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Abstract: Luminescent diimine-Pt(IV) complexes [Pt(NˆN)(Me)2(PhSe)2], (NˆN = 2,2′-bipyridine (bpy,
1b), 1,10-phenanthroline (phen, 2b), and 4,4′-dimethyl-2,2′-bipyridine (Me2bpy, 3b), PhSe− = phenyl
selenide were prepared and identified using multinuclear (1H, 13C{1H} and 77Se{1H}) NMR spec-
troscopy. The PhSe− ligands were introduced through oxidative addition of diphenyl diselenide
to the non-luminescent Pt(II) precursors [Pt(NˆN)(Me)2], NˆN = (bpy, 1a), (phen, 2a), (Me2bpy,
3a), to give the luminescent Pt(IV) complexes 1b–3b. The UV-vis absorption spectra of 1b–3b are
characterised by intense bands in the range 240–330 nm. We assigned them to transitions of essen-
tially π−π* character with small metal and PhSe− ligand contributions with the help of TD-DFT
(time-dependent density functional theory) calculations. The weak long-wavelength bands in the
range 350–475 nm are of mixed ligand-to-metal charge transfer (L’MCT) (n(Se)→d(Pt)/intra-ligand
charge transfer (IL’CT) (n(Se)→π*(Ph) or π(Ph)→π*(Ph))/ligand-to-ligand’ charge transfer (LL’CT)
(L = NˆN, L’ = PhSe−, M = Pt and n = lone pair) character. The Pt(IV) complexes showed broad
emission bands in the solid state at 298 and 77 K, peaking at 560–595 nm with a blue shift upon
cooling. Structured emission bands were obtained in the range 450–600 nm, with the maxima
depending on the NˆN ligands and the solvent polarity (CH2Cl2 vs. dimethyl sulfoxide (DMSO)
and aqueous tris(hydroxymethyl)aminomethane hydrochloride (tris-HCl) buffer). The emissions
originate from essentially ligand-centred triplet states (3LC) with mixed IL’CT/L’MCT contributions
as concluded from the DFT calculation. Such dominating PhSe contributions to the emissive states
are unprecedented in the world of luminescent diimine-Pt(IV) complexes.

Keywords: OrganoPt(IV); diimine ligands; phenyl selenide; photoluminescence; TD-DFT calculations

1. Introduction

The photophysical properties of heavy transition metal complexes have been of great
interest in recent years due to their wide applicability in electroluminescent materials [1–6],
in photovoltaic devices [2,5,6], for optical sensing [7,8], as photocatalysts [9–12], in photody-
namic therapy [13,14], and as probes for bioimaging [13–18]. Most of the studies focused on
the d8 systems Au(III) [12,19] and Pt(II) [1,2,4,19,20] and on the d6 configured Ir(III), Ru(II),
and Os(II) complexes [2,14–18,21,22], which all contain cyclometalated heteroaromatic
ligands because they provide widely tunable emission energies and high quantum yields
from admixture of triplet ligand-centred (3LC) states to the emitting triplet metal-to-ligand
(3MLCT) or ligand-to-metal (3LMCT) excited states [2–4,15,19–24].
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In contrast, studies on the optical properties of d6-configured cyclometalated Pt(IV)
complexes have gained less attention [23–26]. The general low thermal and photo-stability
of Pt(IV) complexes that may result in photoisomerisation or reduction in Pt(II) is the main
drawback [23,24]. However, the presence of six coordination sites in Pt(IV) complexes
offers opportunities for more ligand combinations compared with the four-coordinated
Pt(II) complexes. The first luminescent cyclometalated Pt(IV) complexes [Pt(CˆN)2(R)Cl]
(R = CH2Cl, CHCl2, CˆN = 2-thienylpyridine (thpy) or 2-phenylpyridine (ppy)) were
reported by Balzani and von Zelewsky in 1986 [26]. Their emission originates from ligand-
centered (3LC) states of the cyclometalating ligand with photoluminescence quantum
yields in the range 0.05–0.15 in CH2Cl2 solution at 293 K. In recent years, additional
neutral [Pt(CˆN)2 × 2] complexes containing two anionic ligands X (or R) have been re-
ported [23,24,26–32] and supplemented with cationic derivatives [Pt(CˆN)3]+ containing
three cyclometalated CˆN ligands [23,24,33–38], comparable to the important class of Ir(III)
emitters [Ir(CˆN)3] [2,14,16,21,22]. These reports include variations in CˆN ligands such as
substituted phenyl-pyridines, benzoquinolines, or related heteroaromatic systems [23–35].
Cyclometalating CˆC carbene [39] and CˆC biphenyl ligands [40] have also recently been in-
troduced. Slightly different structures show the luminescent Pt(IV) complex [Pt(L)Cl2] with
a tetradentate doubly cyclometalated CˆN-NˆC ligand L [41] and the [Pt(CˆN)(S2Ph)2]− com-
plexes containing phenyl dithiolate ligands (S2Ph2−) [42]. Although these Pt(IV) complexes
emit essentially from ligand-centered 3LC states, the simpler complex [Pt(CˆN)Cl3(SMe2)]
(CˆN = 2-(4-NMe2)benzothiazole) was reported to be non-emissive [43].

