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Abstract: A new polymorphic modification of lanthanum sulfate was obtained by thermal dehy-
dration of the respective nonahydrate. According to powder X-ray diffraction, it was established
that β-La2(SO4)3 crystallized in the C2/c space group of the monoclinic system with the KTh2(PO4)3

structure type (a = 17.6923(9), b = 6.9102(4), c = 8.3990(5) Å, β = 100.321(3)◦, and V = 1010.22(9) Å3).
Temperature dependency studies of the unit cell parameters indicated almost zero expansion along
the a direction in the temperature range of 300–450 K. Presumably, this occurred due to stretching of
the [LaO9]n chains along the c direction, which occurred without a significant alteration in the layer
thickness over the a direction. A systematic study of the formation and destruction processes of the
lanthanum sulfates under heating was carried out. In particular, the decisive impact of the chemical
composition and formation energy of compounds on the thermodynamic and kinetic parameters of
the processes was established. DFT calculations showed β-La2(SO4)3 to be a dielectric material with a
bandgap of more than 6.4 eV. The processing of β-La2(SO4)3 with the Kubelka–Munk function exhib-
ited low values below 6.4 eV, which indicated a fundamental absorption edge above this energy that
was consistent with LDA calculations. The Raman and infrared measurements of β-La2(SO4)3 were
in accordance with the calculated spectra, indicating that the obtained crystal parameters represented
a reliable structure.

Keywords: rare earths; lanthanum; sulfate; crystal chemistry; thermodynamics; chemical kinetics;
dielectrics
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1. Introduction

Rare earth elements (REEs) are prominent in modern science as they are essential
components in the transition toward green technologies. In particular, this review revealed
recent articles describing their extraction processes from various sources [1–7], as REE forms
numerous compounds with inorganic and organic ligands. Indeed, a wide range of such
compounds was examined, for instance halides, nitrates, sulfates, carbonates, phosphates,
oxalates, hydroxides, and oxides, as well as double salts [8–13].

The sulfates of rare earths are perhaps the most frequently studied group of inorganic
complex compounds due to their wide range of applications [14–21]. The thermodynamic
properties of these compounds occupy an important position in various hydrometallurgical
processes for REE production [22]. Since the discovery of rare earths, sulfates have also
been critical in the separation processes [23–30]. In addition, applications of Ln2(SO4)3
(Ln3+–REE) was proposed as a new feasible system for thermal energy storage [31].

The majority of known studies focus on hydrates of lanthanide sulfates. Usually,
the hydrated species under investigation are Ln2(SO4)3·8H2O octahydrates, which have
been determined throughout the whole lanthanide series, including yttrium. Sulfates with
different water contents have been mainly found for larger Ln3+ ions, namely La–Nd.
In particular, Ln2(SO4)3·9H2O nonahydrates are known for Ln = La3+, Ce3+. Pentahy-
drates Ln2(SO4)3·5H2O have been established for Ln = Ce3+, Nd3+, while Ln2(SO4)3·4H2O
tetrahydrates have been detected for Ln = La3+, Ce3+, Nd3+, Tb3+, Er3+, Lu3+, [32], and
Eu3+ [33] ions. Up until now, only three water molecules have been identified in the
Lu2(SO4)3·3H2O compound [32]. In addition, the presence of lanthanum sulfate monohy-
drate La2(SO4)3·H2O was recently reported [33].

Thus, crystallohydrates can be found for almost all known lanthanum sulfates. How-
ever, our review did not revealed adequate clarity in the available literature regarding the
related anhydrous phases for both rare earth sulfates in general, and for lanthanum sulfate
in particular. To this end, the corresponding monoclinic anhydrous sulfates Ln2(SO4)3
(Ln = Pr [34], Nd [35], and Eu [36]) have been comprehensively characterized in the case
of light REEs. It can be assumed that the structure of lanthanum sulfate is similar to this
group of compounds. However, lanthanum often exhibits properties distinct from those
of the whole series of lanthanides, because the La–Ce interface is a region of structural
instability [37,38]. Hence, new structural types are expected to emerge.

