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Abstract: Globally, the continuous contamination of natural water resources is a severe issue, and
looking for a solution for such a massive problem should be the researcher’s concern. Herein, Al2O3,
Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were prepared via a simple and fast route, utilizing glucose
as a capping material. All synthesis conditions were uniform to make the fabricated nanomaterials’
characteristics exclusively influenced by only the ion type. The SEM analysis showed that the
particles of the synthesized Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were all less than
25 nm. The Al2O3-NiO showed the smallest particle size (11 to 14 nm) and the best BET surface
area of 125.6 m2 g−1. All sorbents were tested for removing organic pollutants, as exemplified
by indigo carmine (IGC) dye. The Al2O3-NiO possessed the highest adsorption capacity among
the other sorbents for which it had been selected for further investigations. The IGC sorption
reached equilibrium within 2.0 h, and the kinetic study revealed that the IGC removal by Al2O3-
NiO nanocomposite fitted the FOM and the LFM. The sorbent showed an experimental adsorption
capacity (qt) of 456.3 mg g−1 from a 200 mg L−1 IGC solution and followed the Langmuir model.
The thermodynamic findings indicated an endothermic, spontaneous, and physisorption nature. The
seawater and groundwater samples contaminated with 5.0 mg L−1 IGC concentrations were fully
remediated using the Al2O3-NiO nanocomposite. The reuse study showed 93.3% average efficiency
during four successive cycles. Consequently, prepared Al2O3-NiO nanocomposite is recommended
for the treatment of contaminated water.

Keywords: aluminum oxide; nickel oxide; nanocomposite; adsorption; water treatment; indigo carmine

1. Introduction

Water pollution is among the most severe global problems threatening human health [1].
This prominent issue is a consequence of the rapid industrialization trend and continuous
industrial waste discharge into water resources [2–5]. The pollutants in industrial effluents
encompass organic dyes, pharmaceutical compounds, and heavy metals that pose authentic
life problems [6]. Organic dyes with azo-groups, aromatic rings, or sulphonate groups are
used extensively in various industries. Indigo carmine (Disodium [2(2)E]-3,3-dioxo-1,1,3,3-
tetrahydro[2,2-biindolylidene]-5,5-disulfonate, IGC) is a highly water-soluble dye known
to be toxic and carcinogenic [7,8]. Flocculation, chemical oxidation, ion exchange, and
membranes have been used to remove such pollutants from water [9–17]. Unfortunately,
these approaches were hindered by significant obstacles, such as low removal efficiency
and/or high- cost [18–20]. The failure of conventional methods to eliminate organic
pollutants is evident by detecting them in the tap water of many countries [21]. On the other
hand, the adsorption and photodegradation processes perform better in removing such
pollutants [22–26]. Although photocatalytic degradation requires no further treatment steps,
it has been criticized for utilizing more energy and producing toxic fragments. Conversely,
several sorbents show excellent efficiencies in eliminating organic pollutants, with the
advantages of low energy consumption and without the formation of toxic products [27–30].

Inorganics 2022, 10, 144. https://doi.org/10.3390/inorganics10090144 https://www.mdpi.com/journal/inorganics

https://doi.org/10.3390/inorganics10090144
https://doi.org/10.3390/inorganics10090144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com
https://doi.org/10.3390/inorganics10090144
https://www.mdpi.com/journal/inorganics
https://www.mdpi.com/article/10.3390/inorganics10090144?type=check_update&version=2


Inorganics 2022, 10, 144 2 of 16

Seeking better sorbents with novel features, the researchers investigated synthesizing
nanocomposites via doping by polymers, ceramics, and metal oxides. The suitability
of doping materials significantly influences the molecular structure since they affect the
aggregation of produced nanomaterial [31]. Traditionally, aluminum oxide (Al2O3) was
known as an adsorbent in chromatography and a perfect bed-stabilizer for metal oxide
catalysts. Al2O3 is an inexpensive, water-insoluble, rugged sorbent with a high surface area,
and its surface encompasses both acidic and basic functional groups [32]. Hence, researchers
are still interested in synthesizing Al2O3 in its pure and composite forms. Various studies
have investigated the doping of Al2O3 by different amounts of the same element [33–38].
Nevertheless, the physical characteristics, adsorption capacity, and photocatalytic activity
of the products can be affected by fabrication conditions, making it irrational to compare
the ion-type impact.

