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Abstract: Magnetic refrigeration material is the key to adiabatic demagnetization refrigeration
technology. In this work, two magnetic refrigerants, Gd5(C4O4)(HCOO)3(CO3)2(OH)6·2.5H2O (1)
and Gd2(OH)4SO4 (2), were prepared through hydrothermal reaction. Magnetic study reveals that
their magnetic entropy changes are 24.8 J kg−1 K−1 for 1 and 15.1 J kg−1 K−1 for 2 at 2 K and
2 T, respectively. The magnetic entropy changes of 1 and 2 at T = 2 K and ∆H = 2 T exceed most
gadolinium hydroxyl compounds, indicating that magnetic refrigerants with large magnetic entropy
changes at low magnetic fields can be obtained by introducing more weak magnetic exchange ligands
to replace hydroxyl groups in gadolinium hydroxyl compounds.

Keywords: magnetocaloric effect; hydroxyl; cryogenic; magnetic refrigeration

1. Introduction

Since the magnetocaloric effect (MCE) of Fe and Ni was observed by Warburg and
Weiss in 1881 [1] and 1917 [2], respectively, the adiabatic demagnetization refrigeration
(ADR), which is based on the MCE, has gained extensive attention over the century, not
only because it has the advantages of environmental friendliness and energy efficiency [3–5]
but it is also a promising method to reach the subkelvin temperature region (below 1 K)
without the use of rare 3He gas [6,7]. Owing to the magnetic entropy changes (−∆Sm) of
magnetic refrigerants being the driving force of ADR, a great many efforts have been made
in the preparation of large MCE magnetic refrigerants in the past decades. Although some
large MCE magnetic refrigerants, such as Gd(HCOO)3 [8], Gd(OH)3 [9], Gd(OH)CO3 [10],
GdPO4 [11] and GdF3 [12], have been successfully obtained so far, on one hand, these
compounds are already known and thus it is necessary to find new magnetic refrigerants
with large MCE. On the other hand, although various Gd-based materials, such as inor-
ganic salts [11–13], molecule-based clusters [14–20], inorganic metallic oxides [21–23] and
coordination polymers [24–26], were selected as magnetic refrigerants in the past decades,
few of them contain four different inorganic ligands and thus how the collaboration among
these ligands affects their MCE remains unclear. Here we report syntheses and MCE of
two magnetic refrigeration materials, namely, Gd5(C4O4)(HCOO)3(CO3)2(OH)6·2.5H2O (1)
and Gd2(OH)4SO4 (2), of which compound 1 represents the very rare example of inorganic
Gd-based compound formed by four different inorganic anions.

2. Results and Discussion

Compound 1 was synthesized through the hydrothermal reaction of gadolinium chlo-
ride hexahydrate with squaric acid in the mixed solvent of N,N-dimethylformamide (DMF)
and water. Compound 2 was synthesized by the hydrothermal reaction of gadolinium
nitrate hexahydrate with ammonium carbonate and sulfuric acid in aqueous solution.
Powder X-ray diffraction (PXRD) patterns of the bulk sample 1 and 2 reveal that the ex-
perimental diffraction patterns are consistent with those simulated by the single crystal
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data (Figure S1, see the Supplementary Materials), demonstrating the purity of the bulk
sample 1 and 2. Thermogravimetric analysis (TGA) under nitrogen atmosphere indicates
the weight loss at 265 ◦C is 3.89% for 1, attributed to the loss of two and a half H2O. The
total weight loss of 29.78% corresponds well to the theoretical value of 30.31% when the
residue is Gd2O3. Sample 2 has good thermal stability and can remain stable up to 350 ◦C.
The weight loss of 7.29% matches well with that of 7.52% calculated by two H2O at the
temperature of 430 ◦C (Figure S2). Both the experimental PXRD patterns and TGA further
confirm the purity of the bulk sample 1 and 2. The O atoms in the main structure are
assigned to hydroxyl groups based on bond valence sum (BVS) calculations [27] and charge
balance requirements (Tables S1 and S2).

