
Citation: Wang, D.; Liu, R.; Han, C.;

Tan, B.; Fu, Q.; Liu, Z. Investigation

of Photoelectrochemical Performance

under the Piezoelectric Effect Based

on Different Zinc Oxide

Morphologies. Inorganics 2023, 11, 11.

https://doi.org/10.3390/

inorganics11010011

Academic Editor: Christian Julien

Received: 16 November 2022

Revised: 9 December 2022

Accepted: 22 December 2022

Published: 26 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inorganics

Article

Investigation of Photoelectrochemical Performance under the
Piezoelectric Effect Based on Different Zinc
Oxide Morphologies
Dong Wang 1, Rui Liu 1, Changcun Han 1, Baohua Tan 1 , Qian Fu 1 and Zhifeng Liu 1,2,*

1 College of Science, Hubei University of Technology, Wuhan 430068, China
2 School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional

Materials, Tianjin Chengjian University, Tianjin 300384, China
* Correspondence: tjulzf@163.com

Abstract: Recently, the piezoelectric effect has been widely used in photoelectrochemical (PEC)
water splitting, and the morphology of the piezoelectric material is a critical factor affecting the
piezo-photoelectrochemical water splitting performance. Herein, we explored the mechanism of
the piezo-photoelectrochemical performance of zinc oxide (ZnO) that is affected by the morphology.
Firstly, three different ZnO nanostructures (nanosheets, nanorods, and nanospheres) were synthesized
by the electrodeposition, hydrothermal, and sol-gel methods, respectively. Then, the measurements of
PEC water splitting performance under the piezoelectric effect revealed a 3-fold increase for the ZnO
nanosheets, a 1.4-fold increase for the nanorods, and a 1.2-fold increase for the nanospheres compared
to no piezoelectric effect. Finally, finite element simulation showed that nanosheets generated the
highest piezoelectric potential (0.6 V), followed by nanorods (0.2 V), and nanospheres the lowest
(0.04 V). Thus, among the three morphologies, the ZnO nanosheets exhibited a great improvement in
PEC performance under the piezoelectric effect. The great improvement is due to the non-axial vertical
homogeneous growth of the ZnO nanosheets, subjecting them to the highest effective deformation
stress, which enables the ZnO nanosheets to produce the highest piezoelectric potential to accelerate
the carrier separation and limit the recombination of photoelectrons and holes. This work serves
as a guide for developing various photoelectrodes that are used in piezo-photoelectrochemical
water splitting.

Keywords: ZnO; morphology; piezoelectric effect; photoelectrochemical water splitting

1. Introduction

Environmental pollution and energy crises will result from the use of toxic fossil
fuels throughout societal development and the steady depletion of global fossil fuel
reserves [1–3]. Therefore, it is crucial to develop a clean energy source. Hydrogen (H2)
energy is typically considered unpolluted because water is the only byproduct of hydrogen
combustion. However, conventional hydrogen generation is an expensive and energy-
intensive process. Therefore, it is crucial to discover a low-energy and low-cost technique
for hydrogen synthesis. Photoelectrochemical (PEC) water splitting [4] has started gaining
popularity among researchers since Fujishima and Honda used TiO2 as an electrode to
transform solar energy into the molecular energy of H2 and O2 in 1972 [5]. Since then,
various semiconductors have become common research subjects in PEC water splitting.
These semiconductors are classified as either n-type or p-type, depending on whether
electrons or holes are the predominant conductors. n-type semiconductors conduct elec-
tricity mainly by electrons, such as WO3 [6], BiVO4 [7], TiO2 [8], and α-Fe2O3 [9]. In
comparison, p-type semiconductors conduct electricity mainly by holes, such as Cu2O [10],
CuO [11], BiOI [12], and CuBi2O4 [13]. However, various factors limit the efficiency of PEC
water splitting. Among these factors, two main factors are the low utilization of light and
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the rapid recombination of photoelectrons and holes [14–16]. To solve these two major
problems, researchers have proposed various semiconductor modification approaches,
such as heterojunctions [17], surface plasmon resonance (SPR) effects [18], and doping [19].
Specifically, Zhang et al. fabricated a Cu2O/g-C3N4 heterojunction electrode successfully.
Under external bias voltage of−0.4 V and visible light irradiation, the photocurrent density
and PEC hydrogen evolution efficiency were −1.38 mA/cm2 and 0.48 mL/(h·cm2), respec-
tively [20]. Li et al. fabricated a Pt/WO3/Ag photoanode by depositing Pt nanoparticles
and Ag nanoparticles on the bottom and surface of WO3, respectively. The photocurrent of
this photoanode was 1.13 mA/cm2 at 1.23 VRHE, which was 3.32 times higher than that of
pure WO3 since the SPR effect of the Ag nanoparticles promotes charge separation [21].

