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Abstract: Continuous waste discharge into natural water resources in many countries is a severe
global issue, and seeking an effective solution is a researcher’s concern. Herein, toilet paper waste
was a low-cost precursor for preparing carbon nanoparticles (TPCNPs). The characterization of
TPCNPs revealed a 30 nm to 50 nm particle size, a 264 m2 g−1 surface area, and a cubical graphite
lattice XRD pattern. The TPCNPs were tested for removing malachite green (MG), indigo carmine
(IC), rhodamine B (RB), and methylene blue (MB) dyes from water. The solution parameters were
examined for the sorption process, and a pH of 5.0 suited the MB removal, while a pH of 6.0 was
suitable for MG, IC, and RB. The effect of concentration investigation showed an adsorption capacity of
110.9, 64.8, 73.5, and 98 mg g−1 for MG, IC, RB, and MB, respectively. The sorption of the four dyes fitted
the Langmuir isotherm model; it was exothermic and spontaneous. The water remediation was tested
using groundwater and seawater samples (GW and SW) spiked with pollutants. It is worth mentioning
that one treatment sufficed for the remediation of GW and SW contaminated by 5 mg L−1 concentration,
while a double treatment was required for 10 mg L−1 pollution in both samples.

Keywords: carbon nanoparticles; toilet paper waste; malachite green; indigo carmine; rhodamine B;
methylene blue

1. Introduction

The continuous waste discharge into natural water resources causes severe drinking
and irrigation water problems worldwide [1,2]. This spread of pollutants in the water
environment results from the rapid industrialization trend [3,4]. Organic dyes with an azo-
group, aromatic rings, or sulphonate groups are toxic and carcinogenic [5]. Many techniques
have been employed to remove such pollutants from water, including flocculation, chemical
oxidation, ion exchange, and membranes [6–9]. The detection of organic dyes in the tap
water of some first-world countries makes evident the failure of conventional treatments to
keep such contaminants from drinking water [10–13]. Conversely, the adsorption process is
a successful method for removing such pollutants [10–14]. Mainly, the adsorption binding
forces may include hydrogen bonding, π-π bonding, induced dipole interaction, and van
der Waals forces [15]. The sorbate’s polarity and the adsorbent’s pore size, surface area,
and functionality can affect the removal efficiency. The traditional use of carbonaceous
materials (CRMs) as a color or odor remover from solutions draws attention because of its
outstanding adsorbing capacities [16]. In addition, the low-cost, safety, ease of use, and high
surface area make the carbonaceous allotropes a potential water treatment substrate [17].
Carbonaceous allotropes may include activated carbon, nanotubes, nanofibers, graphene,
and nanoparticles. Unlike metal-oxide nanomaterials, the precursors for fabricating CRMs
are of high diversity. In addition, the surface of CRMs can be easily modified through
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implanting functional groups, which increases their adsorbing properties significantly [18].
CRMs can be prepared from many virgin precursors, but because of the influential cost
factor, it is better to fabricate CRMs from waste. Therefore, lemonwood, orange peels,
potato shells, and various agricultural wastes were studied. Many researchers target CRMs
as cheap sorbents for removing water contamination [19–25]. This study aimed to prepare
carbon nanoparticles from waste toilet paper (TPW) as a low-cost precursor and to use the
produced CRMs would be ground via a ball-milling process as an available downsizing
method to produce carbon nanoparticles (TPCNPs). The prepared sorbent will be employed
to eliminate malachite green (MG), indigo carmine (IC), rhodamine B (RB), and methylene
blue (MB) from seawater and groundwater samples. Moreover, the number of cycles
required for completely remediating contaminated water will be studied.