Single crystal X-ray diffraction analysis shows that 1 and 2 crystallize in the mono-
clinic system with space groups P21/c and C2/m, respectively (Figures S3 and S4). Crystal
data and structural refinement details are shown in Table S3. The asymmetric unit of
1 consists of five Gd3+ ions, six OH− anions, two CO3

2− anions, three HCOO− anions, one
C4O4

2− anion and two and a half H2O. Gd1 to Gd4 are all coordinated with four OH−,
one HCOO−, two CO3

2− and one C4O4
2− in monodentate mode. Gd5 is coordinated

with two OH−, two monodentate HCOO− and two CO3
2− in chelated mode. Gd1 and

Gd2 are in triangular dodecahedron geometry calculated by continuous shape measure-
ments [28] (CShM). Gd3 and Gd4 are in square antiprism, while Gd5 is in biaugmented
trigonal prism (Table S4). Figure 1a shows that four Gd3+ ions are linked by four OH−,
generating a [Gd4(OH)4]n

8n+ cubane. Four [Gd4(OH)4]n
8n+ cubanes centered by a Gd3+

ion through the connection of HCOO−, CO3
2− and OH− form a butterfly-shaped unit

of [Gd17(OH)20(HCOO)3(CO3)2]n
24n+, as shown in Figure 1b. It is worth noting that the

two cubanes on the left side of the butterfly-shaped unit are connected to the central Gd3+

through two HCOO− and one CO3
2−, while these on the right side of the butterfly-shaped

unit are connected to the central Gd3+ through one HCOO− and one CO3
2−. Based on

previous work, the ligands of CO3
2− and HCOO− were generated from the decomposition

of squaric acid in situ under hydrothermal conditions [29,30]. Adjacent butterfly-shaped
units expand into a 2D layer of [Gd5(OH)6(HCOO)3(CO3)2]n

2n+ through sharing edges,
as shown in Figure 1c. The adjacent layers are pillared by squarate in a µ4−η1:η1:η1:η1

coordination mode, forming into a 3D framework of 1 (Figure 1d).
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Figure 1. (a) [Gd4(OH)4]n
8n+ cubane; (b) Butterfly-shaped unit of [Gd17(OH)20(HCOO)3(CO3)2]n

24n+

in 1; (c) topology of the layer structure of [Gd5(OH)6(HCOO)3(CO3)2]n
2n+ constructed by the

butterfly-shaped units through sharing edges; (d) the 3D structure of 1 formed through the ad-
jacent layer structures pillared by C4O4

2− in a µ4−η1:η1:η1:η1 coordination mode. Hydrogen atoms
are omitted for clarity.
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Compound 2 is a known compound [31,32], but its single crystal structure has not yet
been obtained. The asymmetric unit of 2 contains half of one Gd3+ ion, one OH− anion
and a quarter of one SO4

2− anion. The central Gd3+ is coordinated by six OH− anions and
two SO4

2− anions in chelated mode in metabidiminished icosahedron geometry (Table S5).
Figure 2a reveals that the Gd3+ ions are bridged by µ3−OH−, forming a classic 2D layer of
[Gd2(OH)4]n

2n+ as observed in Gd(OH)2Cl [33]. The 3D framework can be viewed as the
adjacent layers connected by sulfates in a µ4−η1:η1:η2:η2 coordination mode, as shown in
Figure 2b. It was mentioned that although the 2D layer structure in 1 is very similar to that
in Gd(OH)2Cl, the latter is in fact a 3D supramolecular network viewed as a connection
of adjacent 2D layer structures through electrostatic interactions between Cl− anions and
[Gd(OH)2]n

n+ layers.
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The lengths of Gd–O bond in 1 and 2 range from 2.298(6) to 2.516(5) Å and 2.375(8)
to 2.518(10) Å, and the Gd–O–Gd angles vary from 104.37(14) ~ 116.37(16)◦ and 92.9(5) ~
110.8(4)◦, respectively. The distances between Gd···Gd are 3.815(6) ~ 8.561(4) Å and 3.650(6)
~ 6.762(15) Å for 1 and 2 (Tables S6 and S7). The bond lengths and angles are comparable to
those reported in Gd(OH)2Cl [33].