In addition to the approaches that were mentioned above for modifying the properties
of semiconductors, the piezoelectric effect has recently become a major research subject in
PEC water splitting [22,23]. This is because the polarized electric field that is generated
by the piezoelectric effect effectively accelerates the carrier separation within the material
and suppresses the recombination of photoelectrons and holes, greatly enhancing the ef-
ficiency of PEC. In addition, the piezoelectric effect is easily achieved by deforming the
material as it is stressed [24,25]. Consequently, researchers have focused on piezoelectric
materials such as ZnO [26], NaNbO3 [27], CdS [28], and BaTiO3 [29]. ZnO possesses a
high piezoelectric coefficient and mobility among these piezoelectric materials [30]. In
addition, ZnO also possesses properties that are low cost, non-toxic, and easy to synthesize
in different morphologies such as nanosheets [31], nanorods [32], and nanospheres [33].
Thus, ZnO has become popular for researchers investigating the piezoelectric effect on
enhanced PEC water splitting. Specifically, Hong et al. used ultrasonic waves to develop
strain-induced polarized charges on ZnO microfibers, demonstrating that the piezoelectric
catalytic process of polarized ZnO is stable in triggering redox reactions [34]. Chen et al.
synthesized Z-scheme ZnO-WO3−x nanoarrays for PEC water splitting via a hydrother-
mal method and demonstrated that piezoelectric coupled ZnO could enhance Z-scheme
performance where the optimized photocurrent is 3.02 times higher than that of pure
ZnO [35]. It is well known that the morphology of the piezoelectric material is an important
factor in the piezoelectric effect. However, most studies have focused on the function
of the piezoelectric effect in composite materials, and there needs to be more research
into the influence of essential characteristics of zinc oxide on piezo-photoelectrochemical
performance. Therefore, it is crucial to research a link between the morphology of ZnO and
piezo-photoelectrochemical performance.

In this paper, we first explore the mechanism of piezo-photoelectrochemical perfor-
mance that is affected by the morphology of ZnO. A total of three different ZnO nanostruc-
tures (nanorods, nanosheets, and nanospheres) were prepared by hydrothermal methods,
electrochemical deposition methods, and sol-gel methods, respectively. The PEC water
splitting performance of the three samples was measured under the piezoelectric effect,
and it was revealed that the PEC properties of the ZnO nanosheets were improved, while
the other two samples had improved slightly. Besides, according to the finite element
simulation, ZnO nanosheets have the greatest piezoelectric potential, ZnO nanorods have
the second highest, and ZnO nanospheres have the lowest. This phenomenon is related
to the effective deformation stress of ZnO under ultrasonic vibrations. This research has
potential implications for developing novel photoelectrodes for piezo-photoelectrochemical
water splitting.

2. Experimental Sections
2.1. Preparation of ZnO Nanosheets (ZnO NSs)

The ZnO NSs were synthesized by the electrochemical deposition method in a three-
electrode system. Specifically, the working electrode was the fluorine-doped tin oxide (FTO)
glass substrate, which was cleaned with acetone, isopropanol, and anhydrous ethanol un-
der sonication for 30 min, respectively, and dried in advance. The counter and reference
electrodes were the platinum and Ag/AgCl electrodes, respectively. The solution of elec-
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trodeposition was a mixed solution containing zinc nitrate hexahydrate (Zn(NO3)2·6H2O)
and potassium chloride (KCl). The concentrations of Zn(NO3)2·6H2O and KCl in the hy-
brid solution were both 0.1 M. The electrodeposition system was deposited at a deposition
potential of−1.1 V for 15 min at 70 ◦C. Finally, the obtained ZnO NSs samples were cleaned
with deionized water and dried at 50 ◦C for 5 h.