This work aimed to prepare nanoscale Al2O3 and its CuO, NiO, and CoO nanocom-
posites via one fast, simple route. The synthesis conditions, doping amount, and calcination
temperature will be uniform in order to eliminate any effects other than the ion type on the
product’s properties. The properties of the prepared nanomaterials will be investigated.
Additionally, the better sorbent among the Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO
will be selected by studying the removal of IGC.

2. Results and Discussion
2.1. Characterization

Figure 1 illustrates the SEM results for the pure Al2O3, Al2O3-CuO, Al2O3-NiO, and
Al2O3-CoO nanocomposites. The products showed cloudy-like clusters composed of tiny
nanoparticles with size ranges of 18–22, 13–15, 11–14, and 14–20 nm for Al2O3, Al2O3-
CuO, Al2O3-NiO, and Al2O3-CoO, respectively. The Al2O3-NiO nanoparticles being the
smallest can be attributed to the strong NiO interaction with Al2O3, which facilitates NiO
dispersion [39]. Furthermore, the elemental compositions of the fabricated nanomaterials
were examined with EDX (Figure 2). The aluminum and oxygen mass percentages in the
prepared Al2O3 nanoparticles were 52.7% and 47.3%, respectively; these results are almost
typical of the theoretical Al2O3 composition. In their nanocomposites, Cu, Ni, and Co
mass percentages were 8.7%, 5.1%, and 9.3%, respectively. Additionally, EDX mapping was
employed to investigate the elemental distribution of the fabricated Al2O3, Al2O3-CuO,
Al2O3-NiO, and Al2O3-CoO (Figure 3). The obtained maps of the doping ion followed
the Al2O3 contours indicating an excellent dispersion of the Al2O3-metal-oxides phases
without metal oxide accumulations.

XRD analysis was employed to investigate the crystallography of the prepared nano-
materials (Figure 4). Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO results indicated
amorphous confirmations that matched the SEM results. The diffraction peaks at 2θ−

degrees of 37.3, 44.9, and 67.2 in all spectra were allocated to the Al2O3 phase (JCPDS
card No. 37-1462) [32,40,41]. Although there is an overlap in the doping metal oxides and
alumina results, the diffraction peaks at 2θ◦ of 62.72, 61.76, and 65.02 can be assigned to the
CuO, NiO, and CoO phases in the nanocomposites [42–44].

Figure 5 illustrates the FTIR spectra for the Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-
CoO. The most intense peaks around 740 and 908 cm−1 can be assigned to symmetric—
asymmetric Al-O-Al stretching vibrations. The band at 560 cm−1 can be attributed to Al-O-Al
bending and/or Cu-O stretching vibrations; Al-O also exhibited a band at 1150 cm−1 [42,45,46].
Additionally, peaks at 456 and 457 cm−1 in the Al2O3-NiO and Al2O3-CoO composites can
be assigned to Ni-O and Co-O vibrations [44,47].
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Figure 1. SEM results of the prepared (a) Al2O3 nanoparticles; (b–d) Al2O3 doped by CuO NiO, and 
CoO, respectively. 
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CoO, respectively. 
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Figure 3. EDX mapping for the (a) Al2O3 nanoparticles, (b) Al2O3—CuO, (c) Al2O3—NiO, and (d) 
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Figure 4. The XRD results for (a) Al2O3 nanoparticle, (b) Al2O3—CuO, (c) Al2O3—NiO, and
(d) Al2O3—CoO nanocomposites.
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Figure 5. FTIR findings for the Al2O3 nanoparticle and its CuO, NiO, and CoO nanocomposites.
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The N2 adsorption-desorption-isotherm was employed to investigate the surface and
porosity features of the Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO (Figure 6). The
pore diameter (PD) and pore volume (PV) were determined via the Barrett–Joyner–Halenda
(BJH) method, while the BET method was utilized for determining the surface area (SA),
and the results are gathered in Table 1. The Al2O3 nanoparticles and their CoO nanocom-
posites showed loop-hysteresis-type H3 allocated to slit-like non-rigid-aggregate particles
with cylindrical micro-pores. Conversely, the Al2O3-CuO and Al2O3-NiO possessed loop-
hysteresis-type H4 assigned to fluffy particles with slit-like micro-pores [48,49]. Al2O3-NiO
nanocomposite exhibited the highest BET-SA, which follows the SEM results, suggesting
the best adsorption capability among the other products.
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Table 1. The surface characteristics of the prepared Al2O3, Al2O3-CuO, Al2O3-NiO, and
Al2O3-CoO nanomaterials.