2. Results and Discussion
2.1. Characterization of TPCNPs

The SEM results in Figure 1a,b revealed clustered particles attributed to the milling
process. The separate particles appeared within a size range of 40 to 76 nm. In addition,
the elemental composition of the TPCNPs was determined using EDX. As monitored in
Figure 1c,d, the TPCNPs comprised 84.4% carbon and 15.6% oxygen. The high oxygen
content indicated the successful implanting of oxygen-functional groups.
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Figure 2a shows the XRD results for the produced TPCNPs. The diffraction peaks
at 2θ◦ of 23.71 and 44.48 can be assigned to (002) and (100) of the cubical lattice graphite
phase (JCPDS no. 04-0850) [26–28]. Moreover, the baseline elevation at 2θ◦ of 10 can be
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attributed to uncrystallized carbon and/or agglomerated by the milling process [29]. The
average crystal size of TPCNPs was calculated with Scherrer’s equation (Equation (1), and
the lattice parameters (a and c) were estimated via Equations (2) and (3), while the lattice
imperfection (ε) was calculated via Equation (4) [29,30].

D =
0.9λ

β cos θ
(1)

a =
λ√

3 sinθ
(2)

c =
λ

sinθ
(3)

ε =
β

4 cosθ
(4)

where θ, λ, and β represent the Bragg’s angle, Cu-Kα line (1.5406 Ǻ), and the peak width at
half-maximum [31]. The lattice parameters were calculated using the two principal peaks,
and their findings are illustrated in Table 1.
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Figure 2. (a) the XRD pattern, (b) the FTIR bond-vibration bands, (c) the nitrogen adsorption–
desorption isotherm, and (d) pore size distribution for the fabricated TPCNPs.
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Table 1. The lattice parameters for the prepared TPCNPs as calculated from the XRD spectrum.

Parameters 23.7083 (2θ◦) 44.4823 (2θ◦) Avge

D (nm) 0.414 2.079 1.246
a (nm) 0.183 0.337 0.260
c (nm) 7.500 4.070 5.785

ε (Arbutary) 0.377 0.356 0.367

The FT-IR analysis was employed to explore the functional groups on the TPCNPs,
and the obtained vibration bands are illustrated in Figure 2b. The peaks around 1300 cm−1

and 1720 cm−1 are most likely C-O and C=O stretching vibrations of carboxylic groups;
the OH band between 3000 cm−1 and 3600 cm−1 supports this conclusion. The C=C
stretching vibration of the graphitic structure was indicated via the 1640 cm−1 band; the
symmetric and asymmetric C-H stretching vibrations were assigned to the peaks near
2850 cm−1 and 2930 cm−1, respectively [32,33]. These results demonstrated that TPW was
successfully carbonized at 900 ◦C, and the nitric acid treatment succeeded in implanting
oxygen-functional groups, which aligns with the EDX results.

Figure 2c,d show the nitrogen adsorption–desorption isotherm and the pore volume
distribution for the TPCNPs. The hysteresis loop type (III) possessed by TPCNPs indicated
a mesoporous material with various pore volumes (PV) [34]. The Brunauer–Emmett–Teller
(BET) method was utilized for determining the surface area (SA), while the Barrett–Joyner–
Halenda (BJH) method was used to estimate the pore diameter (PD) and PV of the TPCNPs.
The obtained SA, PD, and PV values were 264.52 m2 g−1, 37.12 Ǻ, and 0.26 cm3 g−1,
respectively. These findings were comparable to some carbonaceous materials in the
literature [35–37].

