
Citation: Knyazev, A.A.; Krupin, A.S.;

Galyametdinov, Y.G. Composites

Based on Polylactide Doped with

Amorphous Europium(III) Complex

as Perspective Thermosensitive

Luminescent Materials. Inorganics

2022, 10, 232. https://doi.org/

10.3390/inorganics10120232

Academic Editor: Alexander

Artem’ev

Received: 30 October 2022

Accepted: 28 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inorganics

Article

Composites Based on Polylactide Doped with Amorphous
Europium(III) Complex as Perspective Thermosensitive
Luminescent Materials
Andrey A. Knyazev 1,* , Aleksandr S. Krupin 1 and Yuriy G. Galyametdinov 1,2

1 Department of Physical and Colloid Chemistry, Kazan National Research Technological University,
68 Karl Marx, Kazan 420015, Russia

2 Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7 Sibirsky Tract,
Kazan 420029, Russia

* Correspondence: knjazev2001@mail.ru

Abstract: This work reports fabrication of polylactide (PLA) films doped with various additives of an
amorphous Eu(III) complex. We study the temperature behavior of the luminescence intensity and
lifetime of the PLA-Eu(III) composites in the range of 298–353 K and investigate the mechanism of
luminescence temperature quenching. The peak relative sensitivity of the films reaches 20.1 %×K−1

and exceeds the respective characteristics of all known lanthanide-containing thermosensors designed
for the range of physiological temperatures. The produced films can be potential novel materials for
luminescent thermosensors.
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1. Introduction

Lanthanide compounds attract sustainable attention of scientists for their unique
luminescent characteristics such as monochromatic luminescence bands, long emission
lifetimes, and a theoretically possible 100% internal quantum efficiency [1–6]. Trivalent
Ln3+ ions generate narrow and intensive emission bands because of f-f electron transitions
in the 4f layer. These ions provide a broad range of luminescence lifetimes that can be
suitable for a variety of applications [7]. The ions themselves, however, have low adsorption
coefficients ε (1–10 L·mol−1·cm−1). Their luminescence properties are limited by parity-
forbidden f-f transitions [8]. According to the literature data, a solution to this problem is to
synthesize Ln(III) complexes with organic ligands that have considerably higher adsorption
coefficients (ε≈ 103–104 L·mol−1·cm−1) [7]. Such ligands play the role of an antenna, which
adsorbs an excitation quantum of light and transfers it to the emission levels of the metal
ion through the mechanism of internal conversion [1,5]. Efficient transfer and adsorption of
energy is not the only function of such a ligand environment. The ligands encapsulate the
central metal ion and isolate it from a possible impact of solvent or salt hydrate water [9,10].

Derivatives of β-diketones are promising chromophores with highly efficient energy
transfer capabilities [11–16]. In such compounds, the ligand environment exerts a negligible
impact on the electron energy levels of the metal ions because their 4f electrons are shielded
by complete 5s and 5p shells. The resulting intraconfigurational transitions of 4f-f electrons
in Ln3+ ions do not change. Therefore, luminescent substances based on Ln(III) compounds
can be promising components of functional materials for a variety of applications such
as optoelectronic instruments, biological fluorescent markers, light emitting devices, light
transforming coatings, pigments, or luminescent thermometers [5,17–21]. In this respect,
amorphous Ln(III) compounds are in the focus of recent research and development attention
because they can be processed into nanoscale films, which are highly demanded in modern
technological applications [22]. Amorphous materials are represented by condensed phases,
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which do not exhibit long-range translational (or orientational) order or periodicity, which
are typical for crystals [23]. Transparency of such materials, therefore, cannot be high.
They can be applied to fabrication of optical systems without photon scattering, such as
luminescent materials, solar cells, or electroluminescent materials [24,25].

