bond to form
the ligands Rul0 and Rull, which mixed with [Pd(MeCN)4](BF4), in DMSO at room
temperature, leading to MOC-Ru-7a and 7b. A series of exhaustive spectroscopy analyses
were carried out on these cages to study their photophysical properties. The absorption
spectra of MOC-Ru-7 exhibited a range of bands from 250 to 350 nm, which were caused
by the strong 7-m* transitions of the highly conjugated ligands. Moreover, there is an
additional band in the vis region (MOC-Ru-7a at 495 nm and MOC-Ru-7b at 460 nm)
of the UV-vis spectra. The cages displayed interesting emissive properties, which, by
varying the molecular structure of the ligand backbone, could increase or decrease the
luminescence of the cages. MOC-Ru-7a and the corresponding Ru ligand did not show any
emissive properties due to the disruption of the chromophoric system in the excited state
by the torsion of the amide bond. To avoid bending the amide bond, an alkyl spacer as an
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electronic separation was used between the ruthenium moiety and the amide bond of the
bis(pyridyl) ligand. Upon irradiation at 260 nm, the Ru ligand Rul1 and cage MOC-Ru-7b
emitted strong orange phosphorescence at Apy, = 640 nm with unusually high ®py, values
of 88% and 66%, respectively (Figure 8).
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Figure 8. Absorption (solid lines) and emission (dash lines) spectra of Ru10, Rull, MOC-Ru-7a and
MOC-Ru-7b (adapted from data of [31]).

Apart from ruthenium(II) complexes, cyclometalated iridium(III) complexes, which
also have a d° electronic configuration, showed the ability to modulate their emission
energy in the visible spectrum and usually were phosphorescent and chemically thermo-
dynamically stable [51]. Therefore, iridium complexes as luminescent moieties have been
employed for the assembly of metal-organic cages.
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In 2012, the first 3D luminescent and enantiopure Ir(IlI) octahedral capsule MOC-Ir-8
([r(ppy)2)e(tcb)4](OTf)g (tbc = 1,3,5-tricyanobenzene, 12)) was described by Lusby’s group
(Figure 9) [32]. Firstly, the enantiomers A- and A-[(Ir(ppy).Cl);] were obtained from resolving
rac-[(Ir(ppy)2Cl)2] Ir13 via the chromatographic resolution of D- and L-serine complexes
and their transformation to A- and A-[(Ir(ppy),OTf),] by AgOT{. Then tcb was added into
A- or A-[(Ir(ppy)2OTf), ] to generate corresponding A- or A-MOC-Ir-8, a truncated octahedron
with triflates located in each of the octahedron windows. MOC-Ir-8 emitted orange in a
tetrachloroethane (TCE) solution. The emission of A- or A-MOC-Ir-8 was broad and there
was a red shift at 575 nm with @py, values of 4% as compared with those of a reference complex
([Ir(ppy)2(PhCN), JOTSf (Apr, = 525 nm, Pp, < 0.1%)) (Figure 10).
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Figure 9. The structure of A- and A-MOC-Ir-8 and CD spectra of A-Ir13, A-Ir13, A-MOC-Ir-8 and
A-MOC-Ir-8 (adapted from data of [32]).
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Figure 10. Absorption (solid lines) and emission (dash lines) spectra of [Ir(ppy),(PhCN),]OTf, A- and
A-MOC-Ir-8 (adapted from data of [32]).

Subsequently, Zysman-Colman and co-workers revealed the first homochiral red-
emitting metal-organic cages [IrgPd4]'®*, A-, A- and rac-MOC-Ir-9, self-assembled by two
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enantiopure [52] and racemic Ir(Ill) ligand complexes, Ir14 and Pd?* ions (Scheme 9) [33].
The photophysical properties of all enantiomers of the Ir(IIl) ligand complexes Ir14 and
MOC-Ir-9 were distinguishable either in DCM solution or in polymethyl methacrylate
(PMMA)-doped films. The emission profiles of A-, A- and rac-MOC-Ir-9a and A-, A- and
rac-MOC-Ir-9b had red shifts at 655 nm and 561 nm in degassed DCM, respectively, with
lower @py, values of 5% and 14%, as well as shorter Tp;, values of 202 ns and 825 ns,
compared with those of the corresponding A-, A- and rac-Ir14 (Ap;, = 620 and 527 nm;
Ppp, = 14% and 34%; Tpr, = 300 and 1000 ns, respectively). While in PMMA thin films, the
emissions of A-Irl4a, A-Ir14b, A-, A- and rac-MOC-Ir-9a and A-, A- and rac-MOC-Ir-9b
had blue shifts at 564 nm, 518 nm, 643 nm and 531 nm, respectively, with higher ®py, values
of 28%, 41%, 10% and 16% and longer multi-exponential Tpy, values than those in DCM
(Figure 11).