Figure 3a illustrates the temperature-dependent magnetic susceptibility of 1 and 2
measured in a temperature range of 2 to 300 K under a direct current (dc) magnetic field
of 1000 Oe. At room temperature, the values of χMT of 1 and 2 are 39.21 cm3 K mol−1

and 15.48 cm3 K mol−1, respectively, corresponding to the calculated theoretical values
of 39.40 cm3 K mol−1 for five spin−only Gd3+ ions (8S7/2, S = 7/2, g = 2) and 15.48 cm3

K mol−1 for two Gd3+ ions. From 300 K to 100 K, the χMT values of the two compounds
remain unchanged. Then, the χMT values decrease slowly till temperature continues to
cool down to 25 K. Further decreasing the temperature, the χMT values start to decrease
rapidly and reach 20.78 cm3 K mol−1 for 1 and 5.49 cm3 K mol−1 for 2 at 2 K. The rapid
decreasing χMT vs. T curves indicate the existence of antiferromagnetic (AFM) interactions
between adjacent Gd3+ ions in both 1 and 2. Consistently, fitting the χM

−1 vs. T data
of 1 and 2 with the Curie–Weiss law gives C = 39.57 cm3 K mol−1 and θ = −2.25 K for
1 and C = 15.71 cm3 K mol−1, θ = −2.78 K for 2. The negative Weiss constants further
manifest the presence of antiferromagnetic coupling between Gd3+ ions of 1 and 2. Figure
S5 shows the isothermal magnetization data in applied magnetic field from 0 to 7 T in
the temperature range from 2 to 10 K for 1 and 2. The magnetization increases with the
decrease of temperature at a given applied magnetic field and decreases with the decrease
of magnetic field at a given temperature. At 2 K and 7 T, the magnetizations of the two
samples approach the saturation values and reach 34.78 NµB for 1 and 13.93 NµB for 2,
which are consistent with the theoretical values of 35 NµB and 14 NµB calculated through
five Gd3+ ions (J = 7/2, L = 0, S = 7/2) and two Gd3+ ions.
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−1 vs. T plot of 1 and 2 in the temperature range of 2–300 K. The red solid
lines are the best-fit, according to the Curie–Weiss law; experimental −∆Sm values of 1 and 2 for
multiple temperatures and magnetic fields calculated from magnetization data: 1 (b); 2 (c).

Since 1 and 2 both have large mass ratio of metal to ligand, the experimental MCE of
1 and 2 was investigated by using multiple temperature data of magnetization to fit the
Maxwell equation [34] below:

∆Sm(T)∆H =
∫

[∂M(T, H)/∂T]H dH (1)

As shown in Figure 3b,c, the magnetic entropy changes (−∆Sm) of 1 and 2 increase
monotonically with the decrease of temperature and the increase of magnetic field, reach-
ing the maximum value of 59.8 J kg−1 K−1 (221 mJ cm−3 K−1) and 57.6 J kg−1 K−1

(293 mJ cm−3 K−1), respectively, at 2 K and 7 T.
For comparison, the theoretical −∆Sm for 1 and 2 was also calculated by the equation

−∆Sm = nRln(2S + 1)/Mw [35,36], which shows that the −∆Sm is 66.5 J kg−1 K−1 for 1
and 72.2 J kg−1 K−1 for 2. Both the experimental MCE of 1 and 2 were obviously smaller
than theoretical MCE of 1 and 2; this is attributed to the existence of relatively strong
antiferromagnetic interactions in 1 and 2, which degrade the spin degeneracy causing the
inability to obtain large magnetic entropy changes under limited magnetic field [37].