Luminescent thermometry [26–30] is among the most rapidly developing applications
of coordination Ln(III) compounds. A variety of luminophores are known to possess
temperature sensing capabilities such as organic compounds, quantum dots, metal clus-
ters, nanoparticles doped with dyes, metal-ligand complexes, and lanthanide-containing
materials [31,32]. They are potential thermosensors for applications in microelectronics,
microfluidics, photonics, biology, and medicine. The working principle of the related
thermometry devices is to track the temperature behavior of the following luminescence
parameters: quenching time, intensity, area or position of the emission peak, the intensity
ratio of the emission bands, etc. [33]. Characteristic narrow emission bands of Ln(III) ions
allow a high-precision detection of temperature changes. In addition to the useful proper-
ties listed above, Ln(III) compounds possess long luminescence lifetime characteristics, so
it is possible to use time-gated methods to increase their signal-to-noise ratio [34].

Applications of the majority of Ln(III) complexes in optoelectronic technologies are,
however, limited by their low thermal stability and photostability. To address this issue,
Ln(III) complexes are doped into various matrices: organic (polymers, liquid crystals),
inorganic (glass, silicates), or sol-gel organic-inorganic hybrids [7,35]. Doping polymers
with rare earth metal complexes results in a uniform distribution of dopants among polymer
chains. The resulting composites demonstrate higher luminescence efficiencies, greater
chemical and thermal stabilities, and enhanced mechanical properties. Such composites
are, therefore, more suitable materials for producing transparent films [36–42].

In this respect, such polymers as ABS, PLA, SBS, PET, PVA, etc. are particularly
attractive due to their 3D printing potential. The proposed method allows the easy deposit
of luminescent composites on various surfaces. Therefore, this work discusses fabrication
of thermally sensitive films based on PLA polymer and an amorphous Eu(III) complex.
Polylactide (PLA) was selected as a model matrix due to its optical properties, processability,
and relative cheapness. The review of literature, however, reveals only a few reports on
doping polylactide with Ln(III) ions [43–45] because of its low photostability. It should
be noted, however, that PLA is a non-toxic, biodegradable, and biocompatible polymer.
PLA-based materials are, therefore, promising model systems for studying immobilization
of lanthanide(III) compounds to further introduce them into living organisms and perform
in vivo diagnostics of cancer. This work, therefore, focuses on fabrication of thermally
sensitive films that consist of PLA and an amorphous Eu(III) complex. In the previous work,
we demonstrated that amorphous Ln(III) compounds dissolve well in organic solvents,
mix with various polymers, and distribute uniformly in a polymer matrix due to their
unique structural features (anisotropy of geometry and long hydrocarbon substituents on
molecular edges) [46]. It allows to avoid formation of crystalline defects, neutralize the effect
of luminescence self-quenching, and obtain a more efficient mechanism of intermolecular
energy transfer as compared with known analogues [47]. Such complexes are efficient
light absorbers in a broad spectral range of 250–400 nm, so it is not necessary to use hard
UV radiation for their excitation [48,49]. High UV absorption capacity of the complexes
will also contribute to increased photostability of the PLA matrix. In addition, their
melting temperatures are low and similar to the melting temperature of PLA. Therefore,
the resulting composites can be easily deposited on various surfaces by conventional
3D-printing tools.

2. Results and Discussion

To synthesize Eu(III) complexes, we used originalβ-diketones and 1,10-phenanthroline
as the antenna ligands. Their triplet levels are known to provide an efficient energy transfer
to the emitting levels of Eu3+ ions [50]. The adduct of Eu(III) tris(β-diketonate) with
1,10-phenanthroline was synthesized by the reaction shown in Figure 1. The composition
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and structure of the synthesized complex were confirmed by elemental analysis, mass
spectrometry and IR spectroscopy. Absence of water in the first coordination sphere was
confirmed by the FTIR data (Figure S1).
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Figure 1. Synthesis of tris(β-diketonate) Eu(III) complexes with 1,10-phenanthroline.

The synthesized compound is an amorphous powder that dissolves well in nonpolar
and low-polar organic solvents due to its structural features (anisotropy of geometry and
long hydrocarbon substituents on molecular edges) (Figure S2) [51]. The amorphous
structure of the Eu(III) complex was confirmed by the presence of the amorphous halo in
the XRD diffractogram.

