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Abstract: This review systematizes data on the coordination ability of mono- and disubstituted
derivatives of boron cluster anions and carboranes in complexation with transition metals. Boron
clusters anions [BnHn]2–, monocarborane anions [CBnHn–1]–, and dicarboranes [C2BnHn–2] (with non-
functionalized carbon atoms) (n = 10, 12) containing the B–X exo-polyhedral bonds (X = N, O, S, Hal)
are discussed. Synthesis and structural features of complexes known to date are described. The effect
of complexing metal and substituent attached to the boron cage on the composition and structures of
the final complexes is analyzed. It has been established that substituted derivatives of boron cluster
anions and carboranes can act as both ligands and counterions. A complexing agent can coordinate
substituted derivatives of the boron cluster anions due to three-center two-electron 3c2e MHB bonds,
by the substituent functional groups, or a mixed type of coordination can be realized, through the
BH groups of the boron cage and the substituent. As for B-substituted carboranes, complexes with
coordinated substituents or salts with non-coordinated carborane derivatives have been isolated;
compounds with MHB bonding are not characteristic of carboranes.

Keywords: decahydro-closo-decaborate anion; dodecahydro-closo-dodecaborate anion; complexation

1. Introduction

Boron has a particularly rich chemistry; various structures can be found for elemental
boron [1–3], boric acids and borates [4–6], metal and non-metal borides [7–9], boranes and
carboranes [10–18]. In the number of hydrides that it forms, boron is second only to carbon.
Boron cluster anions [BnHn]2– (n = 10, 12) and carboranes (Figure 1) are fascinating objects
with versatile chemistry. Owing to their tendency to participate in reactions of substitution
of exo-polyhedral hydrogen atoms, they allow one to design new cage systems differing in
geometry and electronic structure.

The application fields of boron clusters are traditionally explained by their high energy
intensity [19]. Moreover, it was proposed to use them in boron neutron capture therapy
of tumor tissues because of the high neutron absorption capacity of boron atoms [20–22].
Boron clusters can be used to manufacture heat-resistant polymers and materials with
neutron-protective properties [23–26], and contrast agents for MRI diagnostics [27]. Metal
complexes with boron clusters are applied as heavy metal extractants, as coordination
polymers, etc. [28–32]. Recently, complexes containing boron clusters have been proposed
to prepare metal borides [33–36]. The physiological properties of boron clusters and their
applications in medicine are discussed in recent reviews [37–41].
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analyzed in recent reviews [42–51]. It is concluded that boron cluster anions are soft bases 
according to Pearson; therefore, their participation in complexation reactions as ligands is 
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atom via vertices (BH group), edges (HBBH group) or faces (BBB) of the boron cage. When 
interacting with metals which act as hard acids (Fe(III), Co(III)), boron cluster anions act 
as reducing agents and reduce the oxidation state of metals to M(II) or M(0). Classical 3d 
metals in the 2+ oxidation state are acids of the intermediate group (Zn(II), Ni(II), Cu(II), 
etc.) and usually afford salts consisting of cationic metal complexes [MLx]2+ with neutral 
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To date, the coordination ability of boron clusters [BnHn]2– (n = 10, 12), perchlorinated
clusters [B10Cl10]2–, and dimeric clusters [B20H18]2– has been studied in sufficient detail
and analyzed in recent reviews [42–51]. It is concluded that boron cluster anions are soft
bases according to Pearson; therefore, their participation in complexation reactions as
ligands is observed in complexation with metals that act as Pearson’s soft acids (Cu(I),
Ag(I), and Pb(II)). In this case, boron cluster anions allow synthesizing of a great number
of mononuclear, binuclear, polymeric complexes with boron polyhedra coordinated by
the metal atom via vertices (BH group), edges (HBBH group) or faces (BBB) of the boron
cage. When interacting with metals which act as hard acids (Fe(III), Co(III)), boron cluster
anions act as reducing agents and reduce the oxidation state of metals to M(II) or M(0).
Classical 3d metals in the 2+ oxidation state are acids of the intermediate group (Zn(II),
Ni(II), Cu(II), etc.) and usually afford salts consisting of cationic metal complexes [MLx]2+

with neutral ligands L (organic, inorganic or solvent molecules) and boron cluster anions as
counterions. In this case, numerous non-covalent interactions can be found in the structures
of compounds, including hydrogen and dihydrogen bonds between BH groups of the
boron clusters and organic cations, ligand molecules or solvents.

Boron cluster anions tend to participate in reactions of substitution of exo-polyhedral
hydrogen atoms to form substituted derivatives with various functional groups [52–56].
The resulting substituted boron clusters can also participate in complexation as ligands.
However, the currently known complexes are scarcely studied, prepared in different
systems, in the presence of various metals and ligands, which makes it difficult to analyze
and compare the reactivity of substituted derivatives of boron cluster anions as ligands.

Carboranes differ from the boron clusters in their charge: monocarboranes [CB9H10]–

and [CB11H12]– are monoanions, whereas dicarboranes [C2B8H10] and [C2B10H12] are
neutral compounds. The boron atoms in carboranes have a lower negative charge as
compared to boron clusters; therefore, their ability to act as a donor of electronic density
reduces. In this case, there are the following ways to form complexes with carboranes:
(i) the formation of a B–Hg bond during electrophilic mercurization, which proceeds to
the position furthest from the carbon atoms (actually, formation of a C–Hg bond is also
possible) (see review [57] and references thereof); (ii) B–H activation with the formation of
a B–M bond in the presence of a substituent with a donor atom in the ortho position acting
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as a ligand (the substituent is usually attached to the carbon atom); therefore, activation
of neighboring positions is observed (see reviews [58,59] and recent articles [60,61]); (iii)
coordination by a substituent, as a rule, attached to the carbon atom of carborane cage (see,
for example, review [62]).

The chemistry of carboranes is realized as a rule via carbon atoms of the carborane cage
which provides wide opportunities to vary functional groups and metal atoms bonded to
them. Here, we wanted to compare the coordination ability of the boron cage in substituted
boron clusters and B-substituted carboranes without C-functionalization.

In this work, we have systematized the data on complexes of mono- and disubstituted
derivatives of boron cluster anions [BnHn]2–, monocarborane anions [CBnHn–1]–, and
dicarboranes [C2BnHn–2] (with non-functionalized carbon atoms) (n = 10, 12) containing
exo-polyhedral B–X bonds (X = N, O, S, Hal) in order to compare the coordination ability
of substituted boron cages and determine directions for further systematic research.

2. Metal Complexes with Substituted Derivatives of Boron Cluster Anions

It is known that unsubstituted boron clusters make it possible to prepare complexes of
soft acids with coordinated boron hydride ligands [42,43] (first of all, copper(I), silver(I),
lead(II)). Heteroleptic silver(I) complexes with inner-sphere boron cluster anions are the
most studied group of complexes. This is probably due to the correspondence between
the softness of silver(I) acid and softness of the boron cluster bases, as compared to other
metals.

The introduction of a substituent containing electron-donor groups makes it possible to
obtain complexes in which the coordination of the boron cage is realized via the functional
groups of the substituent; thus, those metals that are too hard to coordinate boron clusters
are able to coordinate substituted derivatives through a substituent being introduced.
Moreover, the substituent can decrease the total charge of the boron cluster, thus decreasing
its coordination ability in complexation.

2.1. Halogen Atoms

In the literature, there are a great number of complexes containing perhalogenated
closo-borate anions [BnHaln]2– (n = 10, 12; Hal = F, Cl, Br, I). These anions are interesting
because they are weak coordinating ligands; they form various complexes with silver atoms
as complexing agents. Complexes with these anions are discussed in detail in a number
of reviews [45–47] and are beyond this work. Here, we would discuss only mono- and
disubstituted derivatives containing halogen atoms.

When the closo-dodecaborate anion was allowed to react with hydrogen halides (HCl,
HBr or HI) in dichloroethane, monochloro- and dichlorosubstituted closo-dodecaborate
derivatives were isolated [63]. The source of the chlorine atoms is the solvent used, whereas
halohydrogens act as electrophilic initiators. The structure of Bipy-containing tris-chelate
nickel(II) complex [Ni(Bipy)3][B12H10.668Cl1.332] was determined by single-crystal X-ray
diffraction. It was found that the compound consists of tris-chelate cationic complex
[Ni(Bipy)3]2+, chlorine-substituted anions [B12H11Cl]2– or [B12H10Cl2]2–, and crystallization
solvent molecules. In the crystal, mono- and disubstituted derivatives present a ratio of 2:1.
Thus, it is clear that Cl has no effect on the coordination ability of the boron cage.

Silver(I) complex [Ag(CH3CN)3]2[Ag2[2-B10H9F]2] [64] with the monofluoro-substituted
derivative of the closo-decaborate anion was isolated by the reaction between tetraphenylphos-
phonium 2-fluoro-closo-decaborate [2-B10H9F]2– and silver trifluoroacetate. The structure
of this complex (Figure 2) is built of anions [Ag2[2-B10H9F]2]2– (Ag–H 2.02(5)–2.36(5) Å)
linked by cations [Ag(CH3CN)3]+ (Ag . . . H 2.36 Å) forming double chains.

Silver(I) complex [Ag2(Ph3P)4[B12H11Cl]] [65] with triphenylphosphine Ph3P was also
obtained for the monochloro-substituted derivative of the closo-dodecaborate anion. The
binuclear complex was isolated when the [B10H11Cl]2– anions reacted with [Ag(Ph3P)3NO3]
in CH3CN or DMF. The compound is a centrosymmetric complex in which the silver atoms
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coordinate the closo-dodecaborate anion along opposite edges (Ag–B 2.779 and 2.790 Å)
that are as far as possible from the chlorine atom introduced (Figure 3).
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Figure 3. Structure of binuclear silver(I) complex [Ag2(Ph3P)4[B12H11Cl]].