Parameter Al2O3 Al2O3-CuO Al2O3-NiO Al2O3-CoO

BET Surface Area (m2 g−1) 74.709 123.984 125.636 105.653

average pore diameter (Å) 75.301 95.088 137.949 84.152

average pore volume (cm3 g−1) 0.310 0.331 0.335 0.319

2.2. Adsorption of IGC

The contact-time impact on IGC adsorption on Al2O3, Al2O3-CuO, Al2O3-NiO, and
Al2O3-CoO were presented in Figure 7a. Although the adsorption equilibrium was not
reached for all sorbents until three hours, almost 90% of the total uptakes were taken within
the first 60 min. The obtained qt values for Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO
were 57.2, 184.9, 198.8, and 149.1 mg g−1, respectively. These findings aligned with the high
surface area revealed by the BET analysis for Al2O3-NiO nanocomposite, so it was selected
for further investigations.
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Figure 7. (a) The contact time study for IGC removal by the fabricated Al2O3, Al2O3-CuO, Al2O3-
NiO, and Al2O3-CoO nanomaterials; (b) The pH influence on the removal of IGC dye by the
Al2O3-NiO nanocomposite.

Figure 7b illustrates the pH impact on IGC removal by Al2O3-NiO nanocomposite.
The IGC sorption decreased at low pHs but dropped more in high solution pHs. The
performance of Al2O3-NiO nanocomposite was almost steady in the pH range of 5.0 to
8.0, with a preference of 6.0. This behavior can be explained in light of the IGC molecular
structure since a high H+ concentration may protonate the electron-rich sites on such ionic
dye and cause repulsion between some spots of the metal oxide nanoparticles. In addition,
the occupation of electron-rich sites on the IGC may decrease its availability and contribute
to the sorption process. Conversely, the -OH groups may occupy some active-sorption sites
on the sorbent in the high pH range [21,50,51].

2.3. Kinetics of IGC Adsorption

The adsorption order and rate-control mechanism for IGC adsorption on the Al2O3-
NiO nanocomposite were investigated (Figure 8). The FOM and SOM for the IGC sorption
possessed R2 values of 0.970 and 0.934, respectively, with k1 and k2 values of 0.044 min–1

and 0.006 g mg–1 min–1, respectively. Additionally, the rate-control mechanism exam-
inations via the LDM and IM showed R2 values of 0.997 and 0.985, respectively, and
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exhibited equilibrium constants of 0.043 mg g−1 min−0.5 and 15.486 min–1, respectively.
These findings illustrated that IGC sorption on the Al2O3-NiO followed the FOM, and
the LDM controlled the sorption. [52,53]. Following the FOM and LDM mechanism was
in line with the Al2O3-NiO particle being small and indicated a high affinity of IGC to
the sorbent [54–56].
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2.4. Adsorption Isotherms

The results obtained from the effect of concentrations were employed to investi-
gate the adsorption isotherms. The monolayer and multilayer adsorption possibilities
were studied via Langmuir (LIM) and Freundlich (FIM) isotherm models expressed in
Equations (1) and (2), respectively.

1
qe

=
1

KL qm
· 1

Ce
+

1
KL

(1)

ln qe = ln KF +
1
n

ln Ce (2)
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where: KL (L mg−1) is the LIM constant; Ce (mg L−1) is the equilibrium solution concen-
tration; qm (mg g−1) is the computed maximum qt; KF (L mg−1) and 1/n (arbitrary) are
the equilibrium constant, and heterogeneity-factor of FIM, respectively. Figure 9 illustrates
the LIM and FIM plots, and Table 2 presents their calculated results. The IGC adsorption
on Al2O3-NiO fitted the LIM (R2 = 0.943), while the FIM possessed an R2 value of 0.910.
Additionally, the Freundlich heterogeneity factor was 0.365, indicating favorable sorption
for IGC on the Al2O3-NiO nanocomposite [57–61].