The synthesized Eu(III) complex and PLA polymer were used to produce composite
films with various luminophore content by the spin-coating method. The thickness of the
films was 500 nm (±10%). The films were virtually transparent in the visible and IR ranges
(transmission over 90%) and absorbed UV light with high efficiency (Figure S3).

The absorption spectra contain peaks, which are similar to those observed in the
spectra of the Eu(III) complex dissolved in hexane (Figure S4). These peaks are displaced
due to the presence of PLA and the resulting change in dielectric permittivity. No absorption
peaks of the complexes were identified in the 200–300 nm range because of relatively high
extinction coefficients of PLA polymer. The concentration dependences of absorption can
be adequately described by Bouguer–Lambert–Beer law (Figure S5).

The luminescence spectra of the films (Figure 2) contain the excitation peaks similar to
the absorption ones. It may indicate that the energy absorbed by the complexes doped into
the PLA matrix is predominantly consumed by emission processes. UV irradiation of the
PLA film doped with the individual Eu(III) complex initiates luminescence that is typical
for this Eu(III) ion.
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Comparison of the emission spectra of the films with different Eu(III) content re-
vealed that an increase in the luminophore concentration results in a nonlinear growth
of its luminescence intensity, which reaches maximum at 17.5 wt% of the doped complex
(Figure 3a). This effect is associated with the concentration quenching of luminescence. In
turn, concentration quenching of analogous known film materials occurs at 3–10% of doped
complexes [52,53]. Long hydrocarbon substituents at the edges of the synthesized complex
do not favor its crystallization and allow to broadly vary the content of luminophore in
polymer to achieve the maximum emission efficiency at high concentrations. As the authors
demonstrated previously by studying a similar system with PMMA [47] and conjugated
polymer (PVK) [46], higher content of the amorphous component in a polymer matrix
does not lead to formation of larger aggregates and crystalline defects and the resulting
self-quenching of luminescence as compared with analogous crystalline systems.

Inorganics 2022, 10, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Synthesis of tris(β-diketonate) Eu(III) complexes with 1,10-phenanthroline. 

Comparison of the emission spectra of the films with different Eu(III) content re-
vealed that an increase in the luminophore concentration results in a nonlinear growth of 
its luminescence intensity, which reaches maximum at 17.5 wt% of the doped complex 
(Figure 3a). This effect is associated with the concentration quenching of luminescence. In 
turn, concentration quenching of analogous known film materials occurs at 3–10% of 
doped complexes [52,53]. Long hydrocarbon substituents at the edges of the synthesized 
complex do not favor its crystallization and allow to broadly vary the content of lumino-
phore in polymer to achieve the maximum emission efficiency at high concentrations. As 
the authors demonstrated previously by studying a similar system with PMMA [47] and 
conjugated polymer (PVK) [46], higher content of the amorphous component in a polymer 
matrix does not lead to formation of larger aggregates and crystalline defects and the re-
sulting self-quenching of luminescence as compared with analogous crystalline systems. 

  
(a) (b) 

Inorganics 2022, 10, x FOR PEER REVIEW 5 of 16 
 

 

 
(c) 

Figure 3. Concentration dependence of luminescence intensity (a), lifetime (b) and quantum 
efficiency ΦLn (c) of PLA composite films doped with the Eu(III) complex at λex = 340 nm and λem = 
613 nm (marker symbols—experimental data, dashed line—approximation). 

Figure 3b shows the concentration dependence of the luminescence lifetime. The 
luminescence quenching curve of the composites can be adequately described by a mono-
exponential approximation (the coefficient of determination R2 > 0.995). The authors 
suggest that this complex exhibits a single type of coordination sphere luminescence. An 
increase in the Eu(III) complex content results in both longer lifetime and higher intensity 
of luminescence that agrees with the literature data [21,54]. The authors suggest that an 
increased lifetime at higher luminophore concentration can be associated with changes in 
the symmetry of the emission of the Eu3+ ion. Characterizing the mechanism of this 
interesting phenomenon, however, will require additional and deeper research activities. 