Two positional isomers of the monoanions [Ag[B10H10](PPh3)2]− (with unsubstituted
closo-decaborate anion) and [Ag[B10H9Cl](PPh3)2]− (with monochlorosubstituted closo-
decaborate anion) were found co-crystallized in complexes [Ag(PPh3)4][Ag[B10H9.14Cl0.86]
(PPh3)2] and [Ag(PPh3)4][(PPh3)2Ag[B10H9.5Cl0.5]] [66] with equatorial and apical coordi-
nation of the boron cage, which were obtained from DMF and acetonitrile, respectively
(Figure 4). It should be noted that in both compounds, monochlorosubstituted derivatives
are coordinated by edges opposite to the chlorine atom introduced.
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The data present show that one (or two) halogen atoms have no effect on the coordi-
nation ability of the boron cage. For both the [B10H10]2– and [B12H12]2– anions, nickel(II)
resulted in complex salts, whereas silver(I) afforded complexes with boron clusters coordi-
nated by edges located as far as possible from the substituent introduced.

2.2. Hydroxy Substituent

When the closo-decaborate anion reacts with sulfolane in the presence of p-toluenesulfonic
acid followed by alkaline hydrolysis of the resulting product, salts of the 2-hydroxy-
closo-decaborate anion [2-B10H9OH]2– are isolated [56]. The formation of tris-chelate
nickel(II) complex [NiL3][B10H9OH] (L = 2,2’-bipyridyl (Bipy), 1,10-phenanthroline (Phen),
2,2’-bipyridylamine (BPA), 1,2-diaminobenzene (DAB)) [67] with the [2-B10H9OH]2– anion
as a counterion were observed in the nickel(II) complexation reactions in the presence
of organic ligands L. Structures of solvates [Ni(Phen)3][B10H9OH]·0.75CH3CN·0.5H2O
(Figure 5a) and [Ni(Phen)3][B10H9OH]·2CH3CN·0.67DMF were isolated and studied by
X-ray diffraction.
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The synthesis and structure of copper(II) complex with the [2-B10H9OH]2– anion was
reported [68]. It was found that the [2-B10H9OH]2– anion can be prepared in situ, starting
from an unsubstituted [B10H10]2– boron cluster. Long-term heating of copper(II) complex
[Cu2(bipy)4(µ-CO3)][B10H10] in DMSO led to partial substitution of one hydrogen atom by the
OH group to form copper(II) complex [Cu2(bipy)4(µ-CO3)][2-B10H9.83OH0.17]·2DMSO·H2O
(Figure 5b). In this compound, the cationic part is the same as in the starting copper(II)
complex, while the anionic part contains the unsubstituted closo-decaborate anion and its
monohydroxy-substituted derivative cocrystallized in one crystal in the ratio 0.17:0.83.

Titanium complex with the monohydroxy-substituted closo-dodecaborate anion
[B12H11OH]2– and the cyclopentadienyl ligand was prepared and characterized [69] (Figure 6a).
The complex was isolated when [TiCpCl2] was allowed to react with (Ph3MeP)2[B12H11OH].
As it was found, titanium coordinates the oxygen atom of the 2-hydroxy-closo-decaborate
anion; the distances Ti–O and B–O are 1.711(9) Å and 1.45(2) Å, respectively.

In lead(II) complex with the monohydroxy-substituted closo-decaborate derivative
[Pb(Bipy)(DMF)[2-B10H9OH]]·DMF [70] (Figure 6b), Pb(II) coordinates one Bipy molecule
(Pb–N 2.520(6), 2.583(7) Å), the hydroxyl substituent (Pb–O 2.285(6) Å), and one DMF
molecule (Pb–O 2.504(7) Å). The coordination environment of lead(II) is completed by two
BH groups (Pb–H 2.944, 3.286 Å); the corresponding distances allow one to conclude that
the boron polyhedron participates in coordination.
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Figure 6. Structure of (a) titanium complex [Ph3(CH3)P)]2[CpTiCl2[B12H11OH] and (b) lead(II)
complex [Pb(Bipy)(DMF)[2-B10H9OH]]·DMF.

For the OH substituent, it can be concluded that copper(II) and nickel(II) are able to
coordinate a boron cluster neither by the BH group nor by the substituent. At the same time,
titanium(II) coordinates the functional group in the corresponding complexes, whereas
lead(II) exhibits combination coordination via the OH substituent and BH groups of the
boron cage.

2.3. Ammonium Substituents

As a rule, the presence of substituents reduces the coordination ability of the boron
ligand. This is especially true for substituents that decrease the total charge of the boron
cluster. Thus, the reaction of salts of the closo-decaborate anion with hydroxylamine sulfonic
acid leads to the formation of the ammonium-substituted derivative [2-B10H9NH3]– [70].
Silver(I) complexation with triphenylphosphine and the substituted anion afforded solvate
[Ag(PPh3)4][B10H9NH3]·2DMF with the [B10H9NH3]– derivative acting as a counterion [71].
According to the single-crystal X-ray diffraction data, the compound consists of silver(I)
cationic complexes [Ag(PPh3)4]+ and the ammonium-substituted anions as counterions.

Lead(II) complexes with the [2-B12H11NEt3]– anion and ligands Bipy, BPA were
described [72]. Complexes {PbL2[2-B12H11NEt3]2} were obtained in lead(II) complexation
in the presence of ligands L. The complexes were characterized by IR spectroscopy as well
as elemental analysis. The authors concluded that lead(II) coordinates the boron cage via
the 3c2e PBHB bonds.

When [NHEt3]2[B12H12] was allowed to react with [RuCl2(PPh3)3], ruthenium(II)
complex [(PPh3)2ClRu[B12H11(NEt3)] with the singly charged [B12H11NEt3]– was iso-
lated [73] as solvate [(PPh3)2ClRu[B12H11(NEt3)]·CH2Cl2. The boron cage anion demon-
strates facial coordination (Ru–B 2.268–2.485 Å) (Figure 7), whereas the substituent remains
non-coordinated.
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We can conclude that this ruthenium(II) complex is the first example of complexes
where the metal atom is able to coordinate singly charged anion [2-B12H11NEt3]– with
lower coordination ability as compared to unsubstituted boron clusters. Lead(II) can be
expected to coordinate the boron cage (the conclusions are based on IR spectral data),
whereas silver(I) affords complexes with an inner-sphere position of the mono-charged
substituted derivatives.

2.4. Amino Group

Salt Na2[B12H11NH2] salt can be obtained by the reaction of (Bu3NH)2[B12H11NH3]
with sodium hydride in THF [74]. When the amino-closo-dodecaborate ion reacted with
nickel(II) complex [Ni(THF)2Br2], compound [Na6(THF)15][Ni[B12H11NH2]]4·THF was
isolated. Nickel coordinates four N atoms from the substituents and is in a square planar
environment (Ni–N 1.924(4), 1.931(4) Å).

When Na2[B12H11NH2] was allowed to react with [Au(Ph3P)Cl], neutral gold(I)
complex bis((triphenylphosphine)-(1-amino-closo-dodecaborate(11))-gold) [Au(PPh3)[NH2–
B12H11]] [74] was isolated. The Au–N bonds are 2.076(8) and 2.067(9) Å.

An effective method for preparation of complexes starting from the singly charged
ammonio-substituted derivative [B12H11NH3]– is the deprotonation of the monoanion
with a strong base to form the amino-substituted dianion [B12H11NH2]2–, which can par-
ticipate in complexation reactions. Thus, ruthenium(II) complexes Bu3MeN[Ru(PPh3)2Cl-
[B12H11NH2]]·CH2Cl2 and Bu4N[Ru(dppb)Cl[B12H11NH2]]·CH2Cl2 (dppb = bis(diphenyl-
phosphine)butane) (Figure 8b) [75] were isolated when the [B12H11NH2]2– reacted with
[Ru(Ph3P)3Cl2] or [Ru(dppb)(Ph3P)Cl2], respectively. In both complexes, the complexing
agent coordinates the boron cage by the N atom of the substituent and two BH groups
(Ru–B 2.323(3), 2.591(3) Å in the first one and 2.350(2), 2.490(3) Å in the second; Ru–N
2.186(2) and 2.2177(19) Å, respectively).
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In addition, it was found [75] that sodium salt Na[Ru(PPh3)2Cl[B12H11NH2]] reacts
with carbon monoxide affording ruthenium(II) complex [Ru(PPh3)2CO[B12H11NH2]]. In
this compound, the metal atom coordinates the substituted derivative of the boron cluster
by the nitrogen atom of the substituent and two BH groups (Ru–N, 2.211(4) Å, Ru–B
2.418(5), 2.442(5) Å).

Rhodium(I) complex MePPh3[Rh(PPh3)2[B12H11NH2]] with the amino-substituted
derivative [B12H11NH2]2– is known [74], which was isolated when (MePPh3)Na[B12H11NH2]
was allowed to react with [Rh(PPh3)3Cl]. The boron cage is coordinated by the rhodium
atom through the N atom of the substituent and the BH group (Rh–N 2.146(6) Å, Rh–B
2.592(8) Å, Rh–H 1.919 Å).
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Thus, ruthenium(II) and rhodium(I) are metals that could form a combined coordina-
tion mode of NH2-substituted derivatives: via 3c2e MHB bonds with the boron cage and
functional groups of the substituent.

2.5. Sulfonium Group

The reaction of the closo-decaborate anion with DMSO in the presence of HCl leads to
the formation of the singly charged dimethylsulfonium derivative [1-B10H9SMe2]– [76].
Lead(II) complexes [PbL2[1-B10H9SMe2]2] (L = Bipy, BPA) [72] were obtained when aque-
ous solutions of salts with [1-B10H9SMe2]– were allowed to react with Pb(NO3)2 and organic
ligand L. It was determined by X-ray diffraction that in complex [Pb(Bipy)2[1-B10H9SMe2]2]
(Figure 9) lead(II) coordinates two Bipy and two boron cages by the equatorial and apical
faces, both anions being coordinated by edges connecting two equatorial belts of the B10
polyhedron (Pb–B 3.24–3.55 Å).
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The interaction of the 2-sulfanyl derivative of the closo-decaborate anion (Bu4N)2[2-
B10H9SH] with phthalimide in the presence of cesium carbonate leads to the sulfonium
derivative of the closo-decaborate anion [2-B10H9S(CH2N(CO)2C6H4)2]–. The intro-
duction of this compound into the silver(I) complexation makes it possible to obtain
a complex with 2-[bis(N-phthalimidomethyl)sulfonio]-closo-decaborate as a counterion
[Ag(PPh3)4][2-B10H9S(CH2N(CO)2C6H4)2] [77]. According to the single-crystal X-ray
diffraction data, the compound contains cationic complexes [Ag(PPh3)4]+ and the deriva-
tive of the boron cluster as counterions.