2.2. Adsorption of Organic Dyes by TPCNPs

The adsorption of IC, RB, MG, and MB from aqueous solutions by the prepared
TPCNPs was studied. The time influence on the adsorption of the four dyes was monitored
in Figure 3a. All sorbent/sorbate systems took 120 min to attain equilibrium, except for
MB, which required only 90 min. The evaluation of pH impact (Figure 3b) showed that
pH 5.0 was suitable for removing MB, while pH 6.0 was appropriate for removing MG, IC,
and RB. In addition, these results are somewhat expected since an alkaline medium may
convert these dyes to their salt forms and thus prefer to stay in water over being adsorped,
which is in line with the literature results [38–40].
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Furthermore, the four dyes’ sorption was studied by utilizing four different concen-
trations at three different temperatures. Figure 4 shows that the qt increased proportion-
ally with the fed concentration and inversely with the solution temperature. At 20 ◦C,
the qt values of MG, IC, RB, and MB reached 116.2, 109.5, 144.6, and 147.8 mg g−1, which
are competitive results compared to recent literature findings [41–48]. The high adsorption
capacity of the 100 mg L−1 solutions inferred the usability of this sorbent for industrial
waste treatment where such pollutants were released at high concentrations. Figure 4
also indicated that the sorbent: solution ratio of 4:5 was suitable even for high pollutant
concentrations. On the other hand, the semi-complete remediation of water contaminated
by 10 mg L−1 nominated TPCNPs for efficient treatment of polluted water resources where
low concentrations were expected. Moreover, the adsorption of MG, IC, RB, and MB on the
TPCNPs decreased inversely as the temperature rose (Figure 4). These findings implied an
exothermic nature of the adsorption of the four dyes.
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Figure 4. The influence of solution concentration on the removal by the TPCNPs at 20 ◦C, 35 ◦C,
50 ◦C for (a) MG, (b) IC, (c) RB, and (d) MB.
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2.3. Adsorption Kinetics

The pseudo-first-order (PSFO) and pseudo-second-order (PSSO) kinetic models
(Equations (5) and (6)) were used to investigate the adsorption rates of MG, IC, RB, and
MB on TPCNPs. In addition, to better understand the adsorption, the sorption control step
was inspected via the intra-particle and liquid film diffusion models (IPDM and LFDM)
expressed in Equations (7) and (8).

ln(qe − qt) = ln(qe)− kt (5)

1
qt

=
1

k2q2
e t

+
1
qe

(6)

qt = Kip ∗ t
1
2 + Ci (7)

ln(1− F) = −KLF ∗ t (8)

k1 (min–1), k2 (g mg–1 min–1), Kip (mg g−1 min−0.5), and KLF (min–1) were the PSFO,
PSSO, IPDM, and LFDM constants, respectively; qe and qt (mg g−1) were the adsorbed
amount of dye on a gram of TPCNPs at equilibrium and time t. Ci (mg g−1) is a parameter
related to the boundary layer thickness. Figure 5 illustrates the regression plots of the
adsorption rate order and the rate control mechanism. The extracted slope and intercept
values were employed in calculating k1, k2, Kip, and KLF [49]. The results gathered in Table 2
indicated that MG and IC adsorption on the TPCNPs fitted the PSFO model with higher
R2 values. Based on these findings, the sorbent–sorbate interaction occurred via diffusion
through the TPCNP boundaries, which suggests physisorption. In contrast, RB and MB
followed the PSSO model, indicating an association of chemisorption mechanisms in
removing RB and MB dyes [50–53]. Furthermore, the rate control mechanism investigations
for the four dyes’ adsorption revealed that LFDM was the slowest step in controlling the
adsorption of the four dyes (Table 2).

Table 2. The kinetics parameters for MG, IC, RB, and MB adsorption on the prepared TPCNPs by
stirring 120 mL of 50mg L−1 pollutant solution with 50 mg TPCNPs.

Adsorption Kinetic

Adsorption Rate Order

PSFO PSSO

Dye MG IC RB MB MG IC RB MB

qe exp. (mg g−1) 110.852 64.883 73.452 97.974 110.852 64.883 73.452 97.974

qe cal. (mg g−1) 45.480 41.885 25.887 65.048 102.249 56.180 69.979 91.241

R2 (Arbutary) 0.971 0.973 0.905 0.891 0.840 0.920 0.984 0.975

Rate constant 0.042 0.038 0.029 0.055 0.007 0.006 0.007 0.005

Adsorption Mechanism

Pollutant ↓
Intraparticle Diffusion Model (IPDM) Liquid Film Diffusion Model (LFDM)

KIP (mg g−1 min0.5) C (mg g−1) R2 KLF (min–1) R2

MG 5.218 62.980 0.854 −0.042 0.972

IC 4.124 24.983 0.919 −0.038 0.967

RB 3.461 40.689 0.770 −0.029 0.905

MB 5.162 49.595 0.862 −0.055 0.892
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Figure 5. (a) PSFO, (b) PSSO (c) LFDM (d) IPDM investigations for the adsorption of MG, IC, RB,
and MB dyes on the TPCNPs at 25 ◦C.