The luminescence spectra were used to calculate the luminescence quantum 
efficiency of individual Eu(III) complexes and PLA films doped with Eu(III) complexes at 
the excitation wavelength of 330 nm (Table S1 and Figure 3c), which corresponds to the 
excitation maximum of the Eu3+ ion [55,56]. 

A twofold increase in the relative quantum yield of luminescence was found for the 
composite film with 17.5 wt% of the Eu(III) complex, as compared with the solution of the 
individual complex. This effect is associated with a reduced non-radiative relaxation in 
the polymer matrix initiated by vibrational modes of solvent molecules, and an increased 
contribution of emission processes due to a uniform distribution of the Eu(III) complex in 
the composite film. Figure 3c demonstrates the concentration dependence of the quantum 
efficiency and the relative quantum yield of luminescence found for the PLA films doped 
with the Eu(III) complexes. The films containing 17.5 wt% of the Eu(III) complex 
demonstrate the maximum quantum efficiency of luminescence (φLn). 

In comparison with other known analogues, the studied compounds were shown to 
undergo concentration quenching of luminescence at higher concentrations of the doped 
complex. For example, individual Eu(bzac)3phen [54] has a larger relative quantum yield 
of luminescence. In the PLA matrix, however, the Eu17.5 film shows a 1.4 times better 
performance due to a reduced quenching of luminescence. 

PLA films doped with the Eu(III) complexes demonstrate good luminescence. They 
allowed us to evaluate applicability of these materials as thermosensors. We studied the 
impact of temperature on the luminescence intensity and lifetime. Figure 4a demonstrates 
the influence of temperature on the normalized luminescence intensity of the films in the 
298–353 K range at λex = 340 nm and λem = 613 nm. 

Figure 3. Concentration dependence of luminescence intensity (a), lifetime (b) and quantum efficiency
ΦLn (c) of PLA composite films doped with the Eu(III) complex at λex = 340 nm and λem = 613 nm
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Figure 3b shows the concentration dependence of the luminescence lifetime. The
luminescence quenching curve of the composites can be adequately described by a mono-
exponential approximation (the coefficient of determination R2 > 0.995). The authors
suggest that this complex exhibits a single type of coordination sphere luminescence. An
increase in the Eu(III) complex content results in both longer lifetime and higher intensity
of luminescence that agrees with the literature data [21,54]. The authors suggest that an
increased lifetime at higher luminophore concentration can be associated with changes
in the symmetry of the emission of the Eu3+ ion. Characterizing the mechanism of this
interesting phenomenon, however, will require additional and deeper research activities.

The luminescence spectra were used to calculate the luminescence quantum efficiency
of individual Eu(III) complexes and PLA films doped with Eu(III) complexes at the excita-
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tion wavelength of 330 nm (Table S1 and Figure 3c), which corresponds to the excitation
maximum of the Eu3+ ion [55,56].

A twofold increase in the relative quantum yield of luminescence was found for the
composite film with 17.5 wt% of the Eu(III) complex, as compared with the solution of the
individual complex. This effect is associated with a reduced non-radiative relaxation in
the polymer matrix initiated by vibrational modes of solvent molecules, and an increased
contribution of emission processes due to a uniform distribution of the Eu(III) complex
in the composite film. Figure 3c demonstrates the concentration dependence of the quan-
tum efficiency and the relative quantum yield of luminescence found for the PLA films
doped with the Eu(III) complexes. The films containing 17.5 wt% of the Eu(III) complex
demonstrate the maximum quantum efficiency of luminescence (ϕLn).

In comparison with other known analogues, the studied compounds were shown to
undergo concentration quenching of luminescence at higher concentrations of the doped
complex. For example, individual Eu(bzac)3phen [54] has a larger relative quantum yield
of luminescence. In the PLA matrix, however, the Eu17.5 film shows a 1.4 times better
performance due to a reduced quenching of luminescence.