Lead(II) and silver(I) complexes with [2-B10H9S(CH2C(O)NH2)2]– were briefly dis-
cussed [78]. The compounds were identified by IR spectroscopy and elemental analysis.
It was concluded that silver(I) compound [Ag2(bipy)2[2-B10H9S(CH2C(O)NH2]NO3 con-
tains boron clusters coordinated by complexing agents via the AgHB bonds, whereas in
[Pb(bipy)2[2-B10H9S(CH2C(O)NH2]2] there are no 3c2e PbHB bonds in the IR spectrum,
indicating that the complexing agent coordinates the boron cage via the substituent.

Thus, lead(II) is the second metal (after ruthenium(II)) that is able to coordinate singly-
charged substituted derivatives of the boron clusters. Silver(I) seems to be harder than
lead(II) and ruthenium(II) because it gives complexes with an inner-sphere position of the
monocharged derivatives.

2.6. Sulfanyl Group

A number of lead(II) and silver(I) complexes with sulfanyl-substituted closo-decaborate
derivative [2-B10H9SH]2– were reported [78]. Based on the data of IR spectroscopy and
elemental analysis, it was concluded that [Ag2(bipy)2[2-B10H9SH]] contains boron clusters
coordinated by complexing agents via the AgHB bonds; the [2-B10H9SH]2– anion is involved
in coordination by lead(II) in complexes [Pb[2-B10H9SH]] and [Pb(bipy)2[2-B10H9SH]] via
3c2e PbHB bonds and the substituent.
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The thiol derivative [B12H11SH]2– is formed by the interaction of the [B12H12]2–

anion with thiourea under electrochemical oxidation conditions followed by hydroly-
sis of the resulting compound [79]. The SH-substituted derivative [B12H11SH]2– was
used in ruthenium(III) complexation; complex [Ru[SB12H11](NH3)5]·2H2O (Figure 10)
was isolated when the salt of the substituted boron cluster was allowed to react with
[RuCl(NH3)5]Cl2. The metal atom coordinates five NH3 groups and the substituent via the
S atom [80] (S–B 1.878 Å, Ru–S 2.240 Å).
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2.7. Oxonium Substituents

The introduction of cyclic ether molecules as an exo-polyhedral substituent into the
boron cluster results in reduction of the total charge of the derivatives of the closo-decaborate
anion. Thus, the reaction of salts of the undecahydrodecaborate anion [B10H11]– with
1,4-dioxane and tetrahydropyran gives derivatives of the closo-decaborate anion containing
the organic molecules as substituents in position B(2) of the polyhedron [65,81]. These
derivatives react with [Ag(PPh3)3]NO3 to form the corresponding silver(I) complexes
[Ag(PPh3)4][2-B10H9O(CH2)5]·CH2Cl2 and [Ag(PPh3)4][2-B10H9O(CH2)4O]. In both com-
plexes, silver coordinates four molecules of Ph3P forming cationic complex [Ag(PPh3)4]+ [65],
while the substituted derivative plays the role of a counterion. Both compounds are addi-
tional evidence that the silver(I) atom tends to form salts with monocharged derivatives of
the boron clusters instead of forming complexes with them.

2.8. Opening of the Cyclic Substituent

Activation of the coordination ability of the oxonium derivatives of the boron clusters
can be realized by opening of the cyclic ether substituent. In this case, the resulting
derivative acquires the double negative charge and all the O atoms present in the structure
of the resulting derivative potentially can be coordinated by the metal atom.

Particularly, reactions of the 1,4-dioxane derivative of the [B10H10]2– anion with
ethylenediamine in ethanol lead to the formation of the derivative of the closo-decaborate
anion 2-B10H9O(CH2)2O(CH2)2NH(CH2)2NH2)]2− with pendant ethylenediamine (en)
group separated from the boron cluster by an alkoxy spacer. This anion was used in
nickel(II) complexation [82]. In the compounds obtained, the metal atom coordinates
only the substituent introduced into the boron cluster, whereas all BH groups remain
uncoordinated. Complexes [Ni(en)[2-B10H9O(CH2)2O(CH2)2NH(CH2)2NH2)]] · H2O and
[Ni(H2O)(en)3[2-B10H9O(CH2)2O(CH2)2NH(CH2)2NH2)]] were isolated. The complexes
were obtained by heterophasic (using NiCO3–Ni(OH)2) and homophasic reactions, respec-
tively. In the first complex, the water molecule is located in the outer sphere, whereas
nickel(II) coordinates two O atoms and two N atoms of the substituent chain. In the second,
nickel(II) coordinates two N atoms and one O atom of the substituent, two N atoms of
ethylenediamine, and one O atom of coordinated water. The complexes are hydrated
isomers resulting from the changed denticity of the substituted boron ligand (Figure 11).
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The opening of the cyclic substituent in the [2-B10H9O(CH2)2O]– anion using the
ethylate ion leads to the formation of the [2-B10H9O(CH2CH2)2OEt]2– derivative with the
pendant ethoxy group separated from the boron cluster by an alkoxy spacer. Lead(II) com-
plex [Pb(Bipy)[2-B10H9O(CH2CH2)2OEt)]]2·0.5DMF was obtained in lead complexation
in the presence of Bipy [83] (Figure 12). In the crystal, Pb(II) coordinates two N atoms of
Bipy (Pb–N 2.470(4), 2.483(5) Å) and three O atoms of the alkoxy spacer of the substituent
(Pb–O 2.497(4)–2.859(4) Å). In addition, Pb(II) coordinates the apical BH group of one
boron cage and the apical edge of the other (Pb–B 3.128(6) and 3.288(7) Å, Pb–H 2.70(5) and
2.73(6) Å).
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It was found that a monosubstituted derivative of the closo-decaborate with 1,4-dioxane
[B10H9O(CH2)4O]– reacts with polyhydric alcohols (ethylene glycol, glycerol, triethanolamine),
giving derivatives with pendant hydroxy groups [B10H9OCH2CH2OCH2CH2OR]2–

(R = CH2OH, CH(OH)CH2OH, CH2N(CH2CH2OH)2) [84]. On the basis of these com-
pounds, gadolinium(III) complexes Gd2[B10H9OCH2CH2OCH2CH2OR]3 were obtained
when reacting with gadolinium(III) carbonate. The final compounds were characterized
by NMR and IR spectroscopies as well as mass-spectrometry [84]. According to the data
obtained, it seems that the closo-decaborate derivatives are coordinated by the substituents.

Thus, it is obvious that lead(II) coordinates the discussed derivatives of the boron clus-
ters with the B–O bonds via the 3c2e PbHB bonds and functional groups of the substituents,
whereas nickel(II) and gadolinium(III) are too hard to coordinate the boron cage and are
able to coordinate the substituents.

2.9. S-thiocyanato Substituents

The reaction between closo-dodecaborate and dirodane in dichloromethane afforded the
S-thiocyanato-derivative of the closo-decaborate anion [B12H11SCN]2– [81]; its interaction
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with trinuclear mercury complex (o-C6F4Hg)3 yielded half-sandwich and sandwich mercury
complexes {(o-C6F4Hg)3[B12H11SCN]}2– and {[(o-C6F4Hg)3]2[B12H11SCN]}2– [85,86]. The
latter complex (Figure 13) has the structure of a wedge-shaped sandwich with [B12H11SCN]2–

located between two (o-C6F4Hg)3 molecules (Hg–H 2.56–3.18 Å, Hg–B 3.317(10)–3.546(11) Å).
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2.10. Diazo Substituents

The reaction of triethylammonium closo-decaborate with 2,4,6-tribromophenyldiazonium
tetrafluoroborate in acetonitrile leads to the formation of triethylammonium 1-diazo-
closo-decaborate (Et3NH)[1-B10H9N2]. When it reacted with copper(I) chloride, copper(I)
complex [Et3NH][Cu[1-B10H9N2]2] with a singly charged diazo-substituted derivative
[1-B10H9N2]– was isolated [87] containing a linear B–N≡N group. This complex is built
of copper(I) anionic complex [Cu[1-B10H9N2]2]– (Figure 14a), in which copper(I) coordi-
nates two [1-B10H9(N2)]– monoanions along the apical edge (Cu–B 2.184(9), 2.168(8) Å;
Cu–H 1.96, 1.99Å), opposite to the introduced N≡N substituent.
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Figure 14. (a) Anionic copper(I) complex in [Et3NH][Cu[1-B10H9N2]2] and (b) molecular ruthe-
nium(II) complex [RuH2[N2B10H8SMe2](Ph3P)3]·3C6H6.

Ruthenium complexation starting from [RuH2(N2)(PPh3)3] with the neutral disubsti-
tuted derivative 1,10-(dimethylsulfonio)diazo-closo-decaborane [N2B10H8SMe2] gave
ruthenium(II) complex [RuH2[N2B10H8SMe2](Ph3P)3]·3C6H6 [88]. In this complex, the
Ru–N≡N–B group is linear according to X-ray diffraction (Figure 14b) (Ru–N 1.889 Å;
Ru–H 1.53(7), 1.74(7); B–N 1.498 Å).

Thus, copper(I) coordinates the diaza-substituted monocharged derivative forming
3c2e CuHB bonds, whereas ruthenium(II) coordinates the neutral derivative with additional
dimethylsulfonium substitution by the diaza-group. The absence of RuHB bonds can be
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explained by two hydride atoms bonded with the metal atom and the neutral charge of the
boron cage.