Inorganics 2022, 10, x FOR PEER REVIEW 11 of 17 
 

 

of 0.910. Additionally, the Freundlich heterogeneity factor was 0.365, indicating favorable 
sorption for IGC on the Al2O3-NiO nanocomposite [57–61]. 

 
Figure 9. (a) LI and (b) FI investigations for the adsorption of IGC dye on the Al2O3-NiO 
nanocomposite at 20 °C from 25, 50, 100, and 200 mg L−1 IGC solutions. 

Table 2. Isotherms and thermodynamic parameters for IGC adsorption onto the Al2O3-NiO 
nanocomposite. 

Adsorption Isotherms 
Langmuir  Freundlich 

R2 (a.u.) KL (L mg−1) qm (mg g−1) R2(a.u.) Kf (L mg−1) n−1 (a.u.) 
0.932 265.024 0.178 0.910 54.307 0.365 

Thermodynamic parameters 
Fed conc. (mg 

L−1)  ΔH◦ (kJmol−1) 
ΔS◦ 

(kJmol−1) 
ΔGo (kJmol−1) 

298 K 
ΔG◦ (kJmol−1) 

308 K 
ΔG◦ (kJmol−1) 

318 K 
25 84.369 0.304 −6.372 −10.940 −15.507 
50 55.616 0.211 −7.214 −10.377 −13.539 

100 98.857 0.342 −2.919 −8.041 −13.164 
200 66.112 0.225 −0.816 −4.184 −7.553 

2.5. Thermodynamic 
Figure 10a illustrates the temperature and concentration effects on IGC removal by 

Al2O3-NiO nanocomposite. Wourthmentioning, the Al2O3-NiO showed an experimental 
qt of 456.3 mg g−1 from 200 mg L−1 at 50 °C. The direct proportionality between the obtained 
qt values and the indicated temperature process is endothermic [62]. The thermodynamics 
were then explored for a better understanding of the IGC sorption on the Al2O3-NiO 
nanocomposite (Figure 8b). Equation (3) was utilized for computing the enthalpy (ΔHo) 
and entropy (ΔSo), and their values were applied in Equation (4) to calculate the Gibbs-
free-energy (ΔGo) and the results were in Table 2. ln K =   ΔH RT   +   ΔS R  (3)Δ G =  Δ H − T Δ S   (4)
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Table 2. Isotherms and thermodynamic parameters for IGC adsorption onto the Al2O3-NiO nanocomposite.

Adsorption Isotherms

Langmuir Freundlich

R2 (a.u.) KL (L mg−1) qm (mg g−1) R2(a.u.) Kf (L mg−1) n−1 (a.u.)

0.932 265.024 0.178 0.910 54.307 0.365

Thermodynamic parameters

Fed conc.
(mg L−1)

∆H◦

(kJmol−1)
∆S◦

(kJmol−1)

∆G◦

(kJmol−1)
298 K

∆G◦

(kJmol−1)
308 K

∆G◦

(kJmol−1)
318 K

25 84.369 0.304 −6.372 −10.940 −15.507

50 55.616 0.211 −7.214 −10.377 −13.539

100 98.857 0.342 −2.919 −8.041 −13.164

200 66.112 0.225 −0.816 −4.184 −7.553

2.5. Thermodynamic

Figure 10a illustrates the temperature and concentration effects on IGC removal by
Al2O3-NiO nanocomposite. Wourthmentioning, the Al2O3-NiO showed an experimental qt
of 456.3 mg g−1 from 200 mg L−1 at 50 ◦C. The direct proportionality between the obtained
qt values and the indicated temperature process is endothermic [62]. The thermodynamics
were then explored for a better understanding of the IGC sorption on the Al2O3-NiO
nanocomposite (Figure 8b). Equation (3) was utilized for computing the enthalpy (∆H◦)
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and entropy (∆S◦), and their values were applied in Equation (4) to calculate the Gibbs-
free-energy (∆G◦) and the results were in Table 2.

ln Kc =
∆H◦

RT
+

∆S◦

R
(3)

∆G◦ = ∆H◦ − T∆S◦ (4)
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Figure 10. (a) The effect of IGC initial fed concentration on its sorption by the Al2O3-NiO nanocom-
posite at 20, 35, and 50 ◦C; (b) the thermodynamic investigation of IGC sorption by Al2O3-NiO
nanocomposite from 25, 50, 100, and 200 mg L−1 solutions at 20, 35, and 50 ◦C.