PLA films doped with the Eu(III) complexes demonstrate good luminescence. They
allowed us to evaluate applicability of these materials as thermosensors. We studied the
impact of temperature on the luminescence intensity and lifetime. Figure 4a demonstrates
the influence of temperature on the normalized luminescence intensity of the films in the
298–353 K range at λex = 340 nm and λem = 613 nm.
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Temperature dependences of the normalized luminescence intensity of composite
films decrease non-linearly and can be described by exponential functions with R2 > 0.99
correlation coefficients. Temperature exerts a strong influence on the luminescence intensity
by decreasing it more than 30 times. In the range of 298–333 K, an increase in luminophore
concentration does not lead to intensive changes in the sensitivity of the luminescence
intensity (Figure 4b). A sharp increase in the sensitivity is observed at higher temperatures
up to 353 K. At higher temperatures, the signal from the sample drops to an unclear
noise level.

The maximum relative intensity sensitivity (Equation (5)) varies from 11.7 to 20.1 %×K−1.
This value exceeds those of all other known β-diketonate lanthanide-containing thermosen-
sors (Table 1). An increase in the luminophore content results in a nearly linear growth in
the luminescence intensity sensitivity. Its temperature range includes the physiological
temperatures of a human body. Such materials, therefore, can find potential applications
in medicine.

Table 1. Examples of existing thermosensors based on Ln(III) complexes.

# Material Maximum Relative
Sensitivity Sm, %×K−1 Range, K Tm, K Optical

Parameter Reference

1 Eu(keto)3(H2O) 7.0 × 10−2 12–300 50 Bandwidth [57]

2 PDMS-eddpo-
Ln(bzac)3 (Ln = Eu,Tb) 11 158–248 203 Two intensities [58]

3 Ln(tfac)3·2H2O (Ln = Eu, Tb) 7.1 293–343 293 Two intensities [59]
4 Ln-DPA (Ln = Eu, Tb) 1.5 293–333 293 Two intensities [60]
5 Eu(bzac)3(H2O)2 1.4 188–303 293 Lifetime [61]
6 Ln(btfa)3(H2O)2 (Ln = Eu, Tb) 5.8 295–315 296 Two intensities [62]
7 Eu3+/RhB-based polymer 3.6 300–310 302 Two intensities [63]
8 Eu3+/RhB-based polymer 3.8 300–310 302 Two intensities [64]
9 Eu(bzac)3(H2O)2 5.3 188–303 303 Single intensity [61]

10 Eu(tta)3(pyphen) 1.7 283–323 323 Lifetime [65]
11 Eu(CPDK3-5)3phen 2.2 298–348 298 Lifetime [66]
12 Eu(CPDk3-C3F7)3Phen 0.87 298–363 343 Single intensity [67]

It is well known [26,28] that the luminescence intensity of thermosensitive materials
can be strongly influenced by the sample characteristics and measurement conditions. More-
over, it is rather difficult to consider the factor of film degradation under prolonged irradia-
tion to avoid considerable errors in temperature measurements [68–70]. Thermosensors
can also experience changes in their emission intensity when the medium’s refractive index
changes (for instance, when water or other liquid is absorbed onto the sensor’s surface) or
when measurements are performed in complex biological or chemical media. The lumines-
cence quenching time, in its turn, does not depend on the above factors [26,28]. Therefore,
this parameter is often used for more reliable and accurate temperature measurements.

Figure 4c illustrates the temperature dependence of the luminescence lifetime obtained
for the composite film samples. The temperature has a significant impact on the lumines-
cence lifetime and reduces it by nearly 15 times (for the 20 wt% Eu(III) film). The more
Eu(III) complex we add into the composite film, the stronger is the temperature impact on
the lifetime. At 311K, the curves cross and the impact of the Eu(III) complex concentration
inverses. In the range of 308–343 K, the luminescence lifetime decreases almost linearly
(correlation coefficients R2 > 0.94) as temperature increases. The slope of the temperature
line in the range of 308–343 K was 11.3–13.3 µs/K (Figure 4c). Thus, the produced film
materials can be used for high-precision temperature measurements including the range of
physiological human temperatures.