In contrast, photoluminescent Pt(IV) complexes bearing α-diimine (NˆN) bidentate
donor ligands are scarce, although the rich photochemistry [44–52] and the basic photo-
physics [25,47,48,52–55] of such complexes have been studied in some detail, including the
photodecomposition of the Pt(IV)-terpy complexes [Pt(terpy)X3]+ (X = Cl or Br) [53] and the
rather historic example of the luminescent [Pt(bpy)(Me)3I] [25]. A very interesting example
of photoreactivity is the photooxidation of the thiophenolate complexes [Pt(NˆN)(Me)3(S-
C6H4-R)] (NˆN = 2,2′-bipyridine (bpy) and derivatives −S-C6H4-R = thiophenolate) to
the sulfinate derivatives [Pt(NˆN)(Me)3(SO2-C6H4-R)] [44,52]. Density functional theory
(DFT) calculations showed that emission of the sulfinate complexes originates from the
excited state that is formed upon excitation of electrons from Pt–S and Pt–C (trans to
S) σ bonding orbitals to π* orbitals of NˆN or the aromatic ring of the sulfinate ligands
(σ→π*) [44,52], which has also frequently been called sigma(σ)-bond-to-ligand charge
transfer (SBLCT) [47,55].

Aiming to extend the structural motifs of photoluminescent diimine Pt(IV) complexes,
we stepped over the previously reported complexes [Pt(NˆN)(Me)2(PhE)2] (E = S or Se)
containing heteroaromatic diimines like bpy and its derivatives [56–60]. Herein we report
on the preparation of a series of Pt(IV) complexes [Pt(NˆN)(Me)2(PhSe)2], NˆN = bpy (1b),
phen (2b), and Me2bpy (3b), through oxidative addition reaction of diphenyl diselenide
to Pt(II) precursors and the study of their UV-vis absorption and photoluminescence (PL).
The synthesis and structures of complexes 1b and 2b have been previously reported; we
were able to add the derivative 3b to this series. Importantly, the photophysics of the
three complexes has not been reported. In parallel to the experiments, we carried out
time-dependent DFT (TD-DFT) calculations on the B3LYP level of theory with LANL2DZ
basis sets for Pt and Se, and 6-31G(d) basis sets for C, H, and N to probe the nature of the
electronic transitions and excited states.

2. Results and Discussion
2.1. Synthesis, Analytical, and Structural Characterisation

The complexes [Pt(NˆN)(Me)2(PhSe)2], NˆN = 2,2′-bipyridine (bpy, 1b), 1,10-phenan
throline (phen, 2b), and 4,4′-dimethyl-2,2′-bipyridine (Me2bpy, 3b), PhSe− = phenyl se-
lenide were synthesised through an oxidative addition reaction of the Pt(II) precursor
complexes [Pt(NˆN)(Me)2], 1a–3a, carrying NˆN = bpy (1a), phen (2a), or Me2bpy (3a)
with diphenyl diselenide (Se2Ph2) (Scheme 1; For details, see the Methods and Materials
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Section) producing pure products that are stable in organic solvents such as CH2Cl2, CHCl3,
and dimethyl sulfoxide (DMSO) in the absence of light for at least one hour. Extensive
visible light irradiation led to decomposition within hours. Although we did not go into
the details, we assumed that this is similar to the photoreactivity that has been reported
for the thiophenolate complexes [Pt(NˆN)(Me)3(S-C6H4-R)] [44,52] and the comparable
Re(I) thiolate complexes [Re(NˆN’)(CO)3(SR)] (NˆN’ = 1-C12H25-1,2,3-triazole-4-(2-pyridyl)
(Pyta) or 4-C12H25-1,2,3-triazole-1-(2-pyridyl) (Tapy); R = 4-X-C6H4, X = OMe, COOMe and
NO2) [61].
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Scheme 1. Synthesis routes for complexes 1b–3b.

Complexes 1b and 2b have previously been prepared in a similar manner [58,59]
(Figures S1 and S2 in the Supplementary Material). The three complexes were anal-
ysed and their structures confirmed using 1H, 13C{1H}, and 77Se{1H} NMR spectroscopy
(Figures S1–S5).

We optimised the geometry of the S0 ground states using DFT methods in both the
gas phase (Figures 1 and S6–S8) and CH2Cl2 solution, with only marginal differences
(Tables S1, S3 and S4).
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Figure 1. View of the DFT-optimised S0 structure of 3b in the gas phase, with atom numbering (A)
and top views of 1b, 2b, and 3b (B).