M. S. Wickleder discovered the formation of anhydrous lanthanum sulfate during the
study of thermal decomposition processes for lanthanum amidosulfates [39]. Although
a detailed structural study of this phase has not been carried out, the determined unit
cell parameters allow us to presume that during the decomposition of amidosulfates,
anhydrous lanthanum sulfate is formed, adopting the Nd2(SO4)3 structural type [35]. In
the present work, we studied a new polymorphic modification of lanthanum sulfate, which
was assigned the β designation.

2. Results and Discussion
2.1. Thermochemistry of Formation and Thermal Stability

The DTA/TG method was used to investigate the formation process of anhydrous
lanthanum sulfate through the dehydration of La2(SO4)3·9H2O (Figure 1). All of the
thermal effects concerning the weight loss were consistent with the corresponding chemical
processes (Table 1). We established four stages (signals A–D) that describe the nonahydrate
dehydration process. In particular, in the first stage (signal A) within the temperature
range of 75–160 ◦C, five water molecules were removed simultaneously, leading to the
formation of the La2(SO4)3·4H2O compound. In the second stage (signal B), the tetrahydrate
decomposed with the loss of two more water molecules. As the thermal effects of these
processes overlapped, it was complicated to determine a stability temperature range for
the corresponding tetrahydrate. Nevertheless, mathematical processing resulted in an
approximate value of 140–205 ◦C. In the third stage (signal C), within a temperature
range of 205–240 ◦C, the La2(SO4)3·2H2O dihydrate decomposed to form the respective
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monohydrate. Afterward, the La2(SO4)3·H2O compound lost a water molecule (fourth
signal), resulting in the formation of anhydrous lanthanum sulfate (signal D).
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Figure 1. DTA/TG curves of La2(SO4)3·9H2O thermal decomposition.

Table 1. Thermal effects recorded during the decomposition of La2(SO4)3·9H2O.

Signal Chemical Process ∆mexp., % ∆mtheor., % ∆H, kJ/mol

A La2(SO4)3·9H2O→ La2(SO4)3·4H2O + 5H2O −12.42 −12.37 345.87

B La2(SO4)3·4H2O→ La2(SO4)3·2H2O + 2H2O −17.34 −17.32 101.45

C La2(SO4)3·2H2O→ La2(SO4)3·H2O + H2O −19.81 −19.79 12.52

D La2(SO4)3·H2O→ β-La2(SO4)3 + H2O −22.34 −22.41 56.40

E β-La2(SO4)3 → La2O2SO4 + 2SO2 + O2 −44.22 −44.25 610.22

F La2O2SO4 → La2O3 + SO2 + 1/2O2 −55.20 −55.25 721.28

The enthalpy values of the dehydration processes tended to diminish with the simpli-
fication of the chemical composition. However, the removal of the last water molecule was
associated with a much larger energy expenditure than the removal of one water molecule
from the corresponding La2(SO4)3·2H2O dihydrate, which indicated the extremely low
stability of the latter.

Table 2 summarizes the kinetics characteristics for all of the chemical processes de-
tected using differential thermal analysis, which were then evaluated using the Kissinger
and Ozawa–Doyle equations. Figure S1 shows the dependence of the extreme thermal
effects on the heating rate. The curves demonstrated a linear shift in the maxima of thermal
effects when the heating rate changed. This allowed the data to be processed reliably using
linear kinetic equations.