2.2. Preparation of ZnO Nanorods (ZnO NRs)

Preparing the ZnO NRs consisted of two steps. Firstly, preparing the ZnO NRs seed
layer. In this step, 3.285 g zinc acetate (Zn(CH3COO)2) was added to 50 mL 2-methoxyethanol
(C3H8O2). The solution was stirred at 50 ◦C. When Zn(CH3COO)2 was completely dis-
solved in the solution, 1.43 mL ethanolamine (C2H7NO) was added to the solution until the
solution was clear. Then, the solution was left to sit for one day. The FTO glass substrates
were immersed in the precursor solution for 20 s and then pulled out. The above dip-
coating process was repeated 7 times. The substrates were eventually annealed at 200 ◦C
for 30 min and then at 400 ◦C for 1 h in an air atmosphere. Secondly, the ZnO NRs were
grown on the seed layer. The concentration of zinc nitrate hexahydrate (Zn(NO3)2·6H2O)
and hexamethylenetetramine (HMTA) in the mixed solution were both 0.05 M. Specifically,
the side with the ZnO NRs seed layer was put face down into the hydrothermal reactor.
The hybrid solution was added to the hydrothermal reactor with a pipette until the upper
edge of the seed layer was covered, and then tightened the hydrothermal reactor. The ZnO
NRs samples were obtained by maintaining the growth system at 90 ◦C for 6 h. Finally, the
obtained ZnO NRs samples were cleaned with deionized water and then dried at 80 ◦C for
1 h.

2.3. Preparation of ZnO Nanospheres (ZnO NPs)

The ZnO NPs were synthesized by the sol-gel method [36,37]. Briefly, 0.01 M Zn(CH3COO)2
was added to 100 mL triethylene glycol (C6H14O4), and then the solution was stirred at
160 ◦C for 8 h to obtain a colloidal dispersion. Finally, the obtained colloid dispersion was
drop-cast onto clean FTO glass and annealed at 350 ◦C for 1 h.

2.4. Characterization

The morphologies of all the samples at different magnifications were observed using
a scanning electron microscope (SEM, SU8010) at an accelerating voltage of 3 kV. The
submicroscopic structure and lattice spacing of the samples were observed by transmis-
sion electron microscopy and high-resolution transmission electron microscopy (TEM
and HRTEM, Tecnai G2 F20) at an accelerating voltage of 200 kV. The phase purity and
crystalline structure of the obtained samples were identified by X-ray diffraction (XRD,
Empyrean, Cu Kα radiation as the excitation source). The elemental composition and
valence states of the samples were characterized by X-ray photoelectron spectroscopy (XPS,
ESCALAB 250Xi, Al Kα radiation as the excitation source hν = 1486.6 eV, 150 W, the diame-
ter beam spot is 500 µm). The optical absorbance of the obtained samples was characterized
by UV-visible diffuse reflectance spectroscopy (SHIMADZU UV-2600). The efficiency of
photoelectron-hole recombination was characterized by the photoluminescence spectra (PL,
FLS-1000). The response of materials to light was measured by surface photovoltage spec-
troscopy (SPV, PL-SPS1000). The PEC performance was measured using a three-electrode
system with an electrochemical workstation (CHI660E) and the illumination that was emit-
ted by a solar simulator (300 W xenon lamps, 100 mW/cm2). The working electrode was
the obtained samples, the counter electrode was the platinum electrode, and the reference
electrode was the Ag/AgCl electrode. The electrolyte was 0.1 M Na2SO4 aqueous solution.
The potential of Ag/AgCl was interconverted with the potential of the reversible hydrogen
electrode (RHE) by a conversion formula (ERHE = EAg/AgCl + 0.059pH + 0.1976 V, where pH
is the pH value of the electrolyte) [38]. The interfacial charge transfer properties of the
samples in the solution were characterized by electrochemical impedance spectroscopy
(EIS) under illumination. Mott–Schottky (M-S) plots were carried out at a frequency of
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1 kHz under illumination. The model piezoelectric potentials under mechanical pressure
that were provided by ultrasonic vibrations were simulated by the finite element method
(FEM) using COMSOL Multiphysics software.