2.11. Cyano-Substituents

The 1,10-dicyano-closo-decaborate ion [1,10-B10H8(CN)2]2– was obtained by heating
the [1,10-B10H8(CONH2)2]2– derivative, which in turn is formed upon sequential pro-
cessing of the closo-decaborate anion with nitric acid followed by reduction with sodium
borohydride to obtain a neutral compound [1,10-B10H8(CO)2] and its further interaction
with ammonia [89–91]. The disubstituted derivative [1,10-B10H8(CN)2]2– was used in
iron(III) complexation in the presence of cyclopentadienyl and phosphine ligands, which
resulted in a binuclear iron(III) complex with linear Fe–N≡C–B bond of the composi-
tion [(Cp)(dppe)Fe}2[1,10-B10H8(NC)2]·H2O [91]. In the resulting complex, the disubsti-
tuted derivative of the boron cluster bridges two metal atoms (Figure 15). In this com-
pound, the derivative is coordinated only by the functional groups of the substituent
(Fe–N 1.9102(17) Å, N–C 1.152(3) Å).
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The obtained complex is the first iron(III) complex with boron clusters. Usually, boron
clusters reduce metal(III) to metal(II) in the course of complexation (as was observed for
cobalt and iron); the presence of the substituent and shielding the metal by the cyclopenta-
dienyl and phosphine ligands resulted in the preparation of iron(III) complex.

2.12. Azaheterocycles as Substituents

The ability of the closo-decaborate anion to participate in reactions of the substitution of
hydrogen atoms in the course of copper(II) complexation was mentioned above for the OH-
substituted derivative. Another example of substitution reactions accompanying the complex-
ation is the reaction of copper(I) complex [Cu2[B10H10]] with 2,2′-bipyridylamine BPA [92,93]
which resulted in redox reaction and afforded copper(II) complex [Cu(BPA)2(NCCH3)2][2-
B10H9BPA]2 · 2H2O (Scheme 1).

The BPA molecule is bonded to equatorial position B(2) of the boron cage and
plays the role of a substituent. The monosubstituted N-dipyridylamine derivative [2-
B10H9BPA]– acts as a counter ion for the mixed-ligand mononuclear cationic Cu(II) complex
[Cu(BPA)2(NCCH3)2]2+ [92]. Copper coordinates two chelating BPA ligands, and acetonitrile
complete the coordination sphere of the metal to a distorted octahedron (4 + 2).

The monosubstituted N-bipyridyl derivative [B10H9Bipy]– was found to form in
situ in copper(I) complexation with the unsubstituted closo-decaborate anion [93]. In this
reaction (Scheme 2), the process of substitution of an exo-polyhedral hydrogen atom for
the ligand molecule is observed, which accompanies the copper(I) complexation.
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The substituted derivative [2-B10H9Bipy]– in the complex is coordinated by the metal 
atom via nitrogen atoms (Cu–N 2.028(2) Å) and apical BH group (Cu–B(H) 2.601(3), Cu–
H(B) 1.85(3)Å). In addition, two acetonitrile molecules are involved in copper(I) coordi-
nation (Cu–N 1.995(3), 1.976(3) Å). 

Scheme 2. Preparation of complex [Cu(CH3CN)2[B10H9Bipy].

The substituted derivative [2-B10H9Bipy]– in the complex is coordinated by the metal
atom via nitrogen atoms (Cu–N 2.028(2) Å) and apical BH group (Cu–B(H) 2.601(3),
Cu–H(B) 1.85(3)Å). In addition, two acetonitrile molecules are involved in copper(I) coordi-
nation (Cu–N 1.995(3), 1.976(3) Å).

Note that these reactions are of particular interest because the [2-B10H9L]2– derivatives
with azaheterocyclic ligands L cannot be obtained in the course of the acid-catalyzed
nucleophilic substitution [94,95]; under acidic conditions, organic ligands (Bipy, Phen, BPA)
are protonated to form salts [LH]2[B10H10] or [LH2][B10H10] [96,97].

The data obtained indicate that copper(II) cannot coordinate the monocharged substi-
tuted derivatives whereas copper(I) is able to form complexes with the inner-sphere boron
cluster. The possibility of the Bipy molecule to bend across the linker C–C bond allows it to
be coordinated by copper(I) and simultaneously to be attached to the boron cage. Note that
similar copper(I) complex with Phen ligand cannot be formed because of the rigidity of the
ligand.

2.13. Carboxy Groups as Substituents

During the reactions of cobalt(II) complexation in DMF, the solvent can act as a reagent
to give substituted derivatives of the boron clusters. Monosubstituted formoxy deriva-
tive [2-B10H9OC(H)O]2– containing the exo-polyhedral B–O bond was isolated when
(Et3NH)2[B10H10] was allowed to react with CoCl2 in DMF on heating (Scheme 3). The
resulting boron cluster anion contains a formic acid residue –OC(H)O as a substituent. The
addition of a threefold excess of Phen to the reaction mixture afforded cobalt(II) complex
[Co(Phen)3][2-B10H9OC(H)O]·3DMF [98].
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[2,7(8)-B10H8(OC(O)CH3)2)]2– acetoxy derivatives are known (Figure 16). In both com-
pounds, Pb(II) coordinates one or two Bipy molecules (Pb–N 2.551(3)–2.581(3) Å), one or 
two oxygen atoms of the carboxylate groups of the substituent (Pb–O 2.749(3)–2.760(3)Å), 
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Scheme 3. Preparation of complex [Co(Phen)3][2-B10H9OC(H)O]].

Monosubstituted and disubstituted derivatives of the B10 polyhedron with acetoxy
groups as exo-polyhedral substituents can be obtained by reacting salts of the [B10H10]2–

anion with acetic acid varying synthesis conditions [99,100]. These derivatives were also
found to act as ligands in lead(II) complexation with Bipy [101]. The target compounds
were obtained when the substituted derivative was allowed to react with solid Pb(NO3)2
in organic solvent; some part of lead(II) nitrate dissolved in the reaction mixture; after
filtration of the unsolved Pb(NO3)2, a Bipy solution in the same solvent was added, giving
a yellow color to the resulting mixture. As a result of lead(II) complexation, the target
complexes precipitated.

Lead(II) complex (Ph4P)[Pb(Bipy)[2-B10H9OC(O)CH3)2]2 [100] and [Pb(Bipy)2[2,7(8)-
B10H8(OC(O)CH3)2)] [99] with monosubstituted [2-B10H9OC(O)CH3)2]2– and disubsti-
tuted [2,7(8)-B10H8(OC(O)CH3)2)]2– acetoxy derivatives are known (Figure 16). In both
compounds, Pb(II) coordinates one or two Bipy molecules (Pb–N 2.551(3)–2.581(3) Å), one
or two oxygen atoms of the carboxylate groups of the substituent (Pb–O 2.749(3)–2.760(3)Å),
and BH groups of the boron cage forming PbHB bonds (Pb–B 2.989(5)–3.263(8) Å; Pb–H
2.60(4)–2.93(4) Å).
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The resulting derivative with two different substituents –OH and –OC(O)CH3 was 
isolated as lead(II) complex [Pb(Bipy)2[2,6(9)-B10H8(OC(O)CH3)(OH)]]2·3H2O [102]. The 
lead(II) atom coordinates two Bipy (Pb(1)–N 2.510(6), 2.610(7) Å), the OH group (Pb(1)–O 
2.85(3), 2.95(3) Å), and the BH group of the boron cage (Pb(1)–H 2.58, 2.66 Å) (Figure 17). 
In this case, the acetoxy substituent remains non-coordinated. It can be concluded that 
despite both the –OH and –OC(O)CH3 groups being potentially active in lead(II) coordi-
nation, the hydroxyl group is more favorable for coordination, which can be explained by 
steric factors, as the acetoxy group create some steric hindrances for lead(II) atoms. 

Figure 16. Structures of lead(II) complexes (a) (Ph4P)[Pb(Bipy)[2-B10H9OC(O)CH3)2]2 (cation is
omitted) and (b) [Pb(Bipy)2[2,8-B10H8(OC(O)CH3)2)]].

The monocharged disubstituted closo-decaborate derivative with the bidentate ac-
etate group Cat[2,6(9)-B10H8>(O)2CCH3] (Cat = Ph4P+, Ph4As+) can be used to prepare a
compound with two different substituents (Scheme 4). In the course of lead(II) complexa-
tion, it undergoes partial hydrolysis, the acetate group remains monodentately bound to
the boron cluster in the B(2) position, while the OH group was found to act as a substituent
in the B(6) position.
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Scheme 4. Preparation of monoanion [2,6(9)-B10H8>(O)2CCH3]– = [An]– as salt Cat[An] or complex
[Pb(Bipy)2[An]]2.

The resulting derivative with two different substituents –OH and –OC(O)CH3 was
isolated as lead(II) complex [Pb(Bipy)2[2,6(9)-B10H8(OC(O)CH3)(OH)]]2·3H2O [102]. The
lead(II) atom coordinates two Bipy (Pb(1)–N 2.510(6), 2.610(7) Å), the OH group (Pb(1)–O
2.85(3), 2.95(3) Å), and the BH group of the boron cage (Pb(1)–H 2.58, 2.66 Å) (Figure 17). In
this case, the acetoxy substituent remains non-coordinated. It can be concluded that despite
both the –OH and –OC(O)CH3 groups being potentially active in lead(II) coordination,
the hydroxyl group is more favorable for coordination, which can be explained by steric
factors, as the acetoxy group create some steric hindrances for lead(II) atoms.
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Figure 17. Structure of lead(II) complex [Pb(Bipy)2[2,6(9)-B10H8(OC(O)CH3)(OH)]]2.