Dehydration of La2(SO4)3·9H2O, like other comparable crystalline hydrates, began
at a relatively low temperature, although in this case, the crystallization water was only
partially lost. Despite having the highest lability (kinetic instability) among all of the similar
crystalline hydrates, the dehydration thermodynamic stability of La2(SO4)3·9H2O was the
highest. Indeed, the activation energy did not exceed 65 kJ/mol for stage A, 71 kJ/mol
for complete dehydration of the Eu2(SO4)3·8H2O compound [16], and 77 kJ/mol for the
Pr2(SO4)3·8H2O compound [34]. Moreover, stage A enthalpy was almost 346 kJ/mol,
while for the complete dehydration process of the Pr2(SO4)3·8H2O and Eu2(SO4)3·8H2O
substances, this parameter was only 109 kJ/mol.
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Table 2. Kinetic parameters of the decomposition of lanthanum sulfates.

Chemical Process

Kinetic Parameters

Kissinger Equation Ozawa-Doyle Equation

Ea, kJ/mol A Ea, kJ/mol

La2(SO4)3·9H2O→ La2(SO4)3·4H2O + 5H2O 65 1.07 × 108 67

La2(SO4)3·4H2O→ La2(SO4)3·2H2O + 2H2O 343 2.01 × 1040 315

La2(SO4)3·2H2O→ La2(SO4)3·H2O + H2O 232 6.39 × 1023 223

La2(SO4)3·H2O→ β-La2(SO4)3 + H2O 147 1.15 × 1014 147

β-La2(SO4)3 → La2O2SO4 + 2SO2 + O2 320 1.79 × 1011 323

La2O2SO4 → La2O3 + SO2 + 1/2O2 422 1.26 × 1012 424

Pre-exponential factor A for the described processes was two orders of magnitude
larger in the case of the lanthanum compound (A = 108) than the value for the compounds
of Pr3+ (A = 6·106) [34] and Eu3+ (A = 106) [16]. This phenomenon corresponded to
larger values of activation entropy and steric factors during the dehydration process of
La2(SO4)3·9H2O compared with the Pr2(SO4)3·8H2O and Eu2(SO4)3·8H2O compounds.
This phenomenon was consistent with the lower anisotropy and greater symmetry of the
lanthanum compound (hexagonal lattice) compared with the praseodymium and europium
compounds (monoclinic lattice).

In terms of thermodynamics and kinetics, the subsequent dehydration processes
(signals B, C, and D) were characterized by a significantly lower stability of intermediate
crystalline hydrates and their increased inertness, respectively. The decrease in anisotropy
(higher values for the pre-exponential factor of the processes) indicated a more symmetrical
arrangement of the remaining water molecules in the coordination sphere of lanthanum in
the decomposition products.

The anhydrous lanthanum sulfate that emerged after complete dehydration was
stable up to 860 ◦C, with an outstanding thermal stability similar to other anhydrous
light REE sulfates [34–36]. In the temperature range of 860–1050 ◦C, the first stage of
β-La2(SO4)3 decomposition (signal E) was detected, which corresponded to the formation
of the lanthanum oxysulfate La2O2SO4. The latter then decomposed in the temperature
range of 1300–1440 ◦C into the lanthanum oxide La2O3 (signal F). The values of enthalpies
of the decomposition processes (Table 1) indicated the high thermodynamic stability of the
β-La2(SO4)3 and La2O2SO4 sulfates.