As in all calculations, the value of 0.0081345 kJ mol−1 was applied as deal-gas-constant
(R). The positive ∆H◦ values supported the previous endothermic suggestion. More-
over, the negative ∆G◦ values indicate the spontaneity of IGC sorption on the Al2O3-NiO
nanocomposite [30]. Furthermore, having all the G◦ values less than 20 kJ mol−1 suggested
a physisorption process [29]. The increased sorption spontineoutey as the concentration
decreased implied the effectiveness of using this sorbent for water treatment, where low
concentrations were expected.

2.6. Application to Natural Water Samples and Regeneration of Al2O3-NiO Nanocomposite

Figure 11a shows the results of using Al2O3-NiO nanocomposite for removing IGC
from synthetically contaminated SW and GW. The nanocomposite possessed an average
efficiency of 99.2% in treating the 5 and 10 mg L−1 IGC concentrations in each SW and
GW sample. It is worth mentioning that the SW and GW polluted by 5.0 mg L−1 IGC
concentrations were fully remediated. The lowest removal efficiency of 97.6 was attained
with SW, which can be attributed to its high ion content.

Additionally, the reusability of the Al2O3-NiO nanocomposite was investigated
(Figure 11b). The used Al2O3-NiO were filtered and sonicated with 10 mL ethanol for
10 min, 20 mL distilled water (DW), filtered, washed with distilled water, and dried at
105 ◦C for 2.0 h. The first removal efficiency was considered 100%, and the subsequent per-
formances were determined relatively [63]. The Al2O3-NiO nanocomposite showed 93.6%
average efficiency, with a 5.5% RSD value, and its lowest efficiency was 87.5%. This finding
was in line with the sorptions fitting the LFDM, which indicated the ease of pollutant
penetration into the inner sorbent sites and hindered recovery.
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Figure 11. (a) Remediation of contaminated GW and SW using the Al2O3-NiO nanocomposite;
(b) the reuse study of the Al2O3-NiO nanocomposite for removing IGC water.

3. Experimental
3.1. Materials

Aluminum trichloride hexahydrate (AlCl3.6H2O, 99%), and copper nitrate tetrahy-
drate (Cu(NO3)2.3H2O, 98%), were purchased from LOBA CHEMIE (Mumbai, India).
Cobalt acetate (II) (Co(AC)2, 99%) was brought from Winlab (USA), and nickel nitrate
(Ni(NO3)2.6H2O, 98%) was obtained from BDH laboratory reagents (England). D(+) Glu-
cose monohydrate (GL) was purchased from Riedel-de Haen (Germany). Indigo carmine
was purchased from Fluka (Germany).

3.2. Synthesis of Al2O3 Nanoparticle and Its Composites

For the pure Al2O3 nanoparticles, 22.41 g of AlCl3 were dissolved in 100 mL of distilled
water. The solution was stirred with 10 g of glucose as a capping agent, and the mixture was
heated to dryness. The formed solid was powdered, transferred into a porcelain dish, and
calcined at 600 ◦C for 3.0 h. The Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO nanocomposites
were prepared in the same manner with the appropriate amount of ion salt to produce the
Al2O3: metal-oxide composite of a 9:1 ratio.

3.3. Characterization of Al2O3 Nanoparticle and Its Composites

The surface morphology of the prepared nanomaterials was analyzed via scanning
electron-energy-dispersive X-ray spectroscopy (FE-SEM-EDX, JSM-IT500HR). The bonding
and functional groups were surveyed by FTIR spectrophotometer (Bruker TENSOR—USA).
The surface characteristics were tested using a Micromeritics surface analyzer (ASAP
2020, USA). In addition, purity and crystallinity were examined using a powder X-ray
diffractometer (Bruker, D8-Advance; Billerica, MA, USA).