The nucleophilic addition of diethylaminomalonate to the acetonitrile derivative of
the closo-decaborate anion and the following alkaline hydrolysis of ester groups gives
the aminomalonic acid-based product (NBu4)[2-B10H9NHC(CH3)NHCH(COOH)2] [103].
The complexation reaction between the derivative of the closo-decaborate anion with
aminomalonic acid and hafnium(IV) butoxide and hafnium(IV) diethylamide afforded
hafnium(IV) complex (NBu4)2[[2-B10H9NHC(CH3)NHCH(COO)2]2Hf] (Scheme 5), which
was characterized by IR spectroscopy, mass-spectrometry, and elemental analysis [103].
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Thus, in cobalt(II) complexes with carboxy substituents, boron anions act as counterions;
lead(II) affords a number of complexes with combined coordination (MHB + substituent). In
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hafnium(IV) complexes, the substituted derivative is assumed to be coordinated by the metal
via the functional group of the substituent introduced into the boron cage.

2.14. Amide Groups as Substituents

Rhodium(III) complex [Rh(Me5Cp)[B12H11NHC(O)NMe2]]·CH3CN with a cyclopenta-
dienyl ligand and 3,3-dimethylureido-closo-dodecaborate anion [B12H11NHC(O)NMe2]2–

was reported [104]. This substituted derivative was prepared by successive treatment
of Cs[B12H11NH3] with NaH and DMF. The complex was prepared by the reaction of
[B12H11NHC(O)NMe2]2– with [Rh(Me5Cp)(CH3CN)3][SbF6]2 in acetonitrile. The metal
coordinates the boron ligand through the O atom of the substituent (Rh–O 2.085(2) Å)
and two BH groups of the boron cage (Rh–H 1.951, 1.974 Å; Rh–B 2.428(4), 2.436(4) Å)
(Figure 18a).
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Zinc(II) and cobalt(II) complexes with phthalocyanine derivatives containing pen-
dant closo-dodecaborate anions with exo-polyhedral B–O and B–S groups were isolated 
(Figure 20) [108–110]. The possibility to prepare sodium salts of the compounds under 
discussion soluble in water is very important for their potential application in boron-neu-
tron capture therapy. 

Figure 18. Structure of rhodium(III) complexes (a) [Rh(Me5Cp)[B12H11NHC(O)NMe2]]·CH3CN and
(b) [Rh(Me5Cp)[B12H11NHC(O)Ph]]·CH3CN.

Later, another rhodium(III) complex with the monosubstituted benzamido-closo-
dodecaborate anion [B12H11NHC(O)Ph]2– was synthesized and isolated [Rh(Me5Cp)
[B12H11NHC(O)Ph]]·CH3CN [105]. The [B12H11NHC(O)Ph]2– anion was obtained by
acylation of the ammonio-closo-dodecaborate anion [B12H11NH3]– with benzene chlo-
ride [106]. This rhodium complex was prepared by reacting tetrabutylammonium salt
of the [B12H11NHC(O)Ph]2– anion with rhodium complex [Rh(Me5Cp)(CH3CN)3][SbF6]2.
The resulting complex also demonstrates the combined coordination of the boron cluster
via two BH groups (Rh–H 1.954, 1.957 Å; Rh–B 2.427(4), 2.431(4) Å) and the O atom of the
substituent (Rh–O 2.095(2) Å) (Figure 18b).

2.15. Phthalocyanine Derivatives as Substituents

A number of compounds based on boron clusters containing phthalocyanine deriva-
tives are known. Aluminum(III) and cobalt(II) complexes with tetrakis(methylamino-closo-
dodecaborato)phthalocyanines and octakis(methylamino-closo-dodecaborato)phthalocya-
nines were isolated [107]. To prepare the final compounds, anion [B12H11NH3]– was
reduced to [B12H11NH2]2– with sodium hydride, and halogen-containing phthalocya-
nines were introduced into the resulting solution. The corresponding sodium salts were
prepared (Figure 19). These derivatives of the closo-dodecaborate anion contain the B–N
exo-polyhedral bond. The synthesized sodium and cesium salts are the first water-soluble
phthalocyanines based on the closo-dodecaborate anion, almost unlimitedly soluble in water.

Zinc(II) and cobalt(II) complexes with phthalocyanine derivatives containing pen-
dant closo-dodecaborate anions with exo-polyhedral B–O and B–S groups were isolated
(Figure 20) [108–110]. The possibility to prepare sodium salts of the compounds under dis-
cussion soluble in water is very important for their potential application in boron-neutron
capture therapy.
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view [62]; chalcogenocarboranes with C–X bonds (X = S, Se, Te) were summarized [112–
114]; carboxy [115–121], carbene [122], and acetylene [123] derivatives with the C–C exo-
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N,O-donor compounds functionalized by the carbon atom of the carborane cage have 
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In addition, a zinc(II) complex with the closo-dodecaborate derivatives of phthalo-
cyanine based on eight 1,4-dioxane derivatives of the closo-decaborate anion was iso-
lated (Figure 21) in order to estimate its ability to act as a boron delivery agent for boron
neutron capture therapy [111]. The compound was prepared by cyclotetramerization of
4-(3,5-dimethoxyphenoxy)phthalonitrile in the presence of zinc(II) acetate. The boronated
phthalocyanine was found to accumulate in A549 human lung adenocarcinoma cells. The
maximal cytoplasmic concentration was achieved at an extracellular concentration of
32 ± 3 µM. The compound was found to deliver 2.4 × 107 boron atoms per cell.

Inorganics 2022, 10, x FOR PEER REVIEW 18 of 39 
 

 

N

N

N

N

N

N

N

NZn

BH 2

O

S

O

 

N

N

N

N
N

N

N
NCo

OR

OR

RO

RO

o oo

BH

6

R =

 
(a) (b) 

Figure 20. Structures of (a) zinc(II) and (b) cobalt(II) complexes with the closo-dodecaborate deriva-
tives of phthalocyanine containing B–S and B–O bonds. 

In addition, a zinc(II) complex with the closo-dodecaborate derivatives of phthalocy-
anine based on eight 1,4-dioxane derivatives of the closo-decaborate anion was isolated 
(Figure 21) in order to estimate its ability to act as a boron delivery agent for boron neutron 
capture therapy [111]. The compound was prepared by cyclotetramerization of 4-(3,5-di-
methoxyphenoxy)phthalonitrile in the presence of zinc(II) acetate. The boronated phthal-
ocyanine was found to accumulate in A549 human lung adenocarcinoma cells. The maxi-
mal cytoplasmic concentration was achieved at an extracellular concentration of 32 ± 3 
μM. The compound was found to deliver 2.4 × 107 boron atoms per cell. 

N

N

N

N
N

N

N
NZn

ORO

OR

ORO

OR

BH

O
O

O

RO

OR

O

RO

OR

R =16Bu4N

 
Figure 21. Structure of zinc(II) complex with the closo-dodecaborate derivatives of phthalocyanine 
containing B–O bonds. 

3. Metal Complexes with B-Substituted Derivatives of Carboranes 
As indicated above, carboranes have a versatile chemistry involving functionaliza-

tion of carbon atoms of their cage. In complexation reactions, there are a great number of 
complexes with derivatives containing C–X exo-polyhedral bonds. Thus, carbor-
anylphosphine ligands (with C–P exo-polyhedral bonds) are generalized in a recent re-
view [62]; chalcogenocarboranes with C–X bonds (X = S, Se, Te) were summarized [112–
114]; carboxy [115–121], carbene [122], and acetylene [123] derivatives with the C–C exo-
polyhedral bonds were discussed in the corresponding reviews. The carboranyl-based 
N,O-donor compounds functionalized by the carbon atom of the carborane cage have 
been thoroughly studied [123–129]. 

Here, we want to discuss the effect of the substituent attached to the boron atom on 
the coordination ability of the carborane cage without involving the carbon atoms in the 
functionalization. 

Figure 21. Structure of zinc(II) complex with the closo-dodecaborate derivatives of phthalocyanine
containing B–O bonds.



Inorganics 2022, 10, 238 18 of 36

3. Metal Complexes with B-Substituted Derivatives of Carboranes

As indicated above, carboranes have a versatile chemistry involving functionalization
of carbon atoms of their cage. In complexation reactions, there are a great number of
complexes with derivatives containing C–X exo-polyhedral bonds. Thus, carboranylphos-
phine ligands (with C–P exo-polyhedral bonds) are generalized in a recent review [62];
chalcogenocarboranes with C–X bonds (X = S, Se, Te) were summarized [112–114]; car-
boxy [115–121], carbene [122], and acetylene [123] derivatives with the C–C exo-polyhedral
bonds were discussed in the corresponding reviews. The carboranyl-based N,O-donor
compounds functionalized by the carbon atom of the carborane cage have been thoroughly
studied [123–129].

Here, we want to discuss the effect of the substituent attached to the boron atom on
the coordination ability of the carborane cage without involving the carbon atoms in the
functionalization.

3.1. Derivatives with B–Hal Bonds

Actually, there are a great number of perhalogenated carboranes and complexes based
on them. The obtained compounds are weakly coordinating ligands and are studied in
detail. Here, we wanted to discuss partially halogenated carboranes as well, because there
are few representatives of complexes containing mono- and dihalogenated carboranes.

Monofluoro-substituted derivative of monocarborane [CB11H11F]– was prepared by
fluorination of Cs[CB11H11F]– with anhydrous HF [130]. In silver(I) complex [Ag(C6H6)2
[12-CB11H11F]] (Figure 22a), there is no interaction between the silver ion and the fluorine
atom: the carborane cage is coordinated by 3c2e BHAg bonds (Ag–H 2.181 Å, Ag–B 2.762 Å).
In the related silver(I) complex with monobrominated derivative [CB11H11Br]–, on the
contrary, there is a strong Ag–Br interaction with the Ag–Br distance of 2.642(1) Å [131].
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Figure 22. Structures of (a) [Ag(C6H6)2[12-CB11H11F]] and (b) [Ag(C6H6)[12-CB11H11Br]].

Disubstituted derivative of monocarborane [CB9H8F2]– was used in silver(I) com-
plexation, which results in silver(I) complex [Ag(C6H6)2][6,8-CB9H8F2] [132] (Figure 23).
It was found that the compound is a molecular silver(I) complex with two coordinated
benzene molecules and carborane anion coordinated by two AgHB bonds (Ag–H 2.09,
2.10 Å). The coordination is similar to that observed for monofluorinated carborane in
complex [Ag(C6H6)2[12-CB11H11F]].