[PA(MeCN)4](BF ),
_—

R=H, A A-andrac-rida
R=F, A= A- and rac-Iridb A=, A- and rac-MOC-Ir-9

Scheme 9. Self-assembly between the Ir(III) ligands and Pd?* jons for synthesis of MOC-Ir-9 [33].
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Figure 11. Normalized emission spectra of Ir(Ill) ligand complexes (a) A-Ir14a, A-MOC-Ir-9a and (b)
A-Ir14b and A-MOC-Ir-9b in deaerated DCM and in PMMA thin films (adapted from data of [33]).

In 2017, Zysman-Colman, Hardie and their colleagues demonstrated that two metal-
organic cages, [(Ir(ppy)3)3(CTV),]>* MOC-Ir-10, could be self-assembled by the chiral tripo-
dal ligands cyclotriveratrylene (CTV, 15) and rac-[Ir(ppy)2-(NCMe),] Ir16 (Scheme 10) [34].
MOC-Ir-10 contained three pseudo-octahedrally coordinated Ir(III) centers, including two
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ppy ligands (Ir16) and two pyridyl groups from two CTV ligands (15) as bridges connect-
ing with the Ir(Ill) centers in cis-arrangements. Notably, homochiral self-sorting could
be observed during the process of self-assembly. Although there were 12 potential cage
stereoisomers, only two enantiomeric cages (MM-AAA and PP-AAA) were generated with
slow self-sorting. The emission properties of MOC-Ir-10 were examined in DCM solution,
as powders and in PMMA-doped films (Figure 12). The MOC-Ir-10a powder had a red
shift (ApL = 648 nm) higher than that in DCM solution (Amax = 604 nm) with low ®pp
values of around 1% in both media and short bi-exponential emission decays (7pr, = 55 and
203 ns as a powder; Tpr, = 59 and 129 ns in DCM). Meanwhile, in the film, there was a blue
shift at @, = 514 nm with a higher photoluminescence quantum yield (®pL = 5.5%) and
longer bi-exponential excited state lifetime (py, = 634 ns and 2319 ns) (Figure 12a). For
MOC-Ir-10b, a vibronic °L.C emission was more predominant, leading to a greater blue
shift emission than that of MOC-Ir-10a. Simultaneously, MOC-Ir-10b possessed similar
energies in DCM, as a powder and in PMMA-doped films at 516 nm with enhanced ®pp,
values (15%, 1.6% and 10%, respectively) and bi-exponential Tpy, values (523 and 887 ns;
141 and 1175 ns; and 688 and 3042 ns, respectively) (Figure 12b).

0
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l Ir16 X = CHy, MOC-Ir-10b
=

Scheme 10. Self-assembly of MOC-Ir-10 by chiral tripodal ligands and rac-[Ir(ppy)2-(NCMe),] [34].
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Figure 12. Normalized photoluminescence spectra of (a) MOC-Ir-10a and (b) MOC-Ir-10b in DCM
solution, as powders and in PMMA-doped films (adapted from data of [34]).



Inorganics 2023, 11, 436

20 of 29

The same researchers reported a similar structure, Ir;L3, as above with CTV-type
ligands bearing azo-aromatic linkers [53]. Interestingly, the E/Z photoisomerization of
the pyridyl-azo-phenyl groups in these cages was observed by photoirradiation with a
high-powered laser, and reversible isomerization occurred with blue light. Despite the
weak emission of these cages, there was still a deep blue light at ca. 450 nm.