Figure 2 demonstrates the dependencies of both parameter types of the Ln2(SO4)3
and Ln2O2SO4 (Ln = La, Pr [34], Eu [16]) decomposition reactions on the ionic radius
of the Ln3+ ion. It should be noted that the crystal structure of β-La2(SO4)3 differed
from the isostructural sulfates of praseodymium and europium. Their decomposition
parameters tended to decrease as the atomic number increased (Figure 2a), while the
difference in parameters was significantly greater in the La–Pr pair than in the Pr–Eu pair,
which, in general correlated with the difference in the crystal structure. The decomposition
parameters of isostructural oxysulfates Ln2O2SO4 (Ln–La, Pr, and Eu) also showed a
tendency to decrease among the lanthanide series (Figure 2b), but with a clear breakpoint
that occurs at the praseodymium. Presumably, this fact is related to the formation energy of
the corresponding oxide. In particular, Pr6O11 oxide has the lowest enthalpy of formation
and the highest stability. This fact requires a reduction in the energy consumption of the
system, according to the considerations of both thermodynamics and kinetics.
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In the decomposition processes of β-La2(SO4)3 and La2O2SO4 (signals E and F), their
increased inertness (higher activation energies of the process) compared with the same
compounds of praseodymium and europium could be noticed. Indeed, for the DTA curves,
the peaks were broader in the case of the lanthanum compounds. The β-La2(SO4)3 and
La2O2SO4 thermal and thermodynamic stability were the highest as well, as the enthalpies
of stages E and F were 610 kJ/mol and 721 kJ/mol, respectively. The praseodymium
compound was the least inert among the Ln2O2SO4 series, which was possibly related to
a predisposition to form Pr6O11 oxide with cubic symmetry. In addition, decomposition
temperatures also consistently diminished in the series of La–Pr–Eu compounds.
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2.2. Crystal Structure

The unit cell parameters and the space group (C2/c) were determined using TOPAS
4.2 software [40]. It was found that parameters were close to the KTh2(PO4)3 structure [41];
therefore, this crystal structure was selected as a starting model for Rietveld refinement. In
particular, one site of Th4+ was occupied by the La3+ ion, the P5+ ion was replaced by the
S6+ ion, and the K+ site was removed. Such transformations led to the β-La2(SO4)3 model,
in which the thermal parameters of all ions were refined isotropically. The refinement was
stable and yielded low R factors (Table 3 and Figure 3a). The coordinates of the atoms and
main bond lengths are reported in Tables S1 and S2, respectively. The asymmetric part of
the unit cell consisted of a single La3+ ion, which was coordinated by nine O2− ions and
two SO4 tetrahedra (Figure 3b). In addition, the [LaO9] polyhedra were linked to each other
by edges, forming two-dimensional layers in the bc plane. These 2D layers were bridged by
[SO4] tetrahedra, forming a three-dimensional (3D) network (Figure 3b).

Table 3. Main parameters of β-La2(SO4)3 processing and refinement.

Compound β-La2(SO4)3

Sp.Gr. C2/c
a, Å 17.6923 (9)
b, Å 6.9102 (4)
c, Å 8.3990 (5)
β, ◦ 100.321 (3)

V, Å3 1010.22 (9)
Z 4

2θ-interval, ◦ 5–140
Rwp, % 4.66
Rp, % 3.67

Rexp, % 1.46
χ2 3.19

RB, % 1.36
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According to the high-temperature X-ray diffraction data, the compound demon-
strated positive anisotropic thermal expansion coefficients along all directions (Figure 4).
However, along the a direction, in the temperature range of 300–450 K, the thermal expan-
sion coefficient had an almost zero value. This behavior could be due to the stretching
of zigzag chains consisting of LaO9 polyhedra along the c direction, which, in the initial
stages, could occur without a significant change in the layer thickness in the a direction
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(Figure S2). In addition, we did not exclude the contribution of the deformation and filling
of voids in the structure to the mechanism of this phenomenon.
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One additional interesting feature was the observation of discontinuity in the cell
parameters and volume at 400 K (Figure 4). The XRD patterns did not reveal any new peaks
or the disappearance of existing peaks, not any splitting of the main peak in the β-La2(SO4)3
compound. This confirmed that the phase transition did not occur within the temperature
range of 300–700 K, ensuring thermal stability. It is worth noting that nonlinear behavior of
the cell parameters, transitioning from a linear to quadratic relationship, has been observed
in various crystals [42–44]. For instance, a similar behavior was observed in single crystals
of langasite and langatate upon heating from 300 to 700 K [3]. Another significant discovery
was the consistent nonlinear increase in a specific heat of up to 700 K, beyond which the
specific heat became independent of temperature due to a transition occurring above the
Debye temperature (which was determined to be 740 K for these crystals). Considering
this, it is reasonable to associate the change in trend of the cell parameters with the specific
heat. In the case of this crystal, a temperature of 400 K may be in close proximity to its
Debye temperature.