3. Results and Discussion

The fabrication processes of three ZnO photoanodes are illustrated in Figure 1. As
shown in Figure 1a, The ZnO NSs were fabricated by electrodeposition using a standard
three-electrode setup, and the reaction equations are as follows [39,40]:

Zn(NO3)2 → Zn2+ + 2NO3
− (1)

NO3
− + H2O + 2e− → NO2

− + 2OH− (2)

Zn2+ + 2OH− → Zn(OH)2 (3)

Zn(OH)2 → ZnO + H2O (4)
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NPs photoanode.

In general, the (0001) plane of ZnO (Zn2+-terminated) and −(0001) plane of ZnO (O2--
terminated) in the reaction system are high-energy polar surfaces. When ZnO is grown on
the FTO glass substrates, the precursor molecules are preferentially adsorbed on the polar
surface with minimized surface energy; and then converted to another polar surface with
opposite polarity (Zn2+-terminated turned to O2−-terminated and vice versa), resulting in
rapid growth along with the [0001] direction [41]. However, KCl in the ZnO NSs growth
solution does not directly participate in the ZnO growth reaction; the presence of its Cl−

ions could be preferentially adsorbed by the (0001) plane of ZnO, which ultimately hinders
the conversion of the two polar surfaces and limits the growth of ZnO along the c-axis,
resulting in the generation of nanosheet structures [42].
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The ZnO NRs were fabricated by the hydrothermal methods (Figure 1b). Green et al.
demonstrated that the seed layer of ZnO that was obtained by the thermal decomposition
of Zn(CH3COO)2 precursor could get ZnO nanorods arrays vertically [43]. Therefore, the
ZnO seed layer was obtained by the thermal decomposition of the Zn(CH3COO)2 precursor
solution. Then, the ZnO NRs were prepared by thermal decomposition of Zn(NO3)2·6H2O
and HMTA mixed solution, and the reaction equations are as follows [39]:

C6H12N4 (HMTA) + 6H2O→ 4NH3 + 6HCHO (5)

NH3 + H2O→ NH4
+ + OH− (6)

Zn2+ + 4NH3 → [Zn(NH3)4]2+ (7)

Zn2+ + 2OH− → Zn(OH)2 (8)

Zn(OH)2 → ZnO + H2O (9)

In the ZnO NRs growth solution, there are no other ions similar to the Cl- ions that
are adsorbed by the polar side and HMTA is attached to the non-polar side, promoting
the growth of ZnO NRs along the [0001] direction [44]. Furthermore, the HMTA pro-
vides a slightly alkaline environment for the growth of ZnO NRs according to reaction
Equations (5) and (6).

The ZnO NPs were fabricated by pyrolyzing Zn(CH3COO)2 (Figure 1c). Prolonged
stirring is intended to provide a more homogenous dispersion of Zn(CH3COO)2 in the
organic solvent, and C6H14O4 has the function of encasing the Zn(CH3COO)2 and prevent-
ing its expansion outwards. An improvement in the bonding between the crystals, the
film, and the FTO is achieved through high-temperature annealing, which also eliminates
organic compounds and converts Zn(CH3COO)2 into ZnO.

Figure 2 presents the morphology of three ZnO nanostructures with typical top-down
and cross-sectional views. Figure 2a shows the morphology of ZnO NSs. As presented,
ZnO NSs are grown on different lattice planes, and the average hexagonal side length
and thickness of each nanosheet are 1320 nm and 60 nm, respectively. Figure 2e is the
cross-sectional SEM image of ZnO NSs, from which we can conclude that the film thickness
of the ZnO NSs is 1440 nm. On the contrary, most ZnO NRs are grown on one lattice plane,
and the average hexagonal side length of each nanosheet is 86 nm, presented in Figure 2b,c.
The thickness of the ZnO NRs is 1410 nm, which is concluded from Figure 2f. In addition,
from Figure 2d,g, the radius of ZnO NPs is about 150 nm, and the thickness of ZnO NPs is
about 1380 nm. Therefore, the film thicknesses of the three ZnO nanostructures are similar.
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sent the HRTEM images of three nanostructures. In Figure 4d, the lattice distance of 2.82 
nm, 2.60 nm, and 2.48 nm corresponds to the (100), (002), and (101) planes of the ZnO NSs, 
severally. Similarly, the lattice distance of 2.60 nm and 2.48 nm in Figure 4e corresponds 

Figure 2. The morphologies of three ZnO nanostructures. SEM image of (a) ZnO NSs, (b,c) ZnO NRs,
and (d) ZnO NPs. Cross-sectional SEM image of (e) ZnO NSs, (f) ZnO NRs, and (g) ZnO NPs.