2.4. Adsorption Isotherms

Numerous models in the literature were used to describe the adsorption isotherm;
among these, the Langmuir (LIM, Equation (9)) and Freundlich models (FIM, Equation (10))
were the most used ones. Herein, both models were employed to investigate the removal
of MG, IC, RB, and MB from TPCNPs.

1
qe

=
1

Kl qm
.

1
Ce

+
1
Kl

(9)

ln qe = ln K f +
1
n

ln Ce (10)

KL (L mg−1) and KF (L mg−1) represent LIM and LFM constants; Ce (mg L−1) is the un-
adsorbed concentration at equilibrium, qm is the calculated maximum adsorption capacity,
and 1/n is the Freundlich adsorption intensity [54]. Figures 6 and 7 illustrated LIM and
FIM fittings for the adsorption of the four dyes on the TPCNPs, and their findings were
gathered in Table 3. The sorption of the four dyes on TPCNPs appeared to have a better
fit to FIM. Additionally, the obtained 1/n values for MG, IC, RB, and MB were less than 1,
thus indicating that their adsorptions were favorable [55].
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Table 3. The Isotherms and thermodynamic parameters for the adsorption of MG, IC, RB, and MB
adsorption on the prepared TPCNPs.

Adsorption Isotherms

Isotherm Model→ Langmuir Freundlich

Dye ↓ R2 (a.u.) KL (L mg−1) qm (mg g−1) R2(a.u.) Kf (L mg−1) n−1 (a.u.)

MG 0.928 71.276 1.542 0.991 0.033 0.340

IC 0.916 65.445 1.821 0.973 0.034 0.311

RB 0.908 72.098 13.733 0.919 0.022 0.256

MB 0.897 73.801 1.400 0.919 0.033 0.402

Thermodynamic Parameters

MG

Fed conc.
(mg L−1) ∆H◦ (Kj mol−1) ∆S◦ (kJ mol−1) ∆G◦ (kJ mol−1)

298 K
∆G◦ (kJ mol−1)

308 K
∆G◦ (kJ mol−1)

318 K R2

10 −103.125 −0.314 −9.453 −6.309 −3.166 0.975

25 −30.022 −0.086 −4.351 −3.490 −2.628 0.954

50 −42.628 −0.135 −2.424 −1.075 0.274 0.953

100 −34.139 −0.112 −0.906 0.209 1.324 0.975

IC

10 −148.286 −0.466 −9.547 −4.892 −0.236 0.989

25 −76.294 −0.244 −3.688 −1.251 1.185 0.964

50 −26.268 −0.049 −11.556 −11.062 −10.568 0.961

100 −46.201 −0.153 −0.606 0.924 2.454 0.974

RB

10 −182.242 −0.564 −14.138 −8.497 −2.856 0.970

25 −67.406 −0.210 −4.915 −2.818 −0.721 0.955

50 −46.729 −0.156 −0.368 1.188 2.744 0.995

100 −64.772 −0.216 −0.503 1.654 3.811 0.999

MB

10 −71.474 −0.211 −8.646 −6.538 −4.430 0.999

25 −64.006 −0.203 −3.596 −1.568 0.459 0.999

50 −54.862 −0.178 −1.709 0.075 1.859 0.999

100 −56.198 −0.185 −0.997 0.855 2.707 0.990

2.5. Adsorption Thermodynamics

The thermodynamics of MG, IC, RB, and MB adsorptions on TPCNPs were exam-
ined. The entropy (∆S◦) and enthalpy (∆H◦) of sorptions were computed from the plot of
Equation (11) (Figure 8). A 0.0081345 kJ mol−1 was utilized in all calculations as a gas-
constant value (R), and the makeup of ∆H◦, and ∆S◦ values into Equation (12) produced
the Gibbs free energy (∆G◦) (Table 3).