Upon investigation of the cell parameters in various chemical compositions, the
findings revealed a notable increase in both V and c cell parameters, as Figure 5 illustrates.
Intriguingly, despite the introduction of rare earth elements with larger ion radii, the b cell
parameter remained constant. Moreover, the a cell parameter exhibited a visible downward
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trend from the Pr element to the La element [34–36]. The β monoclinic angle experienced
a significant variation in this direction as well. Presumably, this could be attributed to a
declining pattern of one of the cell parameters combined with a nearly linear trend in cell
volume over the entire range.
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2.3. Electronic Structure and Optical Properties

The Brillouin zone of β-La2(SO4)3 and the electronic structure are shown in Figures 6a
and 6b, respectively. A path through the high-symmetry points of the Brillouin zone
was chosen as follows: Γ–C|C2–Y2–Γ–M2–D|D2–A–Γ|L2–Γ–V2. In addition, Figure 7a
shows the subpaths with different colors. It is evident from Figure 7b that this compound
performed as a dielectric material as the energy gap exceeded 6 eV. The bottom of the
conduction band was located between the Γ and C points, and the top of the valence band
was located at point Γ. Thus, applying the terminology for semiconductor materials [45],
this compound was a material with an indirect band gap. However, the difference between
indirect and direct (Γ–Γ) transition was very small and amounted to only 0.06 eV. Taking into
account the well-known issue of underestimating band gaps if using LDA approximation,
we performed a series of calculations using different approaches. In particular, the result
of calculating the band gap value using the LDA model resulted in a value of 6.4 eV. The
band gap values obtained using meta-GGA [46] and HSE06 [47] were 7.07 eV and 8.37 eV,
respectively.

Figure 7a illustrates both the total electronic density of states (DOS) and the partial
DOSes of β-La2(SO4)3. According to the information depicted in Figure 7a, the top of
the valence band was formed by the p electrons of the oxygen, while the bottom of the
conduction band was predominantly determined by the d states of the La atom. In addition,
the choice of calculation method (LDA, meta-GGA, or HSE06) did not affect the DOS
configuration.

Figure 7b presents the experimental dependence of the Kubelka–Munk function for
the β-La2(SO4)3 compound (blue) compared with the Kubelka–Munk function for the
β-RbEu(SO4)2 compound (black) [15] and with a theoretical LDA calculated from the
absorption spectrum for lanthanum sulfate. The β-RbEu(SO4)2 Kubelka–Munk function
presents the contribution of the charge transfer band of Eu3+ that is absent in β-La2(SO4)3.
As a result, function values for β-La2(SO4)3 in the considered energy range below 6.4 eV
were well below unity, in contrast with those for β-RbEu(SO4)2. This phenomenon was
consistent with the LDA calculations, which indicated the presence of a fundamental
absorption edge higher than 6.4 eV for the β-La2(SO4)3 compound. An analysis of the
electron localization (Figure S3) in the latter sulfate confirmed the nature of polarity of the
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chemical bonds, which could be inferred by considering the electronegativity values. In
particular, all S–O bonds and all La–O bonds in the sulfate could be considered covalent
polar and ionic, respectively.
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Figure 8 presents the Raman and infrared spectra of β-La2(SO4)3. Indeed, the exper-
imental spectra were consistent with the calculated data, which indicated the coherence
of the considered crystal parameters (Tables 3 and S2) with the sample structure. In both
cases, the high wavenumber range (above 950 cm−1) of the β-La2(SO4)3 solid spectra
corresponded to the stretching vibrations of the SO4

2− ions [15]. A group of weakly
intensive peaks from 375 to 700 cm−1 corresponded to the bending vibrations of the tetra-
hedral groups [34], while the lattice modes had a low intensity and were located below
300 cm−1 [48].
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3. Methods and Materials
3.1. Synthesis