The maximum value of the relative sensitivity lifetime (Figure 4d) (Equation (5))
varies in the range of 5.4–7.3 %×K−1 at the median temperature of 333K. An increase
in the luminophore content leads to a nearly linear growth in the luminescence lifetime
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sensitivity, the same as for the luminescence intensity sensitivity. The sensitivity decreases
at temperatures higher than 333 K.

The absolute sensitivity of the luminescence lifetime (Equation (4) varies in the range
of 14.1–19.1 %×K−1. For all the samples, it has a minimum at different temperatures
and gradually shifts to the lower temperature range (Figure 5). This effect may be as-
sociated with a growing influence of temperature at higher concentrations of the doped
Eu(III) complex.
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According to the literature data, the temperature-induced luminescence quenching of
mononuclear β-diketonate Europium(III) compounds may occur via vibrational relaxation
quenching or energy transfer quenching by the LMCT band [32]. The authors have previ-
ously shown in [66] that the temperature-induced quenching in anisometric Europium(III)
compounds occurs through the second mechanism that involves the LCMT state. To reveal
the mechanism of quenching in the PLA composite films, we evaluated the rate constants
(kET) by the kinetic analysis. The dependence of kET on temperature was calculated by the
Arrhenius Equation [71–74] (Figure 6a):

ln
(

1
τobs
− 1

τ77K

)
= ln kET = ln k0 −

Ea

k
× T−1

The dependences of the luminescence lifetimes of the composites were calculated by
the following Equation [66] (Figure 6b):

θ(T) =
(

1
τ77K

+ k0 × exp
(
−Ea

kT

))−1

where θ(T) is the temperature function of the lifetime, τobs is the observed luminescence
lifetime, τ77K is the lifetime at 77 K that is the temperature of zero luminescence quenching,
k0 is the frequency factor, Ea is the activation energy, and k is the Boltzmann constant.

The Arrhenius plots of all the composites were approximated by linear equations
with the R2 > 0.99 correlation coefficients (Figure 6a). These approximations allowed for
calculating the frequency factors k0 and activation energies for various amounts of the
Eu(III) complex in the PLA films (Table 2). The values of these parameters agree with those
found for similar Eu(III) compounds.
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Table 2. The frequency factor and activation energies of the PLA composite films doped with different
amounts of the Eu(III) complex and similar compounds.

Sample The Frequency
Factor k0, s−1

Activation Energy
Ea, cm−1 Reference

5 wt% Eu(III) 8.78 × 1015 6661 This paper
10 wt% Eu(III) 4.65 × 1016 6982 This paper
15 wt% Eu(III) 1.45 × 1017 7197 This paper
20 wt% Eu(III) 1.96 × 1017 7228 This paper

Eu(NTA)3·H2O in PMMA 1.8 × 1014 6300 [75]
Eu(thd)3 1.2 × 1013 4120 [76]

Eu(tta)3dapm in cellulose
triacetate matrix 7 × 1016 7070 [77]

Eu(hfa)3(DPCO)2 1.1 × 107 3120 [74]

An increase in the luminophore content in the PLA polymer matrix was found (Table 2)
to increase the activation energy and frequency factor k0. This effect can be explained by
analyzing the Arrhenius equation: a higher activation energy results in a larger impact of
temperature on kET and the lifetime and, thus, the value of Sr

τ increases.

dln kET
dT

=
Ea

kT2

A significant disadvantage of film materials produced from classic β-diketonate Ln(III)
complexes is an irreversible decrease in their luminescence intensity after UV radiation
exposure [21,78–80]. This process is particularly intensive in the presence of atmospheric
oxygen. Therefore, we studied the impact of a prolonged UV exposure on the luminescence
intensity and lifetime of the composite films with 5 wt% Eu(III), 10 wt% Eu(III), 15 wt%
Eu(III), and 20 wt% Eu(III) (Figure S6).