The DFT-calculated 1b and 2b structures agree with previously reported experimental
structures from single X-ray diffraction (Tables S1 and S3) [58,59]. They show that both
PhSe planes point towards the NˆN ligand plane (Figure 1A) but co-planarity is prevented
through the Pt–Se–C angles of about 105◦ and Se–Pt–Se angles of about 174◦, deviating
from the ideal 180◦. The most important difference between the phen complex 2b and the
bpy complexes 1b and 3b is the intramolecular stacking motif of the PhSe phenyl group
with the aromatic system in the diimines (Figure 1). This corresponds with differences in
the dihedral angles between the two PhSe planes, which are relatively small for the bpy
and Me2bpy complexes (about 6–9◦, independent of the medium) but large for the phen
derivative 2b with about 51◦ in the gas phase calculations and about 20◦ in CH2Cl2.
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Based on the DFT-optimised 1b–3b structures in CH2Cl2, the energies and composition
of the molecular orbitals (MOs) of the complexes were calculated (Figures 2 and S11–S13,
Tables S5–S7). The gaps between the highest occupied and the lowest unoccupied molecular
orbitals (HOMO–LUMO gaps) increase along the series 1b (3.109 eV) < 2b (3.135 eV) < 3b
(3.169 eV), reflecting the increased electron density through the additional C=C group in
the backbone of phen and the Me substitutes compared with bpy. The occupied MOs are
distributed over the PhSe− ligands, with HOMO–HOMO-2 localised at the Se lone-pairs
(~85%) with no difference for 1b–3b, while HOMO-3–HOMO-5 orbitals are cantered on the
phenyl cores. Unoccupied MOs are mainly localised on the NˆN chelate ligands (92 to 99%),
again with only minor differences for series 1b–3b. HOMO had small Pt contributions
(~14%) with a dxy character for LUMO+1 (dz2), although the latter is better described as
σ-Se–Pt contribution (Figure S11). For LUMO+4, a mixed Pt dx2-y2/σ Pt–CH3 character
is observed (~70%) for 1b and 3b. For complex 2b, both contributions were also found,
although the labelling was different (LUMO+2 and LUMO+5). The energies of these two
orbitals are different (~1.8 eV), pointing to a distortion of the octahedral symmetry with the
empty dz2 and dx2-y2 not degenerating.
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Figure 2. Energy level diagrams and composition of the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) for 1b–3b.

2.2. UV-Vis Absorption Spectra and TD-DFT Calculations

The experimental UV-vis absorption spectra of compounds 1b–3b in CH2Cl2 solution
are very similar (Figures 3 and S9), with two intense maxima at 240 and 320 nm. The
phen complex 2b has an additional band at 274 nm. These UV bands can be provision-
ally assigned to π−π* transitions in the NˆN ligands. Possible admixtures can include
intra-ligand IL’(PhSe) charge transfer (IL’CT), metal-to-ligand(NˆN) charge transfer (MLCT),
ligand’(PhSe)-to-ligand(NˆN) charge transfer (L’LCT), and ligand’-to-metal charge transfer
(L’MCT) character. Additional weak absorptions were observed in the range 350–475 nm
as shoulders that are provisionally assigned to L’LCT transitions with small MLCT and
L’MCT contributions in line with the ground state frontier orbitals (Figure 2).
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Figure 3. Experimental UV-vis absorption spectra (black spectra in CH2Cl2) and TD-DFT-calculated 
transitions as blue bars for 1b, 2b, and 3b. 

The TD-DFT-calculated transitions match the experimental spectra in that they qual-
itatively reproduce the differences between the bpy complexes 1b and 3b, in contrast to 
the phen complex 2b, while the calculated maxima are generally red-shifted compared 
with the experimental maxima (for data, see Tables S8–S10). For the bpy complex 1b, the 
long wavelength region between 300 and 500 nm includes several excited states (S1 to S6) 
with very small oscillator strengths in keeping with the weak absorptions observed in this 
range (Figure 3, inset). They are assigned to transitions with mixed L’LCT/MLCT or 
L’MCT/IL’CT character, with L’ representing the PhSe ligands and IL’CT describing 
charge transfer from Se n(Se) lone pairs (or p orbitals) to π* orbitals of the Ph group (Table 
S8). The HOMO→LUMO transition for 1b has mixed L’LCT (n(Se)→π*(bpy))/MLCT 
(d(Pt)→π*(bpy)) character in which the most important contribution form, the PhSe ligand, 
comes from the lone-pairs, n, on the Se atom. In contrast to this, the HOMO→L+1 transi-
tion has a mixed L’MCT/IL’CT (n(Se)→π*(Ph)) character. The S0→S7 transition (H-1→L+1, 
354 nm) has the highest oscillator strength (0.9801) and mixed L’MCT/IL’CT character. 
Similar transitions with similar characters were calculated for the Me2bpy complex, 3b. 
They are all slightly blue-shifted (Table S9) in keeping with the electron-releasing charac-
ter of the Me substituents on the bpy core. Despite some very small contributions to 
LUMO+4 in 1b and 3b, the Me ligands show overall negligible contributions. For the phen 
complex, 2b, the long wavelength region shows eight excited states of low energy (S1–S8), 
with energies slightly blue-shifted compared to 1b; both findings are in line with the ad-
ditional C=C group in the phen backbone. 
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For future use in biological media, we also dissolved and studied the complexes
in aqueous tris(hydroxymethyl)aminomethane hydrochloride (tris-HCl) buffer with the
help of small amounts of DMSO as a co-solvent. The same absorptions were found in
the tris-HCl buffer solution. After standing for 30 min in the dark, the long wavelength
absorptions were slightly decreased, while UV absorptions remained stable (Figure S10).
This is probably due to slow hydrolysis under these conditions adding potential instability
to the slow photodecomposition in the presence of light.