Anhydrous lanthanum sulfate was synthesized via high-temperature dehydration of
the corresponding La2(SO4)3·9H2O, which was obtained by recrystallization of a commer-
cial reagent (Chemically pure, Novosibirsk Factory of Rare Metals, Novosibirsk, Russia).
X-ray phase analysis confirmed the purity of the compound obtained after recrystallization
(Figure S4 and Table S3) [49]. For the dehydration process, a weighed amount of the non-
ahydrate (m = 5.00 g) was placed in a corundum crucible and heated in a muffle furnace to
a temperature of 500 ◦C in air. Afterward, it was left at this temperature for 24 h to yield a
polycrystalline product, which was determined as anhydrous lanthanum sulfate according
to the mass value (mexp = 3.96 g, mtheor = 3.98 g).

3.2. Analysis Methods

The powder diffraction data of the β-La2(SO4)3 substance for the Rietveld analysis
was collected at room temperature using a Bruker D8 ADVANCE powder diffractometer
(Cu-Kα radiation) and linear VANTEC detector (Bruker AG, Germany). The step size of 2θ
was 0.016◦, and the counting time was 6 s per step. The 2θ range of 5–70◦ was measured
with a 0.6 mm divergence slit, but the 2θ range of 70–140◦ was measured with a 2 mm
divergence slit. Larger slits allowed for a noticeably increased intensity of high-angle peaks
without a loss of resolution, because the high-angle peaks were broad enough to not be
affected by the bigger divergence of the beam. The estimated standard deviation (ESD)
σ(Ii) of all points on patterns were calculated using intensities according to Ii: σ(Ii) = Ii

1/2.
The intensities and obtained ESDs were further normalized, Ii norm = Ii × 0.6/(slit width),
σnorm(Ii) = σ(Ii) × 0.6/(slit width), taking into account an actual value of the divergence
slit width, which was used to measure each particular intensity Ii. Thus, the transformed
powder pattern had the usual view in the whole 2θ range 5–140◦, but all high-angle points
had small ESDs. An additional 11 XRD patterns were measured in the temperature range
of 143–703 K using Anton Paar heat attachments.

Thermal analysis in an argon flow was carried out using the Differential Thermal
Analysis (DTA/TG) equipment 499 F5 Jupiter NETZSCH (Netzsch, GmbH & Co. KG,
Hamburg, Germany). The powder samples were inserted into alumina crucibles. The
heating rate was 3 ◦C/min. For enthalpy determination, the equipment was calibrated
with the use of standard substances, such as In, Sn, Bi, Zn, Al, Ag, Au, and Ni. The heat
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effect peaks were determined with the package “Proteus 6 2012”. The peak temperatures
and areas in the parallel experiments were reproduced with an inaccuracy of less than 3%.
Determination of the kinetic parameters was based on the Kissinger Equation (1) [50,51] in
linearized form and on the Ozawa–Doyle Equation (2) [52,53]:

− 1
T

=
1
E
·Rln

b
T2 −

R
E

ln
AR
E

(1)

lgβ +
0.4567E

RT
= C (2)

where T is the temperature at the maximum reaction rate, b is the heating rate, E is the
activation energy, A is the pre-exponential factor, R is the gas constant, and C is the constant.