An increase in luminophore content in the PLA matrix is found to significantly improve
the photostability of the films. Under continuous UV irradiation, composite films containing
20 wt% luminophore show the 50% reduction in luminescence intensity after 6 h, while the
films containing only 5 wt% of the Eu(III) complex demonstrate the 80% reduction. The film
that contains the largest amount of the luminophore (20 wt% Eu(III)) demonstrates a highly
stable luminescence lifetime, which decreases by just 5% after exposure to UV radiation.
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A cyclic study of the luminescence intensity during heating and cooling of the 20 wt%
Eu(III) composite film was performed to confirm the thermal stability of the samples
(Figure S7). The produced samples withstand 5 cycles of heating and cooling under
irradiation at 340 nm and show only a small reduction in intensity (less than 5%) and
virtually no changes in the luminescence lifetime.

Thus, we can conclude that the produced composites can make promising materials
for luminescent thermometers capable of measuring temperatures in the range of 303–353 K,
including the physiological temperature range of the human body.

PLA is a polymer material, which is used for 3D-printing applications. The composites
produced in this work (PLA + 2.5 wt% Eu(III) complex) were successfully tested for their
compatibility with a 3D-pen (Figure S8).

3. Materials and Methods
3.1. Materials

Europium(III) chloride hexahydrate, 1,10-phenanthroline, toluene, chloroform, hexane
and polylactide (PLA) (Ecogenius PLA 3D printing filament, natural, diam. 1.75 mm) were
purchased from Sigma-Aldrich (Burlington, NJ, USA).

3.2. Characterization Techniques

CHN elemental microanalysis was performed by Delta V Plus isotope mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA). X-ray Fluorescence analysis
was performed with Bruker M4 «Tornado» spectrometer. FT-IR spectra were recorded
on an IR Fourier spectrometer IFS-66v/s Bruker. The mass spectra data were obtained
using a Bruker Esquire LC-Ion Trap Mass Spectrometer. Thermal stability was studied
by thermogravimetry-differential scanning calorimetry method on NETZSCH STA 449 C
Jupiter. The thickness of the films was measured by the “Proton” profilometer model 130.
Absorption and transmission spectra were measured by Perkin–Elmer Lambda-35 UV/Vis
spectrophotometer. Excitation and luminescence spectra, luminescence decay curves were
measured by Varian Cary Eclipse spectrofluorometer. A UVGL-58 Handheld UV Lamp
(6 W, 365 nm) was used as a source of UV light to study the photostability of the samples.
To demonstrate 3D printing capabilities, we used 3D pen NOVEX NPEN-88GN.

3.3. Synthesis

Ligand 1-[4-(4-propylcyclohexyl)phenyl]-octane-1,3-dione was prepared according to
modified literature procedures [81,82]. The complex tris[1-[4-(4-propylcyclohexyl)phenyl]-
octane-1,3-diono]-[1,10-phenantroline]europium (Eu(CPDk3–5)3Phen) was prepared accord-
ing to [83].

Tris[1-[4-(4-propylcyclohexyl)phenyl]-octane-1,3-diono]-[1,10-phenanthro1ine]europium.
Yield: 70% (0.095 g). C81H107N2O6Eu: calcd. C, 71.60; H, 7.99; N, 2.04; O, 7.22; Eu, 11.05;
Found C, 71.11; H, 8.25; N, 2.00; O, 7.38; Eu, 11.20. FTIR (PE pellet) (cm−1): ν(Eu–N) 431
and 178 cm−1; ν(Eu–O) 479 and 471 cm−1. FTIR (CCl4 solution) (cm−1): ν(C=N, Phen) 2249,
1582, 1490 cm−1; ν(C=O); 1465, 1437 cm−1; ν(CH Alk) 2868, 1349, 1220, 1021, 708 cm−1;
ν(C=C) 980 cm−1; ν(CH Arom) 3146, 1074, 623 cm−1; ν(Eu–O) 477, 439 cm−1. ESI-MS
(m/z): 1380 (M + Na)+.