The TD-DFT-calculated transitions match the experimental spectra in that they qual-
itatively reproduce the differences between the bpy complexes 1b and 3b, in contrast to
the phen complex 2b, while the calculated maxima are generally red-shifted compared
with the experimental maxima (for data, see Tables S8–S10). For the bpy complex 1b, the
long wavelength region between 300 and 500 nm includes several excited states (S1 to
S6) with very small oscillator strengths in keeping with the weak absorptions observed in
this range (Figure 3, inset). They are assigned to transitions with mixed L’LCT/MLCT or
L’MCT/IL’CT character, with L’ representing the PhSe ligands and IL’CT describing charge
transfer from Se n(Se) lone pairs (or p orbitals) to π* orbitals of the Ph group (Table S8). The
HOMO→LUMO transition for 1b has mixed L’LCT (n(Se)→π*(bpy))/MLCT (d(Pt)→π*(bpy))
character in which the most important contribution form, the PhSe ligand, comes from
the lone-pairs, n, on the Se atom. In contrast to this, the HOMO→L+1 transition has a
mixed L’MCT/IL’CT (n(Se)→π*(Ph)) character. The S0→S7 transition (H-1→L+1, 354 nm)
has the highest oscillator strength (0.9801) and mixed L’MCT/IL’CT character. Similar
transitions with similar characters were calculated for the Me2bpy complex, 3b. They are
all slightly blue-shifted (Table S9) in keeping with the electron-releasing character of the
Me substituents on the bpy core. Despite some very small contributions to LUMO+4 in 1b
and 3b, the Me ligands show overall negligible contributions. For the phen complex, 2b,
the long wavelength region shows eight excited states of low energy (S1–S8), with energies
slightly blue-shifted compared to 1b; both findings are in line with the additional C=C
group in the phen backbone.

When comparing the results of our calculations with those previously reported for
complexes [Pt(bpy)(Me)3(SR)] (R = H or p-CO2C6H4) [50] and [Pt(bpy)(Me)3(SO2-C6H4-R)]
(SO2-C6H4-R = p-R-phenyl-sulfinates, R = H or NO2) [52], we found a role for our PhSe−

ligands that was similar to that of S-aryl ligands contributing both the S lone pairs and
the aryl π* system to electronic transitions. Moreover, the σ→π* transitions involving the
Pt–S and Pt–C (trans to S) in these systems are similar to the σ→π* contributions from the
PhSe− ligands in our systems. On the other hand, the intramolecular stacking of the PhSe−

and NˆN ligands that characterise our structures have been found for [Pt(bpy)(Me)3(SO2-
Ph)] but not for [Pt(bpy)(Me)3(S-C6H4-CO2)] or [Pt(bpy)(Me)3(SO2-C6H4-NO2)] [52]. In
the above-mentioned Pt(Me)3 complexes, as well as in the [Pt(NˆN)(Me)3I] [48,54,55],
[Pt(NˆN)(Me)4] [47,48,55], and [Pt(NˆN)(Me)2(SnPh3)2] derivatives [55], the axial Me lig-
ands do not contribute to the long wavelength transitions.

Similar to the Pt(IV) complexes, the intense absorptions at around 330–355 nm ob-
served for the Re(I) thiolate complexes [Re(NˆN’)(CO)3(SR)] (NˆN’ = pyridyl-trizoles) are
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assigned to predominantly π–π* transitions with admixtures of LL’CT (thiolate to NˆN)
and MLCT (Re to NˆN) character. Weak bands were observed at lower energies and DFT
calculations suggest L’LCT and L’MCT (thiolate to Re) character [61].

2.3. Photoluminescence Spectroscopy

Complexes 1b–3b emit yellow to orange light in different media at ambient tempera-
tures when irradiated at 365 nm (Figures 4 and 5), in stark contrast to their corresponding
deeply red-coloured Pt(II) precursors [Pt(NˆN)(Me)2]), 1a–3a, which are non-emissive
under the same conditions [62]. Changing the excitation wavelength within the range
300–400 nm had no marked impact on the shape or maxima of the emission bands.
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Figure 4. Photoluminescence (solid lines) and excitation (dashed lines) spectra of 1b, 2b, and 3b in 
the solid state at 298 K (black lines) and 77 K (red lines). 
Figure 4. Photoluminescence (solid lines) and excitation (dashed lines) spectra of 1b, 2b, and 3b in
the solid state at 298 K (black lines) and 77 K (red lines).

In the solid state, the emission spectra for 1b–3b had broad bands with maxima
between 554 and 595 nm (Figure 4, Table 1). Different temperatures (298 vs. 77 K) did not
make a marked difference. At 298 K, the highest photoluminescence quantum yield (ΦL)
was 0.081 for 2b, while 1b and 3b had slightly lower values of 0.069 and 0.065, respectively.
At 77 K, the ΦL value for 2b increased and reached 0.14. The excitation spectra showed
intense maxima in the range 300–400 nm, with the most red-shifted maximum observed
for 1b.

More structured emission bands were observed in the CH2Cl2 solution, with their
maxima blue-shifted compared with the solids (Figure 5, Table 1). Within our series of
complexes, the energy of the emission maximum increased for 2b and 3b compared with
1b. The excitation spectra showed sharp bands at around 360 nm for all three complexes.
This means a Stokes Shift of about 8400 cm−1 for 1b and about 7400 cm−1 for 2b and 3b.
This is consistent with a triplet character of the excited states, thus a triplet emission. The
most intense excitation bands at around 360 nm are markedly red-shifted compared with
the intense absorption bands observed at around 320 nm. The energy difference of about
3500 cm−1 suggests that the most intensely absorbing state is not identical to the state
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responsible for the emission. Unfortunately, the ΦL values are generally very low in the
CH2Cl2 solution (0.002–0.006) and the PL spectra for 1b differ from those for 2b and 3b.
Therefore, we cannot rule out the effect of different species or impurities on PL behaviour.
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Figure 5. Photoluminescence (solid lines) and excitation (dashed lines) spectra for 1b, 2b, and 3b in
CH2Cl2 (blue lines), DMSO (green lines), and tris-HCl (orange lines) solutions at 298 K.