Moreover, the crystalline structures of the three samples were confirmed by XRD
analysis. Figure 3a shows the XRD spectrums of the various ZnO nanostructures that were
grown on the FTO substrate, and Figure 3b presents vertically enlarged XRD patterns of
the inside of the pink dashed line in Figure 3a. The ZnO NRs peaks are detected at 34.43◦,
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36.25◦, 47.52◦, and 62.86◦, and they represent lattice planes (002), (101), (102), and (103),
respectively. The ZnO NSs peaks are detected at 31.70◦, 34.42◦, 36.25◦ and 56.46◦, and they
represent lattice plane (100), (002), (101) and (110), respectively. Similarly, The ZnO NPs
peaks are detected at 31.70◦, 34.42◦, 36.25◦, and 56.46◦, and they represent lattice plane
(100), (002), (101), and (110), respectively. The detected peaks of three ZnO nanostructures
match the standard ZnO diffraction pattern (JCPDS, No. 36-1451), indicating that three
morphologies of ZnO have the same crystalline structure, which is a wurtzite structure.
Notably, the peak at 34.43◦ is the highest in the ZnO NRs, indicating that the ZnO NRs are
mainly grown on a lattice plane (002). The results of the XRD of three ZnO nanostructures
match well with the results of their SEM images.
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Figure 3. (a) XRD patterns of three ZnO samples. (b) Vertically enlarged XRD patterns of the inside
of the pink dashed line in (a).

TEM and HRTEM were measured to investigate further the crystal structure of the
three distinct ZnO nanostructures. Figure 4 shows the TEM and HRTEM images of ZnO
NRs, ZnO NSs, and ZnO NPs. Figure 4a,b, and c present the low-resolution TEM images of
ZnO NRs, ZnO NSs, and ZnO NPs, respectively. It can be seen from the figures that the
prepared samples are regular nanorods, nanosheets, and nanospheres. Figure 4d–f present
the HRTEM images of three nanostructures. In Figure 4d, the lattice distance of 2.82 nm,
2.60 nm, and 2.48 nm corresponds to the (100), (002), and (101) planes of the ZnO NSs,
severally. Similarly, the lattice distance of 2.60 nm and 2.48 nm in Figure 4e corresponds to
the (002) and (101) planes of the ZnO NRs, respectively. In Figure 4f, the lattice distance
of 2.81 nm, 2.62nm, 2.47 nm, and 1.93 nm corresponds to the (100), (002), (101), and (102)
planes of the ZnO NSs, respectively. These results match the findings from XRD well.
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Figure 4. (a–c) TEM images of three ZnO samples. (d–f) HRTEM images of three ZnO samples.
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As displayed in Figure 5, XPS was used to investigate the chemical states of three
samples. Firstly, the XPS survey scan spectrum of three samples exhibited distinct Zn 2p, O
1s, and C 1s core-level peaks in Figure 5a. Then, the valence states analysis of each element
is displayed in Figure 5b–d. All the elements are recalibrated according to C 1s located at
284.8 eV (Figure 5b). According to Figure 5c, the binding energies of three samples for Zn
2p3/2 and Zn 2p1/2 are the same, located at 1021.4 eV and 1044.6 eV, respectively, indicating
that zinc is in the Zn2+ state. As shown in Figure 5d, the binding energies of three ZnO
samples for O1s consisted of two different binding energy components. The low binding
energy component is typically attributed to lattice oxygen, and the high binding energy
one to –OH surface groups due to the exposure of the sample to the atmosphere and water
vapor from the synthesis process [45–47]. Therefore, it proves that the three samples are
ZnO and have no other impurity components.
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Figure 5. XPS survey scan spectrum for (a) all elements, (b) C 1s, (c) Zn 2p, and (d) O 1s of three
ZnO samples.