ln Kc =
∆H o

RT
+

∆S o

R
(11)

∆ G o = ∆ H o − T ∆ S o (12)

The negative ∆H◦ values for MG, IC, RB, and MB adsorption indicated the sorption’s
exothermic nature for all sorbent–sorbate systems. Moreover, the negative ∆G◦ at 298 ◦K
showed the spontaneity of sorptions at low temperatures, which is another support for the
exothermic nature finding. In addition, the average ∆H◦ values of less than 80 kJ mol−1 for
MG, IC, RB, and MB indicated that the sorption was physical [56–60].
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2.6. Application to Natural Water Samples and Regeneration of TPCNPs

The GW had a total dissolved solids (TDS) value of 1.05 g L−1, a temperature of 24.5 ◦C,
and a pH value of 7.23. On the other hand, the SW showed a TDS value of 33.84 g L−1, a
temperature of 27.4 ◦C, and a pH value of 7.46. Figure 9a shows the removal of MG, IC,
RB, and MB from contaminated GW and SW samples. The TPCNPs showed an average
removal efficiency of 99.3% and 98.8% for the four dyes from 5 mg L−1 polluted SW and
GW, and 97.2 and 95.8 from the 10 mg L−1 concentration. As the sorption of MG, IC, RB,
and MB adsorption on the prepared TPCNPs fitted the LFDM, the high saline concentration
of SW may suppress the dyes’ diffusions and cause a decrease in removal efficiency from
the SW compared to the GW. Since organic pollutants are unacceptable at any concentration,
the same SW and GW samples were retreated with half the amount of virgin TPCNPs.
Complete remediation was attained for all contaminated water samples.

Furthermore, the regeneration-reusability investigation was carried out for the TPC-
NPs. As the TPCNPs showed lower adsorption capacity in the alkaline media, the used
sorbent was filtered and sonicated for 10 min with 10 mL of 1M sodium hydroxide. Then,
the TPCNPs were sonicated with 10 mL ethanol, filtered, rinsed with distilled water, dried
at 110 ◦C for 1.0 h, and used for the next round. In order to eliminate the effect of TPCNP
loss during the regeneration investigation, the volumes of solutions were reduced pro-
portionally to conserve the sorbent: solution ratio. The removal efficiency of the virgin
TPCNPs was used as 100%, and the efficiencies and the subsequent rounds were calculated
accordingly (Figure 9b) [61]. The average efficiency of TPCNPs within the five cycles
was 91.78, 94.18, 93.76, and 94.35% for MG, IC, RB, and MB, respectively. The relative
standard deviation (RSD) for the five rounds of removing MG, IC, RB, and MB was 6.40,
4.25, 5.70, and 5.48%, respectively. Figure 9c,d illustrates the surficial characteristics of the
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regenerated TPCRNPs via SEM images. The obtained particle size range of 52.0 to 82.0 nm
indicated a slight particle size change that may be caused via agglomeration of TPCNPs in
the aqueous medium. The agreement of all sorbent–sorbate systems to the LFDM shows
that the pollutants easily penetrate to the inner shells with high affinity to the TPCNP.
These factors may hinder the recovery process and cause efficiency to decrease in the last
reuse cycles [51,62].
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3. Materials and Methods
3.1. Materials

Nitric acid 69% was provided from LOBA-CHEM, Mumbai, India. Waste toilet paper
(TP) was gathered from a bathroom basket at Riyadh-KSA. The IC and RB were from Merck,
Germany, while the MG and MB were from LOBA-CHEM, Mumbai, India.