Table 1. UV-vis absorption and emission data for Pt(IV) complexes a.

Complex λabs/nm (105 ε/M−1 cm−1) State (T) λem/nm ΦL

1b 400 (0.0595), 313 (1.697)

solid (298 K) 595 0.069
solid (77 K) 580 0.117

CH2Cl2 (298 K) 453, 484, 516 0.0065
DMSO (298 K) 450, 484, 526 0.0123

tris-HCl (298 K) 442, 484, 526 0.0093

2b
400 (0.1167), 318 (2.003),

272 (1.451)

solid (298 K) 564 0.081
solid (77 K) 560 0.140

CH2Cl2 (298 K) 463, 490, 529 0.0017
DMSO (298 K) 456, 490, 528 0.0032

tris-HCl (298 K) 462, 490, 526 0.0090

3b 400 (0.1004), 314 (2.184)

solid (298 K) 560 0.065
solid (77 K) 560 0.101

CH2Cl2 (298 K) 453, 490, 530 0.0042
DMSO (298 K) 447, 486, 522 0.0050

tris-HCl (298 K) 447, 486, 522 0.0053
a Excitation wavelength λexc = 365 nm in all cases. The absorption spectra were obtained in CH2Cl2. Emission
spectra in Ar-purged CH2Cl2 solution, c = 10−5 M, emission maxima are underlined. tris-HCl = aqueous
tris-HCl buffer (pH = 7.4), for Ar-purged DMSO and tris-HCl solutions c = 0.01 M). ΦL = photoluminescence
quantum yields.

To probe for the influence of solvent polarity on the PL of 1b–3b, we studied DMSO
and aqueous tris-HCl buffer (pH = 7.4, 0.01 M) solutions in addition to CH2Cl2. A further
background is the idea of using these complexes as probes in biological media. As in
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the CH2Cl2 solution, the complexes were emissive at 298 K and also showed partially
structured emission bands (Figure 5). Interestingly, the solvents had almost no impact
on the shape and energies of the emission band of the phen complex 2b (Figure 5), while
1b showed a red-shifted maximum (516 nm) for the CH2Cl2 solution compared with the
DMSO and tris-HCl buffer solutions (484 nm), and 3b showed a blue-shifted maximum in
CH2Cl2 (490 nm) compared with the DMSO and tris-HCl buffer solutions (522 nm). The
ΦL values are generally low (0.0017–0.0123) and are higher in each case in the polar media,
for 2b and 3b, with the highest values found in aqueous tris-HCl buffer (Table 1). In the
excitation spectra, the intense band observed in CH2Cl2 solutions at around 360 nm is also
found for 2b in tris-HCl and 3b in both polar media, but with a markedly lower intensity.
Additional broad, blue-shifted bands were found for 1b in DMSO and tris-HCl and for 2b
in DMSO. We assume that both Me substituents on the bpy ligand and the C=C backbone of
the phen ligand render the molecules more lipophilic, thus minimising the effect of solvent
polarity on the chromophoric parts of the complexes.

Unfortunately, the lifetimes were too short to measure using our equipment in the
lab and we assumed that they were in the nanosecond domain. For the Pt(IV) complex
[Pt(bpy)(Me)3(S-C6H4-R)] (−S-C6H4-R = 4-methoxycarbonylthiophenolate), a triplet emis-
sion lifetime of 5.6 ns was reported [52], while for [Pt(Me)3(bpy)I], 2.8 ns was recorded [52].
The lifetimes of complexes 1b–3b will be the subject of future studies.

To rationalise the emission spectra, the geometry of the T1 triplet state for complexes
1b and 2b were DFT-optimised in the gas phase. Unfortunately, attempts to do the same
for 3b were unsuccessful. Energy differences between the T1 and S0 states representing
the theoretical emissions were calculated as 2.146 eV (578 nm) and 2.098 eV (591 nm) for
complexes 1b and 2b, respectively. These are in very good agreement with the experimental
values recorded for 1b and 2b at 595 nm and 564 nm in the solid at 298 K (Table 1).
Furthermore, the observed red-shift in the main emission component in the CH2Cl2 solution
from 490 to 515 nm when going from 2b (phen) to 1b (bpy) is also qualitatively reproduced,
although the total values deviate markedly. This marked deviation is due to the gas phase
conditions used for the DFT calculations and is in line with the strong dependence of the
emission on the medium found in the experiments.

For complexes 1b and 2b, plots of LSOMO (Lowest Singly Occupied Molecular Or-
bital) and HSOMO (Highest Singly Occupied Molecular Orbital) compositions (Figure 6)
showed high similarities between LSOMO and HOMO compositions (Figure 2), while the
compositions of HSOMO and LUMO in both complexes were different. LUMO+1 and
LUMO+2 levels are stabilised when they are converted to HSOMO for 1b and 2b, respec-
tively. LSOMO and HSOMO are mainly located on the Pt and Se atoms (Figure 6). The
emissive excited states of 1b and 2b can thus be described as having mixed 3IL’CT/3L’MCT
characters, with a significant contribution of the PhSe ligands. This is in agreement with
the intense excitations observed at around 360 nm where the TD-DFT-calculated transitions
show strong IL’CT contributions (Tables S8 and S9). This also accounts for the marked dif-
ferences between absorptions with large contributions of the NˆN ligands to the transitions
and the excitations populating triplet excited states with essential PhSe and Pt characters
and supports our assumptions of different absorption and excitation characters.