Furthermore, the absorption of light by the samples was measured by UV-vis spectra,
and the results are shown in Figure 6a. The light absorption ranges of the ZnO NSs, ZnO
NRs, and ZnO NPs are 380 nm, 390 nm, and 385 nm, respectively. Moreover, the optical
bandgaps of the samples were calculated according to the following formula [48,49]:

(Ahv)n = K (hv − Eg) (10)

where A is the absorption coefficient, h is Planck’s constant, v is the frequency of the light,
K is a constant, Eg (eV) is the band gap energy of the semiconductor, and n is related to the
type of semiconductors, n = 2 for a direct-gap semiconductor and n = 1/2 for an indirect-gap
semiconductor. Since ZnO is a direct-gap semiconductor, the value of n is 2. Figure 6b
shows the plot of (Ahv)2-hv of three ZnO samples. The bandgaps of the ZnO NSs, ZnO NRs,
and ZnO NPs are calculated to be 3.31 eV, 3.23 eV, and 3.25 eV, respectively. The different
results could be attributed to the Burstein–Moss shift [50,51], and the results are close to
the bandgap of ZnO in previous studies [24,52]. The photoelectron-hole recombination
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efficiency was investigated using PL, and the findings are presented in Figure 6c. Among the
three samples, the ZnO NRs possess the lowest peak intensity; it represents the least efficient
photoelectron-hole recombination within ZnO NRs, due to a strong peak intensity which
indicates a high photoelectron-hole recombination efficiency [53]. Figure 6d shows the
results of three samples that were characterized by SPV. The response range of nanosheets
to light is significantly narrower than that of nanorods and nanospheres, which is consistent
with the UV-Vis absorption spectra data (in Figure 6a). Besides, the photovoltage of the ZnO
NRs is the highest, and that of the ZnO NSs and NPs are similar. Therefore, the ZnO NRs
exhibit the greatest photoelectrochemical performance among the three samples because of
their broad optical absorption and low photoelectron-hole recombination efficiency.
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Figure 6. (a) UV-vis absorbance spectra, (b) the plot of (Ahν)2-hv, (c) SPV curves, and (d) PL curves 
of three ZnO samples. 

Figure 6. (a) UV-vis absorbance spectra, (b) the plot of (Ahv)2-hv, (c) SPV curves, and (d) PL curves
of three ZnO samples.