3.2. Preparation of Carbon Nanoparticles

About 50.0 g of TPW was calcined in a tubular furnace at 900 ◦C under a nitrogen
stream (50.0 mL/h). The resulting TP-CRM was boiled in 250 mL of 5.0 M nitric acid for
2.0 h. The product was filtered, washed with distilled water (to pH ≈ 6.5), and dried at
110 ◦C for 3.0 h. Five stainless steel balls (1.0 cm in diameter) were transferred to a 50 mL
stainless steel crucible, then 10.0 gm of the TP-AcC was added. The ball-milling machine
was operated at 500 rounds per minute for 10 h, and the toilet paper’s carbon nanoparticles
(TPCNPs) were collected for further work.
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3.3. Characterization of Carbon Nanoparticles

The TPCNPs were analyzed utilizing scanning electron energy dispersive X-ray spec-
troscopy (SEM-EDS, JSM-IT300), an X-ray diffractometer (Bruker, D8 Advance; Billerica,
MA, USA), an FTIR spectrophotometer (Bruker TENSOR—Germany), and a surface ana-
lyzer (Micromeritics analyzer ASAP 2020).

3.4. Adsorption Investigation

The TPCNPs have been studied as adsorbents for removing IC, RB, MG, and MB from
water. A 50 mg L−1 solution was selected at a relatively high concentration to examine the
sorbent capacity. A total of 50 mg of TPCNP was stirred (700 rpm) with 120 mL of 50 mg L−1

dye solution to investigate the contact time influence on the sorption process at 25 ◦C.
A UV-Vis-spectrophotometer (Shimadzu-2600i) was employed to determine the pollutant
concentrations. Moreover, the impact of initial concentration on the sorption trends was
studied using 10, 25, 50, and 100 mg L−1 solutions in order to test the TPCNPs’ efficiency
at a wide concentration range. Furthermore, the previously mentioned concentrations
were utilized to examine the influence of the temperature on sorption at 20, 35, and
50 ◦C, which were selected to obtain a clear difference in the temperature effect. Moreover,
the pH effect on the dye sorption was inspected within the pH range of 2.0 to 10.0. The
adsorption percentage of pollutants (Ads%) and the adsorption capacity (qt) were computed
by Equations (13) and (14).

Ads% =
(Co − Ct)

Co
× 100 (13)

qt =
(Co − Ct) V

M
(14)

Co (mg L−1): initial dye concentration; Ct (mg L−1): remained dye concentration;
V (L): solution’s volume; M (g): sorbent’s mass.

3.5. Application to Natural Water Samples

Seawater and groundwater samples (SW and GW) were collected from the Arabic Gulf,
Dammam Coast, KSA, and Al Majma’ah city (185 km north of Riyadh, KSA). SW and GW were
spiked with an appropriate volume of concentrated dye solution to prepare 5.0 and 10.0 mg L−1 of
each dye separately. The effect of the SW and GW matrix on determining sample concentrations
was eliminated by using each prepared solution as a standard for its sample, and thereafter the
pollutant concentration was computed via the comparative method.

4. Conclusions

As a low-cost precursor, toilet paper waste was used to fabricate carbon nanoparticle
TPCNPs via carbonization ball milling processes. The prepared TPCNPs’ size was less than
100 nm and possessed a surface area of 264.52 m2 g−1. The batch methodology was utilized
to study the removal of MG, IC, RB, and MB from water. The adsorption of MG and IC
fitted the PSFO kinetic model, while RB and MB fitted PSSO; all sorbent–sorbate systems
in this study followed the LFDM with good agreement. MG, IC, RB, and MB adsorptions
on the TPCNPs showed better agreement with the FIM. According to the thermodynamic
investigations, the four dyes’ removals were exothermic, spontaneous, and physisorption.
The TPCNPs removed MG, IC, RB, and MB from the spiked SW and GW, and a double
treatment resulted in the complete remediation of contaminated water. The reusability
study revealed excellent performance consistency during five consecutive uses. Therefore,
prepared TPCNPs are recommended for treating industrial and polluted water resources
as a low-cost sorbent.
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