Broad, unstructured emission bands were reported for complexes [Pt(NˆN)(Me)3(SR)]
(NˆN = bpy or 4,4′-(CO2Me)2bpy; R = p-CO2C6H4) [51] and [Pt(NˆN)(Me)3(SO2-C6H4-R)]
(NˆN = bpy, phen, 4,7-Ph2phen and dppz (dipyrido[3,2-a:2′,3′-c]phenazine); SO2-C6H4-R
= p-R-phenyl-sulfinates, R = H, CO2Me, OMe, or NO2) [52], although they had similar
energies as our complexes. The same is true for [Pt(bpy)(Me)3I], which emits at 528 nm in
EtOH at 298 K [25]. Similar emissions were found for the related Re(I) thiolate complexes
[Re(NˆN’)(CO)3(SR)] and a mixed 3MLCT/3L’LCT character was concluded from DFT
calculations [61].
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For [Pt(iPr-DAB)(Me)3I], a broad emission band was recorded at 550 nm in glassy
frozen 2-Me-THF at 90 K, while for the tetramethyl Pt(IV) complexes [Pt(NˆN)(Me)4] with
NˆN = tmphen (3,4,7,8-tetramethylphenanthroline) or iPr-DAB (1,2-di(isopropyl)diazabuta
diene), broad emission bands were observed at 775 nm (iPr-DAB) and 600 nm (tmphen) [55].
Quantum chemical calculations for the (Me)3I complexes showed a 3XLCT character for
the emission (X = I) similar to the L’LCT contribution for thiolate complexes [51], while
for the (Me)4 derivatives, an SBLCT character of the emission was concluded [55]. This is
supported by the markedly red-shifted emission of complex [Pt(iPr-DAB)(Me)2(SnPh3)2]
to 809 nm in line with the reduced axial Sn–Pt bond strength and σ-donating power of
SnPh3 compared with Me. The (Me)4 complexes and the (Me)2(SnPh3)2 derivative were
photo-reactive at ambient temperatures, forming the Pt(II) species [55].

Structured emission bands were observed at 298 K in CH2Cl2 solutions and PMMA
matrices for cyclometalated Pt(IV) complexes fac-[Pt(CˆN)2(C6F5)Cl] with CˆN = bzq (benzo-
quinolinyl), dfppy (2-(2,4-difluorophenyl)pyridyl), pq (2-phenylquinolinyl), thpy (2-thienyl-
pyridyl), pbt (2-phenylbenzothiazole), or Br-pbt (2-(4-bromophenyl)benzothiazole) and mer-
[Pt(CˆN)2(C6F5)(CN)] (CˆN = pbt, Br-pbt) [31]. Additionally, the complex [Pt(thpy)(tpy)(Cl)2] [32]
and several derivatives of [Pt(CˆN)(CˆN’)(Cl)2] [36] containing two different cyclometalating CˆN
ligands, including [Pt(CˆN)(CˆCcarbene)(Cl)2] [39], and the series of complexes [Pt(CˆN)2(Me)Cl]
(CˆN = ppy, dfppy thpy and more) [29] showed structured emission bands in CH2Cl2 solu-
tion at 298 K. The bands are very similar, in both structure and energy, to what we found for
our complexes. The structure is in keeping with the essential 3LC character of the emission
of these cyclometalate complexes. TD-DFT calculations of the electronic transitions support
3MLCT and 3L’MCT admixtures to the 3LC emissive states for the [Pt(CˆN)2(C6F5)Cl] com-
plexes [31], while small to negligible LMCT contributions were found for [Pt(CˆN)(CˆN’)(Cl)2]
derivatives [29,32,39].

We found, for our previously unreported [Pt(NˆN)(Me)2(PhSe)2] systems, a predomi-
nant PhSe ligand–character in the triplet excited states, with mixed 3IL’CT/3L’MCT contri-
butions being responsible for the pronounced structuring and efficient emission in solution
at 298 K. This contrasts with the TD-DFT-calculated absorption spectra showing apprecia-
ble contributions of the NˆN chelate ligands with mixed L’LCT/MLCT contributions in
addition to the 3IL’CT/3L’MCT, and also differs from previously reported Pt(IV) systems
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with Pt(NˆN) or Pt(CˆN) scaffolds, for which essential contributions from the NˆN or CˆN
chelate ligands (L’LCT or MLCT) to the emissive states were reported. We ascribe this to a
perfect match between the axial PhSe ligands and the Pt orbitals in terms of energy and
orbital overlap.

3. Methods and Materials
3.1. General Procedures and Materials

1H NMR, 13C{1H} NMR, and 77Se{1H} spectra were obtained using a Bruker Avance
(400 MHz) instrument at 298 K. The chemical shifts (δ) are reported in ppm relative to their
external standards (SiMe4 for 1H and 13C, Ph2Se for 77Se), and the coupling constant J is
expressed in Hz. UV-vis absorption spectra were recorded using a PerkinElmer Lambda
25 spectrophotometer. Luminescence spectra were measured at 298 and 77 K using a
PerkinElmer LS45 fluorescence spectrometer. CH2Cl2, DMSO, and aqueous tris-HCl buffer
solutions were Ar-purged prior to use. Due to the virtual insolubility of the complexes in the
tris-HCl buffer solution, small amounts of DMSO were added. Absolute photoluminescence
quantum yields in the solid state were measured using an integrating sphere. Quantum
yields in solution were measured using MeCN solutions of complex [Ru(bpy)3](PF6)2 as
standard [63].