In 2019, Su group presented a heteronuclear IrgPd, metal-organic cage, MOC-Ir-11, of
the form of the bipodal Ir(III) ligand complex [Ir(ppy)2(qpy)(BE4)] Ir17 (qpy = 44":2',2":4" 4"'-
quaterpyridine; ppy = 2-phenylpridine) and Pd(Il) ions (Scheme 11) [35]. The bipodal Ir(III)
ligand complex Ir17, bearing two coordinated 2-phenylpyridine units, as well as one coordi-
nated bipyridine linker with two pendants’ pyridine (Py), was mixed with Pd(CH3CN)4(BF4),
at 80 °C to obtain the cubic-barrelled, heteronuclear Irg-Pdy MOC-Ir-11. The photophysical
properties of MOC-Ir-11 were investigated in the DMSO solution. The photoluminescent exci-
tation and emission spectra of MOC-Ir-11 were similar compared to those of its corresponding
Ir(ITl) ligand complex Ir17 with excitation A, values of 470 and 430 nm and emission A,
values of 658 and 654 nm, respectively (Figure 13). Their excited state lifetimes (7py ) in solu-
tion of 141 and 158 ns (MOC-Ir-11 and Ir(IIl) ligand complex Ir17, respectively) were longer
than those in the solid state with quantum yields (®pp) of 3.5% and 11%, respectively, at room
temperature. Upon visible light irradiation, this cage exhibited one-photon and two-photon
excited deep red emissions and a large singlet oxygen quantum yield, which offer possibilities
for organelle-targeted cell imaging and photodynamic therapy (PDT).
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Scheme 11. Synthesis of MOC-Ir-11 [35].
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Figure 13. The photoluminescent excitation (solid lines) and emission spectra (dash lines) of MOC-
Ir-11 and Ir(III) ligand complex Ir17 (adapted from data of [35]).

The d® metal ion Os(II) coordinated with ligands in its d-d state possessed a high
amount of energy but could not provide a thermally accessible deactivation pathway, lead-
ing to the luminescence of the lowest-energy SMLCT state. An octanuclear heterometallic
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coordination cage [L12(M?)4(MP),4]16*, MOC-Os-12 was obtained via self-assembly by the
pyrazolyl-pyridine ligand 18 with Os(II) and Cd(II) (Scheme 12) [36]. The photophysical
properties of MOC-0s-12 in MeCN had a broad emission at Ayax = 625 nm with a @py, of
2.5% and biexponential lifetimes (tpy) of 156 ns (minor) and 73 ns (major).

L, 3 equiv. ethylene glycol Cd(ClO,4),"6H,0
+
reflux MeNO,
OsClj *3H,0 di(isopropyl)ether
1 equiv.

@ os
®
[ BN
@®c

MOC-0Os-12

Scheme 12. The synthesis of MOC-Os-12 (orange line represented octanuclear heterometallic coordi-
nation cage) [36].

As d° metal-organic complexes naturally have six-coordinate octahedral building
blocks, whether as node metals or skeleton components as mentioned previously, it is easier
to construct phosphorescent porous structural units based on the principle of symmetrical
ligands. In comparison, d® and d!° metal-organic units adopt square planar and linear
coordination modes, with axial open coordination spaces. It is relatively more difficult to
establish a structurally stable 3D porous cage while retaining the luminescent properties of
phosphorescent metal-organic units without quenching, and there are also fewer reported
examples in the literature.

2.2. Phosphorescent MOCs Incorporating d® Metal Ion

Due to having planar geometry with an open axial site (defined as the z-axis),
d® transition-metal complexes are apt to generate dimers (or aggregates) in the ground
state or excimers in the excited state via intermolecular metal-metal and ligand-ligand inter-
actions, resulting in metal-metal-to-ligand charge transfer ('/>MMLCT) excited states [24].
For examples, Pt(I) complexes, because of the presence of Pt(Il)- - - Pt(II) interactions, usu-
ally display unique photophysical, self-assembly properties as well as conductivity [54,55],
which may provide unique pathways for assembling phosphorescent cages.

In 2011, Castellano, Sallé and co-workers synthesized a series of Pt(II) square pla-
nar metallocycles (MOC-Pt-13) via the self-assembly of bridging pyridine ligands (Pt18)
containing phenyleneethynylene moieties offering a ligand-localized triplet pathway (in-
tramolecular charge transfer sensitization) for excited-state decay, contributing to their
phosphorescence (Scheme 13) [37]. The phosphorescent emissions of MOC-Pt-13b and 13c
centered between 524 and 527 nm with ®py, values of 16.7% and 11.0% as well as Tpr, values
of 15.5 pus and 17.1 ps, respectively (Figure 14).
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Scheme 13. Synthesis of MOC-Pt-13 metallocycles [37].
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Figure 14. (a) Absorption (solid lines) and emission (dash lines) spectra of Pt18. (b) Absorption (solid
lines) and emission (dash lines) spectra of MOC-Pt-13 (adapted from data of [37]).

