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Abstract: The new ferrocene-based metalloligand bis (N-4-[3,5-di-(2-pyridyl)-1,2,4-triazoyl])ferrocene
carboxamide (L) was prepared through derivatization of 1,1′-ferrocenedicarboxylic acid with
4-amino-3,5-di(pyridyl)-4H-1,2,4-triazole. The composition and purity of L in the solid state was
determined with elemental analysis, FT-IR spectroscopy, and its crystal structure with single-crystal
X-ray analysis, which revealed that the substituted cyclopentadienyl rings adopt the antiperipla-
nar conformation and the crystal structure of L is stabilized by O–H···N and N–H···O hydrogen
bonds. The molecular properties of L in solution were investigated with NMR and UV-VIS spectro-
scopies, and cyclic voltammetry disclosed irreversible redox behavior providing one oxidation peak at
E1/2 = 1.133 V vs. SHE. Furthermore, the polymeric FeII complex {Fe(L)(C(CN)3)2}n (1) was prepared
and characterized with elemental analysis, FT-IR spectroscopy, 57Fe Mössbauer spectroscopy, and
magnetic measurements. The last two methods confirmed that a mixture of low- and high-spin
species is present in 1; however, the spin crossover properties were absent. The presented study
was also supported by theoretical calculations at the DFT/TD-DFT level of theory using TPSS and
TPSSh functionals.

Keywords: metalloligand; abpt; ferrocene; iron(II) complex; Mössbauer spectroscopy; magnetic
properties; DFT calculations

1. Introduction

Multifunctional materials represent a group of any materials that integrally combine
two or more applicable properties. There is currently great interest in the study and design
of multifunctional molecular materials that have spin-switching as one of the functions,
not only for fundamental reasons but also in attempts to make innovative multifunctional
devices. However, it is relatively hard to design a single molecular material capable of
performing multiple functions. One of the synthetic ways involves sophisticated design
of the ligands used. Traditional ligand functions include binding to a metal center and
provision of steric hindrance or binding groups. In this context, the use of a metalloligand is
a powerful synthetic strategy with considerable advantages. The metalloligand is a suitably
designed complex which may act as a ligand capable of placing appended functional
groups in limited directions, and, therefore, such functional groups can bind to secondary
metal ions in a limited geometrical manner. The metalloligand approach presents a facile
way to obtain multinuclear complexes with a specific combination of a primary metal
ion (within the metalloligand) and a secondary metal ion (within the resultant complex).
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Another advantage is that the structural rigidity of the metalloligand often causes the
structural motif of the resultant complex to be highly predictable [1–4].

In this context, ferrocene derivatives bearing donor substituents are suitable for the
metalloligand approach and thus are very useful for the development of specifically de-
signed multinuclear metal complexes [5,6]. One of the well-known examples of a ferrocene-
based metalloligand is 1,1′-bis-(phenylphosphino)ferrocene, which is often used as a ligand
in catalysis and for the generation of novel coordination compounds with a wide range of
coordination geometries and properties [7].

Spin crossover (SCO) complexes show dynamic switching between high-spin and
low-spin states upon external stimuli, such as temperature and/or pressure changes, as
well as light radiation treatment. This transition leads to drastic changes in electronic,
magnetic, optical, and mechanical properties giving them a bistable character, which could
be useful for the design of molecular devices for data storage or optical displays [8–11].
Multifunctional ligands in the field of SCO are very topical due to the fact that they provide
the resulting SCO complex with their secondary function, resulting in further associated
properties such as porosity, electrical conductivity, magnetic order, liquid crystal, and
non-linear optical activity [8–11]. Coupling the ferrocenyl group, a part with well-defined
redox properties, to ligands capable of inducing SCO affords the possibility to investigate
synergies between SCO and the other properties and ultimately to find new physical
phenomena and potential new applications.

In this context, ferrocenyl-containing pyridyl-triazole ligands were previously studied
as suitable building blocks for the synthesis of SCO complexes with redox/electron-transfer
as the second function [12]. Generally, triazole-based ligands are widely studied and
used to build switchable coordination compounds. For example, complexes of iron(II)
comprising the abpt ligand (4-amino-3,5-di(pyridyl)-4H-1,2,4-triazole) with the general for-
mula [Fe(abpt)2A2], where A stands for various pseudohalides (NCS−, NCSe−, N(CN)2

−,
C(CN)3

−, etc.) or polycyanometallates ([Fe(CN)5(NO)]2−, [Pt(CN)6]2−, [Ni(CN)4]2−, etc.),
were widely studied, and all exhibit spin crossover behavior (SCO) [13,14]. Ferrocenyl
and analogous cobaltocenyl-containing abpt ligands (Figure 1) were synthesized, and
complexation with CoII, CuII, ZnII, and CdII was studied [15,16].
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Figure 1. The structural formulae of ligands discussed in the text and the metalloligand L studied
herein (top). The proposed structural formula of polymeric FeII complex 1 (tcm = tricyanomethanide
anion) (bottom).
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Here, we report the synthesis and characterization of the new ferrocene-based metal-
loligand L with two triazole carboxamide pendant arms and its polymeric FeII complex
({Fe(L)(C(CN)3)2}n (1)).