The reaction between molybdenum complex with cyclopentadienyl ligand [Cp(CO)3MoI]
and silver salt [Ag[CB11H11Br] initially results in an intermediate dimeric molybdenum-
silver complex [MoCp(CO)3IAg(CB11H11Br)]2 (Figure 24a), which has a central {AgI}2 core
appended by two carborane anions [133]. The carborane anions are coordinated by the
complexing metal via the bromine atom (the Ag–Br bond is 2.6456(8) Å). Prolonged reaction
results in elimination of AgI to form molybdenum complex [MoCp(CO)3(CB11H11Br)]
(Figure 24b) with the Mo–Br bond equal to 2.6759(2) Å.
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anion by three bromine atoms forming MHB bonds; the Pt–Br bond lengths are 
2.7129(17)–2.7279(18) Å. 

It is interesting to discuss the position of silver(I) atoms in mixed halocarboranes 
containing both Cl and Br substituents. Compounds [1-H-CB11Y5X6]– (X, Y = Cl, Br, I) were 
prepared in high yield when [Me3NH][1-H-CB11H5X6] (X = Cl, Br, I) was treated with 
proper halogenating reagents at 180–220 °C in a sealed tube [136]. Interestingly, mixed 
halocarboranes in silver(I) complexes are coordinated from the side opposite to the carbon 
atom of the carborane cage (Figure 26). Thus, carborane [1-H-CB11Br5Cl6]– in molecular 
complex [(solv)2Ag[1-H-CB11Br5Cl6]·solv (solv = mesitylene) is coordinated by two chlo-
rine atoms (Ag–Cl 2.986(2) and 2.889(2) Å), whereas [1-H-CB11Cl5Br6]– in related polymeric 

Figure 24. Structures of (a) [MoCp(CO)3IAg(CB11H11Br)]2 and (b) [MoCp(CO)3(CB11H11Br)].

Three isostructural polymeric silver complexes with hexahalogenocarboranes [CB11-
H6Hal6]– were isolated [134]: complex [Ag(CB11H6Cl6)(p-Me2C6H4]n with coordinated sol-
vent molecules, solvent-free [Ag(CB11H6Br6)]n (Figure 25a), and [Ag(CB11H6I6)]n·0.5C6H6
(Figure 25b) with non-coordinated solvent. The compounds were obtained from p-xylene,
toluene, and benzene, respectively. In all three compounds, silver atoms coordinate two or
three halogen substituents, whereas BH groups around the carbon atom remain uncoordi-
nated. The Ag–Hal bonds are 2.640(1)–2.926(1) Å, av. 2.862(2) Å, and 2.777(4)–3.306(5) Å
for Cl, Br, and I, respectively.
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Platinum complex with hexabromocarborane [CB11H6Br6]– was isolated as [(CB11H6Br6)
PtMe3] when the corresponding cesium salt of the carborane reacted with {Me3Pt(OTf)}4 [135].
In the final complex, the complexing agent coordinates the carborane anion by three
bromine atoms forming MHB bonds; the Pt–Br bond lengths are 2.7129(17)–2.7279(18) Å.

It is interesting to discuss the position of silver(I) atoms in mixed halocarboranes
containing both Cl and Br substituents. Compounds [1-H-CB11Y5X6]– (X, Y = Cl, Br, I)
were prepared in high yield when [Me3NH][1-H-CB11H5X6] (X = Cl, Br, I) was treated
with proper halogenating reagents at 180–220 ◦C in a sealed tube [136]. Interestingly,
mixed halocarboranes in silver(I) complexes are coordinated from the side opposite to
the carbon atom of the carborane cage (Figure 26). Thus, carborane [1-H-CB11Br5Cl6]– in
molecular complex [(solv)2Ag[1-H-CB11Br5Cl6]·solv (solv = mesitylene) is coordinated by
two chlorine atoms (Ag–Cl 2.986(2) and 2.889(2) Å), whereas [1-H-CB11Cl5Br6]– in related
polymeric complex [(solv)2Ag[1-H-CB11Cl5Br6]·solv is coordinated by two bromine atoms
(Ag–Br 2.750(2)–2.873(1) Å).
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Iridium(III) hydridophosphine complexes [IrL2H2(anion)] with L = PPh3 or PMe2Ph
and hexahalogenocarborane anions [1-CB11H6Cl6]− and [1-CB11H6I6]− were prepared
by hydrogenation of cyclooctadiene precursor complexes [137]. In the complexes, the
carborane cage is coordinated by two halogen bonds, whereas the BH groups near the
ortho-position of the carbon atom are uncoordinated. In the structure of [Ir(PPh3)2H2
(1-CB11H6Cl6)] (Figure 27a), the Ir–Cl bonds are 2.680(1) and 2.655(1) Å.

Inorganics 2022, 10, x FOR PEER REVIEW 21 of 39 
 

 

complex [(solv)2Ag[1-H-CB11Cl5Br6]·solv is coordinated by two bromine atoms (Ag–Br 
2.750(2)–2.873(1) Å). 

  
(a) (b) 

Figure 26. Structures of (a) [(solv)2Ag[1-H-CB11Br5Cl6]·solv and (b) [(solv)2Ag[1-H-CB11Cl5Br6]·solv 
(solv = mesitylene). 

Iridium(III) hydridophosphine complexes [IrL2H2(anion)] with L = PPh3 or PMe2Ph 
and hexahalogenocarborane anions [1-CB11H6Cl6]− and [1-CB11H6I6]− were prepared by 
hydrogenation of cyclooctadiene precursor complexes [137]. In the complexes, the car-
borane cage is coordinated by two halogen bonds, whereas the BH groups near the ortho-
position of the carbon atom are uncoordinated. In the structure of [Ir(PPh3)2H2(1-
CB11H6Cl6)] (Figure 27a), the Ir–Cl bonds are 2.680(1) and 2.655(1) Å. 

Palladium(II) complex with uncoordinated monochlorosubstituted carborane an-
ion [CB11H11Cl]– was prepared when [Pd(dppe)2]Cl2 reacted with [Ag[CB11H12]] in CH2Cl2 
[138]. The monosubstituted derivative was isolated as complex 
[Pd(dppe)2][CB11H11Cl]2]·3CH2Cl2 in low yield as a result of the complexation reaction af-
fording compound [Pd(dppe)[CB11H12]]·[CB11H12] as the main product. In the by-product, 
the monochlorosubstituted carborane anion acts as a counterion (Figure 27b). 

  
(a) (b) 

Figure 27. Structures of (a) [Ir(PPh3)2H2(1-CB11H6Cl6)] and (b) [Pd(dppe)2][CB11H11Cl]2]·3CH2Cl2. 

Hexachloro- or hexabromocarboranes [CB11H6Cl6]– or [CB11H6Br6]– were used in rho-
dium(II) complexation with diphenylphosphine ligands present below (Scheme 6) 
[139,140], which were synthesized by reacting [RhCl(nbd)]2 with cesium or sodium salts 
[CB11H6Cl6]– or [CB11H6Br6]– in methanol at room temperature. 

Figure 27. Structures of (a) [Ir(PPh3)2H2(1-CB11H6Cl6)] and (b) [Pd(dppe)2][CB11H11Cl]2]·3CH2Cl2.



Inorganics 2022, 10, 238 21 of 36

Palladium(II) complex with uncoordinated monochlorosubstituted carborane an-
ion [CB11H11Cl]– was prepared when [Pd(dppe)2]Cl2 reacted with [Ag[CB11H12]] in
CH2Cl2 [138]. The monosubstituted derivative was isolated as complex [Pd(dppe)2][CB11-
H11Cl]2]·3CH2Cl2 in low yield as a result of the complexation reaction affording compound
[Pd(dppe)[CB11H12]]·[CB11H12] as the main product. In the by-product, the monochloro-
substituted carborane anion acts as a counterion (Figure 27b).

Hexachloro- or hexabromocarboranes [CB11H6Cl6]– or [CB11H6Br6]– were used in
rhodium(II) complexation with diphenylphosphine ligands present below (Scheme 6) [139,140],
which were synthesized by reacting [RhCl(nbd)]2 with cesium or sodium salts [CB11H6Cl6]– or
[CB11H6Br6]– in methanol at room temperature.
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In all cases, rhodium(II) complexes [RhL][CB11H6Cl6] or [RhL][CB11H6Br6] with carbo-
ranes as counter ions were isolated.

When ruthenium(I) complex [CpRu(NO)(CH3)2] was allowed to stand in the pres-
ence of an excess of carborane-based protonating agent [(C2H5OC2H5)2H][CB11H6Br6]
in acetonitrile, complex [Ru(CH3CN)6][CB11H6Br6] was isolated [141]. In the obtained
complex, ruthenium(I) coordinates acetonitrile molecules, whereas hexabromocarborane
[CB11H6Br6]– acts as a counterion.

3.2. Derivatives with B–S Bonds

Rhodium(II) complex [cis-Rh(Ph2PCH2CH2S-{9-closo-1,7-C2B10H11})2]Cl with 2-((2-
(diphenylphosphaneyl)ethyl)thio)-substituent was synthesized by the reaction between
[Rh(coe)Cl2] and {9-(Ph2PCH2CH2S)-closo-1,7-C2B10H11} in dichloromethane at room tem-
perature [(coe) = cyclooctene] (Figure 28a). In this complex, the Rh atom coordinates
the sulfur derivative of carborane via the substituent; the Rh–S bonds are 2.3541(16) and
2.3592(16) Å [142].
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{9-1,7-C2B10H11})2][Rh(Ph2PCH2CH2S-{1-CB11H11})2].