Fourier-transform infrared spectroscopy (FTIR) measurements were carried out with
the use of a Fourier-Transform Infrared Spectrometer FSM 1201 (Infraspek Ltd., St. Pe-
tersburg, Russia). The sample for investigation was prepared in tablet form with the
addition of annealed KBr. Raman spectra at an ambient condition in the spectral range
of 10–1500 cm−1 were recorded using a Horiba Jobin Yvon T64000 (Horiba, Lille, France)
spectrometer equipped with a triple monochromator in subtractive mode. The spectral
resolution was 2 cm−1 (this resolution was achieved using 1800 str/mm gratings and
100 µm slits) with a dot density of 3 pixel/cm−1. The spectra were excited using a diode-
pumped solid-state single-mode laser Spectra-Physics Excelsior-532-300-CDRH (USA) with
a wavelength of 532 nm and power of <1 mW. Scattered radiation was collected via a
microscope based on Olympus BX-41 (Olympus, Tokyo, Japan) through the objective Olym-
pus MPlan50x (Olympus, Japan) with a numerical aperture of N.A. = 0.75. The diffuse
reflectance spectra were measured on a UV-2600 spectrophotometer (Shimadzu, Tokyo,
Japan) equipped with an ISR–2600 Plus attachment with an integrating sphere. The optical
band gap was estimated based on the diffuse reflectance spectra measurements.

3.3. Calculation Methods

First-principle calculations in this study utilized the density functional theory (DFT) ap-
proach, implemented in CASTEP code [54]. The 5d16s2, 3s23p4, and 2s22p4 valence electron
configurations were considered for La, S, and O atoms, respectively. To perform the calcula-
tions, the local density approximation (LDA) method was employed, based on the Perdew
and Zunger parametrization [55] of the numerical results by Ceperley and Alder [56].
Norm-conserving pseudopotentials were used, with a cutoff energy for the plane basis
set at 1030 eV. During geometry optimization, a tolerance level of 1.0 × 10−3 eV/Å was
chosen for maximal forces and 0.01 GPa was chosen for maximal stresses. The Monkhorst–
Pack k-point integration network of the Brillouin zone was chosen as 3 × 3 × 3. Density
functional perturbation theory [57,58] was employed to calculate the phonon spectra at
the center of the Brillouin zone and to determine the Raman tensor components (spectral
profile) and infrared intensities.

4. Conclusions

In this study, our investigation of anhydrous lanthanum sulfate resulted in the discov-
ery of a new polymorphic modification. This finding contributes to the ever-expanding
range of structural types within the sulfates of rare earth elements. Furthermore, our investi-
gation revealed a noteworthy trend: as the chemical composition is simplified, the enthalpy
values of the thermochemical processes tend to decrease. This insight can provide valuable
information regarding energy changes that occur during thermochemical process. More-
over, we investigated the decomposition reactions of Ln2(SO4)3 and Ln2O2SO4 sulfates,
focusing specifically on the ionic radius of lanthanides. By understanding the influence
of the ionic radii, it may be possible to predict and design the properties of compounds
for future applications. The β-La2(SO4)3 compound was found to be a dielectric material
with a bandgap larger than 6.4 eV. The valence band was found to be primarily composed
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of p-electrons of oxygen, while the conduction band was predominantly determined by
the d states of La. The experimental Raman and infrared spectra were consistent with the
calculated data, confirming the accuracy of the obtained parameters of the crystal structure.
The results reported here could contribute to the broader field of sulfates of rare earth
elements and pave the path for further studies in this area. To summarize, this manuscript
offers valuable insights into the crystal structure, thermochemistry, and optical properties
of anhydrous lanthanum sulfate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11110434/s1, Figure S1: Heat effect showing up in
dependence of heating rate for processes of destruction of lanthanum sulfates; Figure S2: Chain struc-
ture of LaO9 polyhedra (a) and proposed mechanism of zero thermal expansion in the β-La2(SO4)3
structure (b); Figure S3: Electron localization function in β-La2(SO4)3 calculated using local density
approximation; Figure S4: Difference Rietveld plot of the La2(SO4)3·9H2O compound; Table S1:
Fractional atomic coordinates and isotropic displacement parameters (Å2) of β-La2(SO4)3; Table S2:
Main bond lengths (Å) of β-La2(SO4)3; Table S3: Main parameters of processing and refinement
of the La2(SO4)3·9H2O sample; Supplementary details concerning the crystal structure may be ob-
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