Table 1 lists the magnetic interactions and the magnetic entropy changes of some
excellent magnetic refrigerants reported to date under the applied magnetic field of 2 T
and 7 T. For comparison, the magnetic interactions and the magnetic entropy changes of
some magnetic refrigerants containing OH− group are also listed. Although the MCE of 1
and 2 at 7 T is significantly smaller than that of GdF3 and Gd(OH)CO3, it is comparable to
that of [Gd3(CO3)(OH)6]OH, Gd(OH)3 and Gd(OH)2Cl. It was mentioned that although
the MCE of Gd(HCOO)3 at 7 T is obviously smaller than that of 1 and 2, its MCE at 2 T is
significantly larger than that of 1 and 2. This result distinctly indicates that weak magnetic
interaction favors to obtain large MCE magnetic refrigerants at low applied magnetic field.
Because of the limitation of weight and high magnetic field interference in space missions,
the magnetic field above 4 T cannot be generated properly [38], and commercial magnets
such as NbTi [39] and NdFeB [40,41], can easily provide a magnetic field of 2 T. Except
for Gd(OH)CO3, Gd(OH)3 and Gd4(OH)4(SO4)4(H2O)4, the magnetic entropy changes
of other gadolinium hydroxyl compounds listed in Table 1 are all lower than that of 1
in low magnetic field. In combination with the composition of these compounds, this
result indicates that magnetic refrigerants with large MCE at low fields can be obtained
by introducing more weak magnetic exchange ligands to replace hydroxyl groups in
gadolinium hydroxyl compounds, consistent with the fact that the MCE of Gd(OH)CO3 is
significantly larger than that of Gd(OH)3. Based on the Table 1, the MCE of Gd(OH)3 larger
than that of 1 is obviously related to the fact that its magnetic density is higher than that
of 1. Therefore, in order to obtain gadolinium hydroxyl compounds with large magnetic
entropy changes, it is necessary to maintain high magnetic density of the gadolinium
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hydroxyl compounds, in addition to introducing more weak magnetic exchange ligands to
replace hydroxyl groups in gadolinium hydroxyl compounds. It was noted that although
the mass magnetic entropy change of 1 (24.8 J kg−1 K−1) at 2 T is obviously larger than
that of Gd(OH)2Cl (17.6 J kg−1 K−1) at 2 T, the volumetric magnetic entropy change of
1 (92 mJ cm−3 K−1) at 2 T is close to that of Gd(OH)2Cl (91 mJ cm−3 K−1) at 2 T. No
obvious difference in the volumetric magnetic entropy change between them is attributed
to that the crystal density of 1 is significantly smaller than that of Gd(OH)2Cl. In this sense,
the introduction of heavy atoms into gadolinium hydroxyl compounds is beneficial to
improving their volumetric magnetic entropy change when their magnetic density and
magnetic interaction are close.

Table 1. Weiss constants and magnetic entropy changes for selected Gd-based magnetocaloric
materials (−∆Sm).

Compound θ

−∆Sm/
J kg−1 K−1 (mJ cm−3 K−1) Ref.

7 T 2 T

GdF3 +0.7 71.6 (506) * 45.5 (322) [12]
Gd(HCOO)3 −0.3 55.9 (216) * 43.7 (169) * [8]
Gd(OH)CO3 −1.05 66.4 (355) * 33.7 (180) [10]

Gd(OH)3 −1.69 62.0 (346) 26.9 (150) [9]
Gd(OH)2Cl −1.99 61.8 (319) 17.6 (91) [33]
Gd3(OH)8Cl −2.78 59.8 (310) 14.2 (74) [33]

[Gd3(CO3)(OH)6]OH −4.37 61.5 (262) 10.1 (43) [42]
Gd2(OH)5Cl·1.5H2O −3.1 51.9 (/) * / [43]
Gd4(OH)4(SO4)4(H2O)4 −1.57 51.3 (199) 25.5 (99) [44]

[Gd60] −3.71 48.0 (133) 12.7 (35) [15]
1 −2.25 59.8 (221) 24.8 (92) This
2 −2.78 57.6 (293) 15.1 (77) Work

*: Maximum value in current magnetic field.

3. Conclusions

In summary, we reported on the crystal structures and MCE of the two magnetic
refrigeration reagents 1 and 2. Magnetic study reveals that 1 and 2, respectively, exhibit
magnetic entropy changes of 59.8 J kg−1 K−1 and 57.6 J kg−1 K−1 at T = 2 K and ∆H = 7 T.
Significantly, the magnetic entropy changes of 24.8 J kg−1 K−1 for 1 and 15.1 J kg−1 K−1

for 2 at T = 2 K and ∆H = 2 T exceed most gadolinium hydroxyl compounds, indicating
that magnetic refrigerants with large MCE at low fields can be obtained by introducing
more weak magnetic exchange ligands to replace hydroxyl groups in gadolinium hydroxyl
compounds when the magnetic density remains unchanged.