2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy),
diphenyl diselenide (Se2Ph2), and tris(hydroxymethyl)aminomethane (tris-HCl) were obtained
from Sigma-Aldrich (Merck, Darmstadt, Germany) and used without further purification.
Reactions were performed in solvents purified and dried according to standard procedures [64].
Complexes [Pt(bpy)(Me)2(PhSe)2] (1b) [58] and [Pt(phen)(Me)2(PhSe)2] (2b) [59] were prepared
and analysed as described in the literature.

3.2. Synthesis of [Pt(Me2bpy)(Me)2(PhSe)2] 3b

A total of 38.1 mg Se2Ph2 (0.122 mmol) was added to a solution of 50 mg [Pt(Me2bpy)(Me)2]
(0.122 mmol) in 20 mL CH2Cl2, and the yellow solution stirred for 1 h. The solvent was
evaporated and the resulting pale-yellow solid was washed with diethyl ether (3 × 3 mL)
and dried under an air atmosphere. Yield: 79%. Elem. Anal. Calcd. for C26H28N2PtSe2
(MW = 721.51 g.mol−1): C, 43.28; H, 3.91; N, 3.88; Found: C, 43.01 H, 3.54 N, 3.91. 1H NMR
in CDCl3: δ (1H) 1.55 (s, 3JPtH = 70.3 Hz, 6H, Me ligands), 2.44 (s, 6H, Me2bpy), 6.48 (dd,
3JHH = 7.3 Hz, 3JHH = 7.3 Hz, 4H, Hm PhSe), 6.67 (d, 3JHH = 7.0 Hz, 1H, Ho PhSe), 6.83 (t,
3JHH = 6.9 Hz, 2H, Hp PhSe), 7.12 (d, 3JHH = 5.1 Hz, 2H, H5 Me2bpy), 7.30 (s, 2H, H3 Me2bpy),
8.41 (d, 3JPtH = 15.5 Hz, 3JHH = 5.8 Hz, 2H, H4 Me2bpy); 13C NMR in CDCl3: δ (13C{H})
−6.99 (s, 1JPtC = 595 Hz, 2C, Me ligands), 21.17 (s, 2C, Me substituents Me2bpy), 123.01 (s,
3JPtC = 9.9 Hz, 2C, C5 Me2bpy), 124.91 (s, 3JPtC = 7.7 Hz, 2C, C3 Me2bpy), 126.76 (s,
2JPtC = 16.1 Hz, 2C, C2 Me2bpy), 126.99 (s, 3JPtC = 7.5 Hz, 4C, Co PhSe), 130.44 (s,
2JPtC = 30.4 Hz, 2C, Ci PhSe), 137.21 (s, 4JPtC = 7.7 Hz, 4C, Cm of PhSe), 146.08 (s,
2JPtC = 13.3 Hz, 2C, C6 Me2bpy), 149.35 (s, 2C, Cp PhSe), 153.37 (s, 2C, C4 Me2bpy); 77Se
NMR in CDCl3: δ (77Se{1H}) 347.75 (s, 1JPtSe = 183.1 Hz, 2Se).

3.3. Computational Details

DFT calculations were carried out on the B3LYP level of theory [65–67] using the
Gaussian09 program suite [68], LANL2DZ basis sets for Pt and Se atoms [69,70], and
6-31G(d) basis sets for C, H, and N atoms. The calculations were run either in the gas
phase or CH2Cl2 solution using the CPCM (conductor-like polarisable continuum model)
model [71,72]. The structures of the electronic S0 and T1 states were optimised without
any symmetry constraints. The UV-vis absorption spectra were calculated using time-
dependent DFT (TD-DFT) methods and emission energies were calculated using DFT-
optimised geometries. The composition of molecular orbitals and the TD-DFT bars for
electronic transitions were drawn using the “Chemcraft version 1.7” software [73]. Data for
the electronic transitions were extracted using the GaussSum software [74].
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4. Conclusions

A series of diimine-Pt(IV) complexes [Pt(NˆN)(Me)2(PhSe)2] with NˆN = 2,2′-bipyridine
(bpy, 1b), 1,10-phenanthroline (phen, 2b), and 4,4′-dimethyl-2,2′-bipyridine (Me2bpy, 3b)
chelate ligands and axial PhSe− ligands were found to be luminescent in solid (298 and
77 K) and solution at 298 K and thus formed a new class of luminescent Pt(IV)-diimine
complexes. Long wavelength absorptions were observed as shoulders in the range 350–475
nm. Time-dependent density functional theory (TD-DFT) calculations attribute the lowest
energy bands (HOMO–LUMO) to transitions with mixed L’LCT (n(Se)→π*(bpy))/MLCT
(d(Pt)→π*(bpy)) character, with the most important contribution of the PhSe− ligand coming
from the lone pair (n) on the Se atom. Transitions slightly higher in energy (HOMO→L+1)
have mixed L’MCT/IL’CT (n(Se)→π*(Ph)) character. The 200–350 nm range is dominated
by one intense band at around 315 nm. The TD-DFT-calculated energy for this band is
approximately 354 nm, thus slightly red-shifted, and the assignment shows essentially π–π*
character of the transitions, with smaller contributions from the PhSe− ligand (L’LCT and
IL’CT) and metal (MLCT). Overall, the TD-DFT-calculated data is in excellent agreement
with the experimental data.