Complex NMe4[cis-Rh(Ph2PCH2CH2S-{1-CB11H11})2 was synthesized when [Rh(coe)Cl2]
was allowed to react with NMe4[1-(Ph2PCH2CH2S)-CB11H11] in dichloromethane at room
temperature [142]. When complex [cis-Rh(Ph2PCH2CH2S-{9-1,7-C2B10H11})2]Cl reacted with
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NMe4[cis-Rh(Ph2PCH2CH2S-{1-CB11H11})2 in methanol, compound [cis-Rh(Ph2PCH2CH2S-
{9-1,7-C2B10H11})2][cis-Rh(Ph2PCH2CH2S-{1-CB11H11})2] was isolated, which contains a
complex cation and a complex anion. Note that in the complex anion, monocarborane is
functionalized via the carbon atom; in the complex cation, the neutral dicarborane with
the exo-polyhedral B–S bond is coordinated via the substituent. The Ru–S bond falls in the
range 2.3585(11)–2.3612(12) Å.

Thioethyldiphenylphosphineplatinum(II) complexes based on ortho-carboranes were
isolated [143]. Complex [cis-Pt(Ph2PCH2CH2S-{9-closo-1,7-C2B10H11})Cl2] (Figure 29a) was
synthesized by the reaction between [Pt(cod)Cl2] and [9-(Ph2PCH2CH2S)-closo-C2B10H11]
in deuterated dichloromethane. The ortho-dicarborane is coordinated by the substituent;
the Pt–S bond is 2.2739(16) Å. In the structurally related complex with meta-dicarborane
(Figure 29b), the Pt–S 2.2719(7) Å.
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– anions are omitted).

Complex [cis-Pt(Ph2PCH2CH2S-{9-closo-1,7-C2B10H11})2](BF4)2 (Figure 29c) was synthe-
sized via the reaction between AgBF4 and [cis-Pt(Ph2PCH2CH2S-{9-closo-1,7-C2B10H11})2Cl]Cl
or [cis-Pt(Ph2PCH2CH2S-{9-closo-1,7-C2B10H11})2Cl2] in deuterated dichloromethane. The
platinum(II) atom coordinates the carborane derivatives by the substituent; the Pt–S bond
is 2.379 and 2.377 Å.

First gold(I) complex with triphenylphosphine ligand [Au2(Ph3P)2S{9,12-S2C2B10H10]
was isolated [144] (Figure 30a). In the compound, a six-member ring is formed involving
the BB edge, two sulfur atoms of the substituents and two metal atoms; the Au–S bonds are
2.3171(16), 2.3161(9) Å; the Au–Au bond is 2.9937(2) Å.

Copper(I) complex [Cu-S-9-closo-1,7-C2B10H11]4 was synthesized by mechanochemical
treatment of copper(I) meta-carborane-9-thiolate [Cu-S-9-closo-1,7-C2B10H11] (Figure 30b).
In the final complex, (µ-1,7-dicarba-closo-dodecaborane(11)-9-thiolato)-tetra-copper(I), four
meta-carborane derivatives are coordinated by four metal atoms; the Cu–S bond falls in the
range 2.163–2.176 Å [145].

A number of rhodium(III) complexes with 9,12-dithiolato-1,2-dicarborane was iso-
lated [146,147]. Half-sandwich complex [Cp*Rh{9,12-S2C2B10H10}] was obtained by react-
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ing o-carborane-9,12-dithiol with [Cp*RhCl2]2 in the presence of a base [147]. Its structure
was determined by X-ray diffraction (Figure 31b). Various complexes can be obtained based
on this compound; for example, [Cp*Rh2(Ph3P)2{9,12-S2C2(B10H10)}]PF6 was isolated in
the reaction with Rh(Ph3P)3Cl in the presence of ammonium hexafluorophosphate [146].
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Similar iridium(III) complex [Cp*Ir{9,10-S2C2B10H10}] (Figure 31b) was found to react
with R3P (R = Me, Et, Ph, 4-F-C6H4, 4-OMe-C6H4) at room temperature to form a series of
phosphine complexes [Cp*Ir(R3P){9,10-S2C2(B10H10)}] [148–150], which were characterized
by X-ray diffraction. The compounds are built in a similar manner (see Figure 32a).
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It was found that [Cp*Ir{9,10-S2C2B10H10}] reacts with phosphine ligands L (L = Ph3P,
Me2PhP, MePh2P, Ph2PCH2PPh2) in dichloromethane at room temperature to give complexes
[Cp*Ir(L){9,10-S2C2B10H10}]. At the same time, the reaction of [Cp*Ir{9,10-S2C2B10H10}] with
dppe leads to the formation of a corresponding dimeric complex [Cp*Ir(Ph2PCH2){9,10-
S2C2B10H10}]2 (Figure 32b), where CH . . . HB, CH . . . B, CH . . . S, CH . . . HC, and BH . . .
π intermolecular interactions are observed [151].

Similar cobalt(III) complex with cyclopentadienyl ligand [Cp*Co{9,12-S2C2B10H10}]
was isolated and structurally characterized [152]. This complex is built similarly to the pre-
viously discussed rhodium(III) and iridium(III) complexes (see Figure 31). The Co–B bonds
are 1.174(1) and 2.1735(10) Å. A series of boron-fused 1,4-dithiin compounds were prepared
by the reactions of the boron-substituted half-sandwich complex [Cp*Co(9,12-S2C2B10H10)
with alkynes.

The neutral tricobalt(II) complex [(Cp)3Co3{9,10,12-S3C2B10H9}] (Figure 33a) was ob-
tained by the interaction of trisubstituted o-carborane-9,10,12-trithiol with [CpCo(CO)2]
and three equivalents of FcPF6 (Fc = (C5H5)2Fe) in the presence of triethylamine in
dichloromethane [153]. The addition of an excess of ferrocenium hexafluorophosphate
causes a redox reaction to form salt [(Cp)3Co3{9,10,12-S3C2B10H9}]PF6 (Figure 33b).
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3.3. Derivatives with B–N Bonds

From the Cambridge Structural Database, there are only three examples of carboranes
with exo-polyhedral B–N bonds. The authors [154] synthesized new B-carboranyl phosphine-
iminophosphorane ligands [3-(N=PPh2CH2PPh2)-1,2-B10C2H11] with the carboranyl group
directly attached to the iminophosphorane nitrogen atom through the B(3) boron atom;
the obtained derivative was used in palladium(II) complexation with [PdCl2(PhCN)2] to
give complex [PdCl2(Ph2PCH2PPh2CN)9B10C2H11] (Figure 34). In the final compound,
palladium coordinates N and P atoms of the substituent with the Pd–N bond 2.103(4) Å
and Pd–P bond 2.2258(17) Å.
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Rhenium(I) complexes with 3-isocyano-1,2-dicarba-closo-dodecaborane were isolated
when 3-isocyanoderivative of 1,2-carborane was allowed to react with [NEt4]2[Re(CO)3Br3]
and [Re(CO)3(solv.)3][PF6] to form final compounds [Re(CO)3L3][PF6] and [Re(CO)3L2Br]
(L = 3-CN-1,2-B10C2H10] (Figure 35). In both compounds, the complexing agent coordinates
carborane derivatives via the C atom of the CN substituent; the Re–C bond falls in the
range 1.958(5)–2.075(2) Å [155].
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(b) [Re(CO)3(3-CN-1,2-B10C2H10)2Br].

Among the structures closest to the systems discussed we can note the carborane-fused
triazole radical anion [1,2-(3-Ph-1-CH3-3-N3)-1-CB11Cl10]–, formed when 1,2-(3-phenyl-3-
triazene)-decachloro-1-carba-closo-dodecaborate reacts with methyl phthalate [156]. When
it is treated with bis(cyclopentadienyl)cobalt, a redox reaction occurs with the formation
of compound [Co(Cp)2][1,2-(3-Ph-1-CH3-3-N3)-1-CB11Cl10] (Figure 36a). In this compound,
the monocarborane anion is functionalized simultaneously via the carborane atom of the
cage and adjacent BH group; thus, the obtained derivative contains the B–N and C–N
exo-polyhedral bonds. The metal atom is coordinated by two cyclopentadienyl ligdns,
whereas the carborane derivative acts as a counterion. The authors declare that it is an
interesting example of a relatively stable radical anion that can be used to obtain functional
materials.
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Another representative of carborane-derivatives containing the B–N bond is (t-butylamino-
1,7,9-tricarba-nido-undecaborato)-(9-dimethylamine-7,8-dicarba-nido-undecaborato)-iron [157]
(Figure 36b). This compound is a metallocarborane containing a tricarborane derivative
functionalized by the carbon atom and dicarborane cage with the B–N exo-polyhedral
bond.

3.4. Derivatives with B–O Bonds

The complexes of this type have been isolated only for perhalogenated carboranes.
Mono-triflyloxy-substituted carborane can be halogenated to form decachloro deriva-
tives with the exopolyhedral B–OTf bond. The use of [HCB11Cl10OTf]− in palladium(II)
complexation demonstrates that this weakly coordinating anion can act as a counte-
rion in palladium complexes [(POCOP)Pd(C6D5Br)][HCB11Cl10OTf] (Figure 37a) and
binuclear [(POCOP)Pd-Cl-Pd(POCOPF)][HCB11Cl] (POCOP is P,P-1,3-phenylene bis(P,P-
diphenylphosphinite) [158]. In structurally related complex {[(POCOP)Pd][HCB11Cl10OTf]}
(Figure 37b), palladium coordinated the triflyloxy-substituted carborane via the O atom of
the substituent; the B–O bond is 2.2076(15) Å [159].
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4. Conclusions

Complexes with substituted derivatives of boron cluster anions [BnHn]2–, monocarbo-
ranes [CBnHn–1]– and dicarboranes [C2BnHn–2] (n = 10, 12) isolated to date are listed in
Tables 1 and 2. Analyzing the data shown, it can be concluded that the following types
of complexes with substituted derivatives of closo-borate anions and carboranes can be
isolated:

(a) Metal complexes with substituted derivatives as counterions

These compounds are built of a cationic metal complex, whereas boron clusters are
not coordinated by the metal atom. Note that in these compounds, specific non-bonding
interactions B–H . . . H–X (X = C, O, N) are usually observed between the BH group of
boron clusters and ligands, organic cations, or solvent molecules;

(b) Metal complexes with coordinated substituted derivatives

These compounds contain derivatives of boron cluster anions or carboranes as coor-
dinated ligands. Owing to the electronic and geometrical structure of boron clusters and
carboranes and their chemical behavior, the following types of metal bonding with the
boron cage are observed: (i) coordination via the 3c2e MHB interactions, in which the metal,
boron, and hydrogen are involved in coordination; (ii) coordination of functional groups of
the substituent introduced into the borane or carborane cage, while the BH groups remain
non-coordinated by the metal atom; (iii) combined coordination, where the boron cluster is
coordinated by 3c2e MHB bonds and the functional groups of the substituent.
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The presence of 3c2e MHB bonds in the synthesized compounds is clearly mani-
fested in the IR spectra by the appearance of absorption bands ν(BH)MHB in the range
2400–2100 cm–1, which correspond to the stretching vibrations of coordinated BH groups
ν(BH)MHB; at the same time, the ν(BH) band of “non-coordinated” BH bonds is observed
near 2500 cm–1.