The photoelectrochemical properties of the three samples changed differently after
adding the piezoelectric effect. We measured the photocurrent density-voltage curves
(Figure 7a) and I-T curves under intermittent illumination with the applied bias at 1.23 V vs.
RHE (Figure 7b). There were three obtained samples that were immersed in 0.1 M Na2SO4
electrolyte as working electrodes, and the area of them was 1 cm2. The photocurrent of the
as-prepared ZnO NSs, ZnO NRs, and ZnO NPs were 0.11 mA/cm2, 0.30 mA/cm2, and
0.10 mA/cm2 at 1.23 V vs. RHE, respectively. After the addition of ultrasonic vibrations,
the photocurrent of the ZnO NSs, ZnO NRs, and ZnO NPs increased to 0.32 mA/cm2,
0.41 mA/cm2, and 0.12 mA/cm2 at 1.23 V vs. RHE, respectively. Consequently, the
piezo-photoelectrochemical performance of ZnO NSs was enhanced by a factor of 3 times,
nanorods were a factor of 1.4 times, and nanospheres were a factor of 1.2 times. The piezo-
photoelectrochemical performance of three samples is more clearly displayed in Figure 7b.
When the light was turned off, there was no current in any of the three samples, and
when ultrasonic vibrations were applied, all three samples exhibited an increase in current.
The increasing current density is largely explained by the ZnO crystals lacking inversion
symmetry, and a non-zero dipole moment is created within the lattice, which results in a
strain-induced polarized electric field when ZnO is deformed by force [54]. The polarized
electric field that is produced by the ultrasonic vibrations efficiently promotes carrier
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separation, allowing the samples to generate current even in the dark. Notably, among the
three samples, the light absorption range of ZnO NRs is the widest (390 nm, Figure 6a,d),
but the improvement of the photoelectrochemical performance is not the highest under
the piezoelectric effect. Therefore, these results indicate that the piezoelectric effect could
improve the photoelectrochemical water splitting of ZnO, and the morphology of ZnO is
the main factor that affects the piezo-photoelectrochemical performance compared to the
light absorption range of ZnO.
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ples and three samples with ultrasonic vibrations (Ultra). 
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The interfacial charge transfer properties of the samples in solution were characterized
by EIS under illumination, and the results are shown in Figure 8. The curves in Figure 8 are
the measured results of the three different nanostructured ZnO samples under illumination
and illumination with ultrasonic vibrations, respectively. The radius of the curves for
the three samples with ultrasonic vibrations is less than without ultrasonic vibrations,
indicating that the charge transfer rates of the three samples with ultrasonic vibrations are
faster than those without ultrasonic vibrations. This result is because the diameter of the
fitted semicircle in EIS equals the electron transport resistance, and a semicircle with a small
radius denotes a low charge transfer resistance [55,56]. Besides, the diameter of the ZnO
NSs with ultrasonic vibrations is smaller than that of the other two samples with ultrasonic
vibrations, indicating that the charge transfer rate of the ZnO NSs is the fastest in the three
samples under ultrasonication. These results suggest that the electron transfer efficiency of
ZnO is enhanced under ultrasonication. Meanwhile, ultrasonic vibrations have different
effects on the electron transfer efficiency of ZnO with different nanostructures.
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The applied bias photon–current efficiency (ABPE) curve based on photocurrent
density is used to quantitatively evaluate the efficiency of PEC water splitting of three
samples, which is calculated by the following formula [57]:

η (%) = [J × (1.23 − Vapp)/Plight] × 100% (11)

where J incidents the obtained photocurrent density under illumination, Vapp represents
the applied electric bias, and Plight means light intensity. As shown in Figure 9a, the
photoelectric conversion efficiency of the ZnO NSs under ultrasonic vibrations reached
0.12%, which is 1.62 times higher than that of the ZnO NSs without ultrasonic vibrations
(0.07%), that of the ZnO NRs only improved by 1.13 times under ultrasonic vibrations
(from 0.13% to 0.15%). Instead, the photoelectric conversion efficiency of the ZnO NPs
remained unchanged. In addition, Figure 9b represents the Mott–Schottky (M-S) curves
under illumination to determine the charge density. The curves of all the samples display
positive slopes, which means that all the samples are n-type semiconductors. The carrier
density (Nd) can be calculated using the slope value with the following formula [58]:

Nd = (2/eεε0)/[d((1/C2)/dV] (12)

where e, ε, and ε0 represent the charge of the electronic, the dielectric constant of ZnO, and
the vacuum permittivity, respectively. It can be seen that a small slope value represents a
high carrier concentration from Formula (12). As shown in Figure 9b, the samples of the
ZnO NSs and NRs have smaller slope values under ultrasonic vibrations, which indicates
that ultrasonic vibrations are beneficial to increase the concentration of electrons. That is
because the deformation of the ZnO NSs and ZnO NRs caused by ultrasonic vibrations
generates a built-in electric field in the ZnO photoanode, which accelerates the separation
of electrons and reduces the recombination of electrons and holes. However, the two M-S
curves of the ZnO NPs almost overlap, which indicates that the carrier concentration of the
ZnO NPs is also not greatly improved under ultrasonic vibrations.
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Figure 9. (a) Applied bias photon–current efficiency curves. (b) Mott–Schottky (M-S) plots that were
measured under 1000 Hz of the photoanodes.

From the above, the thickness of the three sample films is similar, the composition of
the three samples is the same, the area that is immersed in the electrolyte during detection
is the same, and the differences are their morphologies and the light absorption ranges.
However, according to results in Figures 6d and 7b, the morphology of ZnO has a greater
influence than the light absorption range. Therefore, we conclude that the ZnO NSs
have a better effect in piezo-photoelectrochemical water splitting, which is related to the
morphology of ZnO.