3.4. Preparation of PLA—Eu(III) Complex Hybrid Films

The films were prepared as described in [47].

3.5. Calculation of the Quantum Efficiency

The emission quantum efficiency (ϕLn) of the 5D0 emitting level of the Eu3+ ion,
according to Equation (1) [84]:

ϕLn =
Arad

Arad + Anrad
=

Arad
Atot

(1)
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where Arad and Anrad are the radiative and non-radiative rates, respectively.
Contributions to Anrad include back-energy transfer to the sensitizer [85–87], electron

transfer quenching (mainly for Eu3+) [87,88], and most importantly quenching by matrix
vibrations. O–H vibrations are effective quenchers of lanthanide luminescence [89–92].
Moreover, other vibrations commonly found in organic molecules can have important
contributions to Anrad [92].

Non-radiative processes influence the observed luminescence lifetime
(τobs = (Arad + Anrad)−1). In turn, the radiative lifetime is not affected by these processes, by
definition (τrad = Arad

−1).
If the radiative lifetime, τrad, is known, ϕLn can be calculated using the observed

luminescence lifetime τobs (Equation (2)).

ϕLn =
τobs
τrad

(2)

If we assume that both the energy of the 5D0 → 7F1 transition and its dipole strength
are constant, we get Equation (3), which relates the shape of the emission spectrum of Eu3+

to its radiative lifetime.
1

τrad
= AMD,0·n3·

(
Itot

IMD

)
(3)

In this formula, n is the refractive index of the medium (the solvent), AMD,0 is the
spontaneous emission probability for the 5D0 → 7F1 transition in vacuum, and Itot/IMD
is the ratio of the total area of the corrected Eu3+ emission spectrum to the area of the
5D0 → 7F1 band. From the theoretically calculated dipole strength, we can find that AMD,0
has a value of 14.65 s−1 [84].

3.6. Calculation of the Thermal Sensitivity

The absolute thermal sensitivity (Sa) is calculated by Equation (4) [93]:

Sa =
∂∆
∂T

(4)

where ∆ is the luminescence lifetime or intensity.
The relative thermal sensitivity (Sr) is calculated by Equation (5) [93]:

Sr =
|∂∆|

∂T × ∆
× 100% (5)

4. Conclusions

In this study, PLA polymer and the synthesized amorphous Eu(III) complex were
used to prepare composite materials with varying percentages of the doped luminophore.
The quantum efficiency, photostability, and temperature sensitivity of the thermosensor
luminescence were shown to increase when the luminophore is introduced in amounts
up to 20 wt%. The maximum relative intensity sensitivity varies from 11.7 to 20.1 %×K−1.
This value exceeds those of all other known β-diketonate lanthanide-containing ther-
mosensors. The maximum value of the relative lifetime sensitivity various in the range
of 5.4–7.3 %×K−1 at the median temperature of 333 K. The composites developed in this
work can be promising thermosensors for measuring temperatures between 303 K and
353 K, including the human physiological temperature range.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics10120232/s1. Figure S1: FTIR spectrum of the Eu(III) complex;
Figure S2. 3D structure of the Eu(III) complex;. Figure S3: Absorption spectra of PLA composite
films doped with different content of the Eu(III) complex; Figure S4: Absorption spectra of the
ligands and synthesized complexes dissolved in hexane; Figure S5: Concentration dependence of
the absorption spectra of PLA composite films doped with different content of the Eu(III) complex;

https://www.mdpi.com/article/10.3390/inorganics10120232/s1
https://www.mdpi.com/article/10.3390/inorganics10120232/s1
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Figure S6: Normalized intensity and lifetime of luminescence plotted for the composite films doped
with different content of the Eu(III) complex as the functions of UV irradiation time; Figure S7: Cyclic
dependences of luminescence intensity and lifetime of the composite film doped with 20 wt% Eu(III);
Figure S8: Photos of the 3D-printed PLA composites doped with 2.5 wt% of the Eu(III) complex in
visible and UV light; Table S1: Quantum efficiency of luminescence (ΦLn) of samples and analogues.
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