3.4. Adsorption of IGC on Prepared Nanomaterials

The batch-experiment technique was used to investigate the activities of the Al2O3,
Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO in removing IGC from water. The contact time
effect and kinetic investigations were performed by stirring 120 mL of the IGC solution
(100 mg L−1) with 50 mg of the sorbent. A 5.0 mL portion of each mixture was picked
and filtered, and the IGC absorbance was measured by a UV-Vis-spectrophotometer (2600i,
Shimadzu, Japan). The adsorption capacity (qt, mg g−1) at each time interval was computed
by Equation (5), and accordingly, the best sorbent was selected for further investigation.
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Additionally, the obtained results were employed to investigate the IGC’s adsorption
kinetics. Pseudo-first-order and pseudo-second-order kinetic models (FOM and SOM;
Equations (6) and (7)) were utilized to examine the sorption rate. In addition, to figure out
the step controlling the adsorption, the intra-particle, and liquid-film diffusion models (IM
and LM; Equations (8) and (9)).

qt =
(Co − Ct) V

M
(5)

ln
(
qe − qt

)
= ln

(
qe
)
− k1 × t (6)

1
qt

=
1

k2q2
e t

+
1
qe

(7)

qt = KIM × t
1
2 + Ci (8)

ln(1 − F) = −KLM∗t (9)

where: Co, Ct (mg L−1) resents the dye concentrations at time zero and t; V (L) and M (g)
present the volume of dye solution and mass of sorbent, respectively; k1(min–1): the FOM
rate constant; k2 (g mg–1 min–1): rate-constant of the SOM; KIM (mg g−1 min−0.5) and KLM
(min−1): the IM and LDM constants; the qe (mg g−1) is the equilibrium adsorption capacity;
Ci (mg g−1): the boundary-layer-thickness parameter.

Furthermore, the adsorption of IGC on the sorbent was tested under serial solution
pH. The 100 mg L−1 IGC solution was adjusted to a pH value from 2.0 to 10.0. 100 mL of
the adjusted solution was stirred with 50 mg sorbent to the equilibrium time, and the rest
of the solution was used as the standard.

3.5. Adsorption Equilibria

The initial IGC concentration impact on its removal by the best sorbent was tested
utilizing 25, 50, 75, and 100 mg L−1 IGC concentrations. Additionally, to study the effect
of temperature on IGC removal, sorption from the previously mentioned concentrations
was performed at 20, 35, and 50 ◦C. The obtained results were utilized to investigate the
sorption isotherms and thermodynamics.

3.6. Application to Natural Water Samples

A groundwater sample (GW) was picked from Sudhir city (≈165 km from Riyadh-
KSA), and the Seawater (SW) was collected from Aldhran coast-KSA. Each water sample
was spiked with the appropriate amount of IGC solution (100 mg L−1) to obtain 5.0 and
10.0 mg L−1 concentrations. The contaminated GW and SW were stirred with 50 mg of
sorbent, and the removal efficiency was calculated using Equation (10).

%E =
(Co − Ct)× 100

Co
(10)

4. Conclusions

Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were prepared via a simple and fast
route using glucose as the capping material. The influence on the characteristics of the
prepared nanomaterials was kept to the ion type by uniforming the synthesis conditions.
The particle sizes of the synthesized Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were
less than 25 nm. The Al2O3-NiO showed the smallest particle size (11 to 14 nm) and the
highest surface area. All sorbents were tested for removing IGC from water, and Al2O3-
NiO possessed the best qt value among the other sorbents, so it was selected for further
studies. The IGC adsorption on the Al2O3-NiO nanocomposite fitted the FOM, and the
LFM influenced IGC removal. The equilibrium investigations revealed the agreement of
IGC adsorption on the Al2O3-NiO nanocomposite to the LI model. The thermodynamic
results indicated an endothermic, spontaneous, and physisorption nature. The Al2O3-NiO
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nanocomposite remediated SW and GW spiked with a 5.0 mg L−1 IGC concentration. The
reuse study showed 93.3% average efficiency during four successive cycles. This study
indicated that doping Al2O3 by NiO produced a better sorbent than Al2O3, Al2O3-CuO,
and Al2O3-CoO.
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