In 2017, Cook and co-workers reported two phosphorescent tetrahedral cages in the form
of bimetallic Pt-Zn, [Zn,Pt](PFg)s (MOC-Pt-14) and [Fel'4Pt;](OTf)s (MOC-Pt-15), which
were coordinated via Zn(NO3),-6H,O or Fe(OTf); and the linker Pt(PE;3),(C=C-bpy), Pt19
(Scheme 14) [14]. Four transition-metal nodes as vertices containing bipyridyl ligands from
six Pt ligand complexes (Pt19) as edges composed a tetrahedral cage. The molar absorption
coefficient of MOC-Pt-15 at Amax = 402 nm was significantly higher than that of MOC-Pt-14
and the Pt ligand complex Pt19 (Amax = 393 and 360 nm, respectively). The emission spectra
of both cages and the Pt ligand complex Pt19 were examined in an N,-degassed solution
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at 25 °C (Figure 15). All of compounds exhibited very week fluorescence and differing
phosphorescence values. The phosphorescence emission of MOC-Pt-4 centered at 545 nm
with a @p. of 10% and Tpy, of 95 ps from an IL 37t* C=C-bpy — lT[CEC—bpy transition. Meanwhile,
the weak phosphorescence quantum yield of MOC-Pt-15 was less than 0.1%, probably due to
nonradiative competition from emissions from [Fe] nodes, introducing a low-energy SMg.C
state [56].
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Scheme 14. Synthesis of MOC-Pt-14 and MOC-Pt-15 [14].
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Figure 15. Molar absorption coefficients and normalized phosphorescent emission spectra of Pt19,
MOC-Pt-14 and MOC-Pt-15 (adapted from data of [14]).

The strong intermolecular Pt- - - Pt interaction [57] among Pt(II) luminophores could
promote aggregations and emissions through the aggregation-induced phosphorescent
emission (AIPE) effect [58]. In 2020, Li’s group devised the giant, discrete metallo-
supramolecular concentric hexagon MOC-Pt-16 via the self-assembly of Pt(II) bzimpy Pt20
(bzimpy = 2,6-bis(benzimidazole-2’-yl)pyridine) motifs with 2,2":6/,2"-terpyridine (tpy)
and Cd(II) (Scheme 15) [38]. The Pt(Il) bzimpy motif contained four parts, a terminal
alkynyl group for installing the Pt(II) motif with a stable and rigid Pt(I)-alkynyl bond
to connect the other parts, four tpy arms at the sides for the coordination of Cd(Il) to
connect the other motifs, multiple hydrophilic ethylene glycol chains on the periphery and
a long alkyl chain (C12) into the interior for manipulating the aggregation via balancing
the whole hydrophobicity or hydrophilicity. The final metallosupramolecular MOC-Pt-16
was assembled by six Pt(II) bzimpy motifs and twelve Cd(Il), where the size was larger
than 10 nm and the molecular weight was beyond 26,000 Da. The emission spectra of
the Pt(Il) bzimpy motif Pt20 and MOC-Pt-16 were similar due to their similar original
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emitting excited states in acetonitrile solutions at room temperature (Figure 16). Both of the
emission wavelengths were at Apy, = 567 nm with Tp, values of 270 and 218 ns, respectively.
In Nj-deoxygenated acetonitrile/water solvent (Aex = 370 nm), MOC-Pt-16 displayed a
significant improvement in terms of its AIPE compared with that of the Pt(Il) bzimpy motif
via synergistically combining the AIPE from Pt(II) luminophores and AIE properties from
Cd(II)-tpy moieties.
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Figure 16. Normalized emission spectra (a) in Np-deoxygenated acetonitrile and (b) in Nj-
deoxygenated acetonitrile/water solvent of Pt(II) bzimpy Pt20 motif and MOC-Pt-16 (adapted from
data of [38]).
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2.3. Phosphorescent MOCs Incorporating d'0 Metal Ion

Complexes of d!° transition metals, especially coinage metal complexes such as Cu(I),
Ag(I) and as Au(l), either with or without metallophilic interactions, could lead to special
spectroscopic properties in the absorption and emission spectra [54,55]. Moreover, the
d'0-d1% metal-metal interactions in gold(I) complexes were stronger and thus were named
as “aurophilic” by Schmidbaur [59], always rendering them phosphorescent.