Upon irradiation at 365 nm, which is markedly blue-shifted to low-energy absorptions,
the maximum of unstructured emission bands of the complexes in the solid ranges lies at
560 nm for 3b, 564 nm for 2b, and 595 nm for 1b, in line with the electron-donating prop-
erties of the Me substituents and the additional C=C group in the phen ligand compared
with bpy. Structured bands were observed in fluid CH2Cl2 solution, but the wavelength
dependence of the emission maximum is the same as in the solid, with blue-shifted bands
for 2b and 3b compared with 1b. In both the solid and CH2Cl2 solution, intense excitation
bands were found in the range 300–400 nm, with pronounced maxima at 360 nm in the
CH2Cl2 solution. The Stokes shift of these sharp excitations and the emission maxima
are large (8400–7400 cm−1), which strongly supports a triplet character of the emission.
However, the luminescence lifetimes are below the µs range and remain to be studied. In
the very polar solvents, DMSO and aqueous tris-HCl buffer, the emission maximum for
3b was observed at 522 nm, while those for 1b and 2b were blue-shifted (~490 nm). This
is remarkable, as the overall structures of the three complexes are very similar. In future
studies, we will add other α-diimine ligands such as the sterically bulky 2,9-dimethyl-
phenanthroline (neocuproin) and 6,6′-dimethyl-bipyridine as well as other bpy and phen
derivatives with electron-withdrawing substituents.

Using the DFT-optimised T1 and S0 geometries for 1b and 2b, the T1→S0 transitions
were calculated as 578 nm and 591 nm, respectively, in agreement with the experimental
values, 595 nm and 564 nm, recorded in the solid at 298 K. While the LSOMO (Lowest
Singly Occupied Molecular Orbital) compositions showed high similarities with the HOMO
compositions, the HSOMO and LUMO compositions in 1b and 2b differ. LSOMO and
HSOMO are mainly located on the Pt and Se atoms and the excited states of 1b and 2b can
thus be described as having essentially mixed 3IL’CT/3L’MCT character, with a significant
contribution of PhSe ligands to the emissive excited states. This is in excellent agreement
with the observed intense excitations at around 360 nm, for which TD-DFT-calculated
transitions show strong IL’CT contributions and account for the marked differences between
absorption and excitation spectra. The triplet character is in line with the observed Stokes
shifts, and the structuring is in line with the strong 3LC (= PhSe) character.

While previously reported Pt(IV) systems with Pt(NˆN) or Pt(CˆN) scaffolds show
essential contributions of the NˆN or CˆN chelate ligands (L’LCT or MLCT) to the emis-
sive states, our [Pt(NˆN)(Me)2(PhSe)2] systems reported herein show a predominant PhSe
ligand–character for the emissive triplet excited states, with mixed 3IL’CT/3L’MCT con-
tributions. We ascribe this to a perfect match between the axial PhSe ligands and the Pt
orbitals in terms of energy and orbital overlap. We will study the impact of substitutions
at the axial PhSe on photophysics in the future. We will also add ps time-resolved PL
spectroscopy and study the observed photo-sensibility of the compounds in solution in
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more detail. Finally, we will explore the potential use of the complexes as luminophores in
fluorescent cell imaging.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/inorganics11100387/s1. Figure S1: 1H NMR spectrum of
1b in CDCl3, Figure S2: 1H NMR spectrum of 2b in CDCl3, Figure S3: 1H NMR spectrum of 3b in
CDCl3, Figure S4: 13C{H} NMR spectrum of 3b in CDCl3, Figure S5: 77Se{H} NMR spectrum of 3b in
CDCl3, Figure S6: View of the DFT-optimised S0 structure of 1b in the gas phase with atom num-
bering, Table S1: Selected DFT-calculated metrics for the S0 state of 1b in the gas phase and CH2Cl2
compared with experimental data from single crystal XRD, Figure S7: View of the DFT-optimised
S0 structure of 2b in the gas phase with atom numbering, Table S2: Selected DFT-calculated metrics
for the T1 state of complexes 1b and 2b in the gas phase, Table S3: Selected DFT-calculated metrics
for the S0 state of 2b in the gas phase and CH2Cl2 compared with experimental data from single
crystal XRD, Figure S8: View of the DFT-optimised S0 structure of 3b in the gas phase with atom
numbering, Table S4: Selected DFT-calculated metrics for the S0 state of 3b in the gas phase and
CH2Cl2, Figure S9: UV-vis absorption spectra of 1b, 2b, and 3b in CH2Cl2 at 298 K, Figure S10:
UV-vis absorption spectra of complex 3b in tris-HCl buffer at 298 K, Figure S11: Molecular orbital
plots for the DFT-optimised S0 structure of 1b in CH2Cl2 solution, Figure S12: Molecular orbital plots
for the DFT-optimised S0 structure of 2b in CH2Cl2 solution, Figure S13: Molecular orbital plots for
the DFT-optimised S0 structure of 3b in CH2Cl2 solution, Table S5: Composition and energies of
selected molecular orbitals of 1b in CH2Cl2, Table S6: Composition and energies of selected molecular
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CH2Cl2, Table S8: Wavelengths and the nature of transitions of complex 1b, Table S9: Wavelengths
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