In the case of coordination of a substituted derivative due to the functional groups of
the substituent, absorption bands characteristic of the corresponding groups appear in the
IR spectra of complexes, but these bands are often split into several components and shift
towards higher wavenumbers. These characteristic changes indicate the involvement of
exo-polyhedral functional groups in coordination by metals.

Analyzing data shown in Tables 1 and 2, it is clear that substituted derivatives of the
boron cluster anions give all four types of compounds, whereas compounds with carborane
derivatives acting as counterions or coordinated via a substituent are generally formed
(Figure 38). Several examples of compounds with MHB bonds or combined coordination
were isolated for carborane derivatives, indicating that these types of compounds are not
characteristic for carboranes.
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In addition, it is clear that metals involved in the complexation of boranes and carbo-
ranes are different. Particularly, metals acting as Pearson’s soft acids (Cu(I), Ag, Pb, Ru)
form complexes with boron clusters coordinated via three-center two-electron MHB bonds.
If the substituent reduces the total charge of the system (NH3, thionium, oxonium groups),
the coordination ability of the obtained derivatives decreases; thus, silver complexes with
non-coordinated boron cluster anions are formed as end products, while Ru and Pb are still
able to coordinate the singly-charged anions.

It can be concluded that lead and ruthenium demonstrate the greatest affinity for
boron cluster anions: it is possible to obtain complexes of these metals with the substituted
derivatives coordinated by MHB bonds, through the functional group of the substituent,
and combined coordination can also be realized. Note that salts of these metals with
non-coordinated boron ligands have not been obtained.
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Table 1. Coordination modes found for mono- and disubstituted derivatives of boron cluster anions [BnHn]2– (n = 10, 12) in complexes. Metals are shown in bold
and are highlighted using different colors in order to compare the composition of complexes with the same metal but various types of coordination.

Boron Cluster Anion as a Counterion Coordination with the Formation of 3c2e
MHB Bonds Coordination by a Substituent Combined Coordination: MHB +

Substituent

[Ni(Bipy)3][B10H9OH]
[Ni(Phen)3][B10H9OH]
[Ni(Bipy)3][B12H11Cl]
[Co(Phen)3][2-B10H9OC(H)O]
[CuII(BPA)2(NCCH3)2][2-B10H9BPA]2
[CuII

2(bipy)4(µ-CO3)][2-B10H9OH]
[Ag(PPh3)4][B10H9NH3]
[Ag(PPh3)4][2-B10H9S(CH2N(CO)2C6H4)2]
[Ag(PPh3)4][2-B10H9O(CH2)5]
[Ag(PPh3)4][2-B10H9O(CH2)4O]

[Et3NH][CuI[1-B10H9N2]2]
[Ag(CH3CN)3]2[Ag2[2-B10H9F]2]n
[Ag(PPh3)4][(PPh3)2Ag[B10H9Cl]]
[Ag2(Ph3P)4[B12H11Cl]]
[Ag2(Bipy)2[2-B10H9SH]]
[Ag2(Bipy)2[2-B10H9S(CH2C(O)NH2]NO3
(Bu4N)[[(o-C6F4Hg)3]2[B12H11SCN]]
(Bu4N)2[[(o-C6F4Hg)3][B12H11SCN]]
[(PPh3)2ClRu[B12H11(NEt3)]
[Pb[2-B10H9SH]]
[Pb(Bipy)2[2-B10H9SH]]
[Pb(Bipy)2[1-B10H9SMe2]2]

[Ph3MeP)]2[CpTiCl2[B12H11OH]
[Ni(en)[2-
B10H9O(CH2)2O(CH2)2NH(CH2)2NH2)]]
[Na6(THF)15][Ni[B12H11NH2]]4
[Au(PPh3)[NH2–B12H11]]
[RuH2[N2B10H8SMe2](Ph3P)3]
[Ru[SB12H11](NH3)5]
[(Cp)(dppe)Fe}2[1,10-B10H8(NC)2]·H2O

phthalocyanine Al(III), Co(II), Zn(II)
complexes
Gd(III) and Hf(IV) complexes

[CuI(NCCH3)2[2-B10H9Bipy]]
[Ag2(Ph3P)4[B10H9C(O)OCH3]]
(Ph4P)2[Pb(Bipy)[2-B10H9OC(O)CH3]2]]
[Pb(Bipy)[2-B10H9O(CH2CH2)2OEt]]
[Pb(Bipy)(DMF)[2-B10H9OH)]]
[Pb(Bipy)(2-B10H9(OCH2CH2)2OEt)]
[Pb(Bipy)(DMF)[B10H9OH]
[Pb(Bipy)2[2,6(9)-B10H8(OC(O)CH3)(OH)]]2
[Pb(Bipy)2[2,7(8)-B10H8(OC(O)CH3)2)]
Bu3MeN[Ru(PPh3)2Cl[B12H11NH2]]
Bu4N[Ru(dppb)Cl[B12H11NH2]]
[Ru(PPh3)2CO[B12H11NH2]]
MePPh3[Rh(PPh3)2[B12H11NH2]]
[Rh(Me5Cp)[B12H11NHC(O)NMe2]]
[Rh(Me5Cp)[B12H11NHC(O)Ph]]
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Table 2. Coordination modes found for mono- and disubstituted carboranes in complexes. Metals are shown in bold and are highlighted using different colors in
order to compare the composition of complexes with the same metal but various types of coordination.

Boron Cluster Anion as a Counterion Coordination with the Formation of 3c2e
MHB Bonds Coordination by a Substituent Combined Coordination: MHB +

Substituent

[Pd(dppe)2][CB11H11Cl]2]·3CH2Cl2
[(POCOP)Pd(C6D5Br)][HCB11Cl10OTf]
[Ru(CH3CN)6][CB11H6Br6]
[RhL][CB11H6Cl6]
[RhL][CB11H6Br6]
(L = diphenylphosphine ligands)
[Co(Cp)2][1,2-(3-Ph-1-CH3-3-N3)-1-CB11Cl10]

[Ag(C6H6)2[12-CB11H11F]]
[Ag(C6H6)2][6,8-CB9H8F2]

[Ag(C6H6)[12-CB11H11Br]]
[MoCp(CO)3(CB11H11Br)]
[Ir(PPh3)2H2(1-CB11H6Cl6)]
[Cp*Ir{9,10-S2C2(B10H10)}]
[Cp*Ir(R3P){9,10-S2C2(B10H10)}]
[Cp*Co{9,12-S2C2B10H10}]
[Cp*Rh{9,12-S2C2B10H10}]
[cis-Rh(Ph2PCH2CH2S-{9-1,7-C2B10H11})2]Cl
[cis-Pt(Ph2PCH2CH2S-{1-CB11H11})2]
[cis-Pt(Ph2PCH2CH2S-{9-closo-1,7-
C2B10H11})Cl2]
[cis-Pt(Ph2PCH2CH2S-{9-closo-1,7-
C2B10H11})2](BF4)2
[Au2(Ph3P)2S{9,12-S2C2B10H10]
[Cu-S-9-closo-1,7-C2B10H11]4
[PdCl2(Ph2PCH2PPh2CN)9B10C2H11]
[Re(CO)3L2Br] (L = 3-CN-1,2-B10C2H10]
{[(POCOP)Pd][HCB11Cl10OTf]}

[MoCp(CO)3IAg(CB11H11Br)]2
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For carboranes, it can be seen that the series of metals forming compounds with
coordinated derivatives of carboranes are platinum group metals (Ru, Rh, Pd, Ir, Pt).
Only three representatives of substituted derivatives of carboranes were used in silver(I)
complexation, whereas no lead(II) complexes have been isolated. It seems that this field of
chemistry should be studied intensively and new compounds with MHB bonds could be
prepared.

As for substituents introduced into the boron cluster, it is clear from Table 1 that the
most studied are substituted derivatives of the closo-decaborate and closo-dodecaborate
anions containing the chlorine atom, hydroxy group or acetoxy group. For Hal atoms,
it is clear that the corresponding derivatives are coordinated (if at all) by forming MHB
bonds from the side opposite to the positions of substituents introduced into the boron
cage. The derivatives containing the OH and acetoxy groups are coordinated by lead
forming combined coordination MHB + substituent. Some examples of lead and ruthenium
complexes with S-substituted derivatives have been isolated with combined coordination
of the boron cage (MHB + substituent).

An analysis of the obtained compounds shows that the most interesting combined vari-
ant of the coordination of substituted derivatives of boron cluster anions (MHB + substituent)
can be expected with the introduction of substituents that do not reduce the total charge of
the boron cluster, using soft acid metals according to Pearson, and using functional groups
that correspond in hardness/softness to the metal.

The majority of complexes with B-substituted carboranes contain the B–Hal or B–S
exo-polyhedral bonds. Compounds with other substituents are extremely rare. Analyzing
Table 2, it can be concluded that carboranes have lower coordination ability; they form
compounds with non-coordinated carboranes (salts) or complexes with coordination of the
substituent (Figure 38). Thus, it is clear that the carborane cage should be functionalized to
act as inner-sphere ligands owing to a substituent being introduced.
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