In 2019, Balch’s group demonstrated the mono-bromo box [Aug(Triphos)4Br](SbF¢)s-
6(CH;Cl;) MOC-Au-17 and the dibromo box [Aug(Triphos)4Bry-HyO](SbFg)4-4(CH,Cly)
MOC-Au-18 by the synthesis of [Auz(Triphos) »](SbF)s salt in dichloromethane mixed with
potassium bromide (the equivalent of one for the mono-bromo box and twice as much for
the dibromo box) in methanolic solution [39]. The mono-bromo box MOC-Au-17 included
a bromide ion disordered over two sites and two dichloromethane molecules. The dibromo
box MOC-Au-18 had a similar shape to that of the mono-bromo box. Interestingly, despite
there being no aurophilic interactions in these gold boxes because of the dispersion of the
Au(I) ion, phosphorescence was produced from the three-coordinate gold(I) complexes [60].
The excitation and emission spectra of MOC-Au-17 and MOC-Au-18 were at an excitation
Amax Of 359 nm and an emission Amax of 485 nm and an excitation Amax of 372 nm and
an emission Amax of 496 nm, respectively, with emission lifetimes of 10 ps and 12 ps,
respectively, resulting from the phosphorescence (Figure 17).
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Figure 17. The excitation and emission spectra of (a) MOC-Au-17 and (b) MOC-Au-18 (adapted
from data of [39]).

Stang’s group reported the host-guest coordination cage had an enhanced absorptiv-
ity and prolonged triplet state lifetime [61]. The host-guest coordination cage possessed
a broadened visible light absorption range compared with that of the guest molecular
coronene and MOC because of the encapsulation-induced core-to-cage charge transfer.
Under visible light irradiation, the microenvironment inside the MOC promoted an elec-
trostatic interaction between the light-induced excited electron of the coronene and the
positive charge of the node of the MOC. Then the transition-metal node promoted inter-
system cross-coupling and attenuated nonradiative decay. These processes provided an
enhanced phosphorescence and a prolonged triplet lifetime.
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3. Conclusions and Prospect

There is no doubt that phosphorescent metal-organic cages have aroused increasing
interest among chemists due to their unique luminescent properties, such as their varied
emissive triplet excited states, long lifetimes and large Stokes shift. As multifunctional
materials, they have been preliminarily applied in chemical catalysis, biomedicine, sensors,
molecular recognition and electro-optical devices. The rapid growth of research on lumines-
cent metal-organic cages in recent decades has established fundamental guiding principles
for the design and self-assembly of discrete metal-organic cages. Although considerable
efforts have been devoted to the research of luminescent metal-organic cages, it is still
at the exploration stage. In this minireview, we have summarized the recent works on
phosphorescent MOCs, including their structures, luminescence properties and potential
applications, aiming to offer some guidance on their synthesis and a greater understanding
of their photochemical / physical features.

However, recently relatively few phosphorescent MOCs have been reported, and their
structures and functions are also relatively simple and targetless due to the instability
of MOCs resulting from relatively weak and reversible coordination bonds [3]. Thus, in
general, efficient and concise assembled strategies need to be fully developed for further
exploration. Furthermore, the coordination of phosphorescent ligands and metal nodes
result in the quenching of luminescence via nonradiative deactivation, leading to a low-
photoluminescence quantum yield, which is also a challenge to be solved. Some organic
linkers with high-conjugated 7 electrons, such as pyrene- and naphthalene-based organic
linkers and heterometal-organic ligands with special phosphorescent properties, are ex-
pected to be potential candidates for the construction the phosphorescent MOCs. Moreover,
the encapsulation of photoactive guests in the cages to excite phosphorescence is also
another attractive method.

Considering the unique luminescence properties of phosphorescent MOCs, com-
prehensive experimental studies will need to focus on screening their phosphorescent
properties, such as their wavelength, lifetime and quantum yield, for the establishment
of a phosphorescent MOC database. Simultaneously, an in-depth understanding of and
studies on the mechanism of phosphorescent MOCs, including the origin of their phospho-
rescence and the relationship between their structure and luminescence, will contribute to
the improvement and optimization of their functions and properties.

Currently, most applications of phosphorescent MOCs are limited to the lab scale, such
as those in photocatalysis, biomedicine and optoelectronic materials. The regulation of the
relationship between their structure and properties via the suitable choice of components
(for phosphorescence, reversible redox activity, etc.) is key, along with the delicate control
of pore size. Moreover, host-guest interactions will also offer a novel method for the
assembly of MOCs. Recently, there has been significant progress in the development
of phosphorescent systems based on first-row transition-metal organic complexes [62].
However, there are no reports on the use of such organometallic skeletons to construct
MOC materials. This may also be a future research and exploration direction. Future
development will focus on the new synthetic exploration, efficient assembly and specific
photoactivity of MOCs. It is anticipated that more and more new phosphorescent MOCs
will be available for practical applications following continuing efforts in this field.
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