4. Materials and Methods
4.1. General Information

All materials and reagents were commercially available and used without further
purification.

Powder X-ray diffraction data (PXRD) was collected on a Rigaku Ultima IV powder
X-ray diffractometer (Cu Kα, λ = 1.54184 Å) in the 2θ range of 5–60◦ at room temperature.
Thermogravimetric analysis (TGA) curve was conducted on an SDT_Q600 thermal analyzer
at a rate of 10 ◦C per minute up to 800 ◦C under a constant nitrogen gas. Elemental
analyses were carried out using a CE Instruments EA 1110 elemental analyzer. Magnetic
measurement was carried out using a Quantum Design MPMS−XL5 superconducting
quantum interference device (SQUID).

4.2. Synthesis of Gd5(C4O4)(HCOO)3(CO3)2(OH)6·2.5H2O (1)

Compound 1 was prepared by a mixture of GdCl3·6H2O (0.186 g, 0.5 mmol) and squaric
acid (0.057 g, 0.5 mmol) dissolved in the mixed solvent of 5 mL N,N-dimethylformamide (DMF)
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and 5 mL deionized water. The resulting solution was stirred for 30 min before transferred
into a Teflon-lined autoclave at 170 ◦C for 4 days and cooled down to room temperature at
a rate of 3 ◦C h−1. Colorless crystals were obtained in 54% yield based on Gd3+. Elem. anal.
Calculated (found): C, 8.31% (8.85%); H, 0.93% (0.61%).

4.3. Synthesis of Gd2(OH)4SO4 (2)

Compound 2 was synthesized by a mixture of Gd(NO3)3·6H2O (0.226 g, 0.5 mmol) and
ammonium carbonate (0.144 g, 1.5 mmol) dissolved in 5 mL deionized water. An amount
of 10 µL concentrated sulfuric acid was introduced into the solution while stirring. The
resulting solution was stirred for another 30 min before being transferred into a Teflon-lined
autoclave at 250 ◦C for 3 days and cooled down to room temperature at a rate of 3 ◦C h−1.
Colorless crystals were obtained in 72% yield based on Gd3+. Elem. anal. Calculated
(found): H, 0.84% (0.59%).

4.4. X-ray Crystallographic Analysis of 1 and 2

Single crystal data of 1 and 2 were collected by a Rigaku XtaLAB Synergy diffractome-
ter with monochromatic Cu Kα radiation (λ = 1.54184 Å). Data reduction and absorption
correction were applied by using the multi-scan program. The structures were determined
and refined using full matrix least squares based on F2 with SHELXS and SHELXL [45]
within Olex2 [46]. All non-hydrogen atoms were refined anisotropically. CCDC numbers
2164597 and 2164596 contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html.
(Accessed on 24 June 2022)

4.5. The Bond Valence Sum (BVS) Analysis of 1 and 2

The bond valence sum (BVS) analysis was used to determine the oxidation states of
oxygen atoms in compound 1 and 2. The calculation formula is Sij = exp[(R0 − Rij)/b],
in which Sij is the valence of the individual bond, Rij is the observed bond length, R0 is a
constant depended upon the bonded elements, and b is a constant of 0.37. As shown in
Tables S1 and S2, the total BVS values of O atoms are very close to the state of +1, for which
we identify the states of all O atoms assigned to hydroxyl groups.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10070091/s1, Figure S1: PXRD patterns for 1 and 2;
Figure S2: TGA curve of 1 and 2; Figures S3 and S4: Asymmetric unit and coordination environment
for 1 and 2; Figure S5: Plot of field-dependent magnetizations at 2–10 K for 1 and 2; Tables S1 and S2:
The bond valence sum (BVS) calculations for oxygen atoms of 1 and 2; Table S3: Crystal data for 1
and 2; Tables S4 and S5: The Continuous Shape Measurements (CShM) of 1 and 2; Tables S6 and S7:
Selected bond distances (Å) and bond angles (o) of 1 and 2.
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