Moreover, for better visualization of the piezoelectric potential that is produced by the
three samples under ultrasound, the FEM simulation was performed on all the samples.
The parameters of the model were set based on the morphologies of three samples in
Figure 2. The hexagon side length and thickness were set to 86 nm × 1410 nm and 1320
nm × 60 nm for the ZnO NRs and NSs, respectively. The radius of the ZnO NPs was set
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to 150 nm. A local high pressure (100 MPa) was due to the collapse of bubbles that were
generated in the water under ultrasonic vibrations [59,60]. Thus, the FEM simulation was
carried out at a pressure of 100 MPa. The direction in which the pressure is applied is
determined by the exposed crystallographic orientation. Therefore, the bottom of the model
was fixed and grounded, and a pressure of 100 MPa was applied to the surface of the model
along the negative z-axis and perpendicular to the z-axis; the simulation results are shown
in Figure 10a–c. The maximum potential of the ZnO NSs is 0.6 V (Figure 10a), which is
higher than that of the ZnO NRs (0.2 V, Figure 10b) and ZnO NPs (0.04 V, Figure 10c). The
results show that compared to the ZnO NRs and ZnO NPs, the ZnO NSs were deformed
easily and generated high potential under ultrasonic vibrations, which can effectively
accelerate the separation of photogenerated carriers. The results of the FEM simulation are
consistent with the above experimental results, which explain the phenomenon successfully
that the photoelectrochemical performance efficiency of the ZnO NSs is improved more
than that of the ZnO NRs and ZnO NPs under ultrasonic vibrations.
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Figure 10. (a–c) The FEM simulation for the piezoelectric potential distribution in the three ZnO
samples with pressures of 100 MPa. (d) Schematic of deformation of ZnO under ultrasonic vibrations.

To visually explain the reason the morphology of ZnO affects piezo-photoelectrochemical
performance, Figure 10d shows a schematic diagram of ZnO deformation under ultrasonic
vibrations. The direction of stress that is generated by ultrasonic vibrations is divided
into vertical forces (Fv) that are perpendicular to the FTO direction and horizontal forces
(Fh) parallel to the FTO direction. Since the ZnO NRs are regular hexagonal prisms with
relatively uniform sides, the forces Fh in the horizontal direction mostly cancel each other
out, and the forces Fv in the vertical direction play a significant part in the deformation of
the ZnO NRs when ultrasonic vibrations occur on the ZnO NRs. In contrast, since ZnO
NSs are sheet-like structures, they do not grow perpendicular to the FTO and are unevenly
distributed on each side. The forces Fh do not cancel each other in the horizontal direction,
resulting in a pressure difference that deforms the ZnO NSs in the horizontal direction.
The forces Fv still deform the NSs in the vertical direction. Therefore, ZnO NSs will be
deformed due to the forces acting in two directions. However, due to the spherical structure
of ZnO NPs, the surface of ZnO NPs is more uniform than that of ZnO NRs and NSs. Most
of the forces (Fh and Fv) in the horizontal and vertical directions will cancel each other out
so that the effective stress of the deformation of ZnO NPs is very slight.

In short, the ZnO NSs are deformed by force in two directions (Fh and Fv), while the
ZnO NRs are in only one direction (Fv), and the ZnO NPs are deformed by little force. This
results in the ZnO NSs being more easily bent with a larger amount of deformation so that
the ZnO NSs have more excellent surface piezoelectric potential to make them better to
accelerate the separation of charges and improve PEC performance.
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4. Conclusions

In summary, three different nanostructures of ZnO were used as piezoelectric material
models to investigate the influence of the morphology of ZnO on enhancing photoelec-
trochemical water splitting performance under the piezoelectric effect. Compared to the
ZnO NRs and ZnO NPs, the ZnO NSs are subjected to higher effective deformation stress
under ultrasonic vibrations due to their non-axial vertical growth, making them more
susceptible to deformation and a larger piezoelectric potential, which accelerates the charge
separation efficiency of the ZnO NSs and improves photocatalytic performance by a factor
of three times. In addition, finite element simulation was used to confirm the effect of
the morphology of ZnO on the piezoelectric effect to enhance the photocatalytic perfor-
mance. This study provides a new idea and reference for the subsequent design of different
photoelectrodes in piezo-photoelectrochemical water splitting.
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