2. Results and Discussion

2.1. Synthesis of Metalloligand L and FeII Complex

The ligand L was prepared with a two-step synthesis. In the first step 1,1′-ferrocenedica-
rboxylic acid was converted to the corresponding dichloride, which was used in the
following reaction with abpt to give the product. After purification through column
chromatography, the ligand was isolated as an orange solid. The identity and purity of L
was confirmed on the basis of elemental analysis and multinuclear (1H, 13C) NMR data.
Single crystals suitable for X-ray structure analysis were prepared with slow evaporation
of a chloroform-methanol solution.

The FeII complex (1) was prepared through the reaction of equimolar amounts of L,
FeCl2·4H2O, and potassium tricyanomethanide in a mixture of methanol-DCM under an
argon atmosphere. The identity of the complex was confirmed on the basis of elemental
analysis, FTIR, and 57Fe Mössbauer data. Unfortunately, as a result of the low solubility,
all experiments to prepare crystals suitable for X-ray structure analysis through recrys-
tallization from different solvent systems or using different temperature gradients, slow
diffusion, or hydrothermal synthesis were unsuccessful. Bidentate ferrocene-based ligands
containing flexible spacer, including amide group, are inclined to form oligomers or low
–dimensional polymers [17–21]. Based on this fact and the results of analyses, we suppose a
polymeric structure of the FeII complex 1.

2.2. Description of the Crystal Structure of the Ligand (L)

The ligand L crystallizes in the monoclinic space group P21/c with four molecules of
the ligand in the asymmetric unit (Z = 4). The molecular structure of L is shown in Figure 2
(additional structural data are available in the Supporting Information, Table S1).
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Figure 2. The molecular structure of the studied metalloligand L with atom-numbering of non-
hydrogen atoms.

The average values of the Fe–C and C–C bond lengths in the ferrocenyl unit of
L are 2.04 and 1.41 Å, respectively (Table 1). The average C–C–C bond angles in the
cyclopentadienyl (Cp) rings are 108.0◦. These values agree with those of ferrocene reported
elsewhere within the experimental error [22–24]. The Cp rings in the crystal structure of
the ligand L are slightly tilted by an angle of 2.7◦. The conformation of the disubstituted
ferrocenyl ligands can be defined by the torsion angle τ, defined as the torsion angle of
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CA-CpA-CpB-CB, where CA and CB are carbon atoms bonded to the substituents and CpA
and CpB are the centroids of the Cp rings [5]. The Cp rings in the crystal structure of
L adopt the antiperiplanar conformation (τ = 157.8◦). The dihedral angles between the
mean planes of the rings of cyclopentadienyl and triazole equal 88.0◦ (for cyclopentadienyl
and triazole defined by the atoms C14-C18, and N2–3, N5, C6–7, respectively), and 79.4◦

(for C19–23 and N8–10, C30–31). The pyridine and triazole rings of the abpt arms of L
deviate significantly from planarity. The dihedral angles between the mean planes of the
triazole and pyridine rings are equal to 40.4 and 26.9◦ for the first and 49.3 and 38.3◦ for the
second arm.

Table 1. Selected bond lengths (Å) and angles (◦) in L.

Fe1-C14 2.026(7) Fe1-C19 2.029(7)
Fe1-C15 2.025(6) Fe1-C20 2.038(7)
Fe1-C16 2.051(7) Fe1-C21 2.046(7)
Fe1-C17 2.034(7) Fe1-C22 2.023(7)
Fe1-C18 2.042(8) Fe1-C23 2.019(6)

C19-C20-C21 109.1(7) C14-C15-C16 108.4(7)
C20-C21-C22 108.3(7) C15-C16-C17 106.8(7)
C21-C22-C23 107.0(7) C16-C17-C18 110.4(7)
C22-C23-C19 108.8(6) C17-C18-C14 106.4(7)
C23-C19-C20 106.3(7) C18-C14-C15 107.9(8)

The crystal structure of L is stabilized by O–H···N and N–H···O hydrogen bonds
(Figure 3a). The N–H···O hydrogen bonds, between the carboxamide groups of neighboring
molecules (N6–H6···O6), self-assemble the molecules into chains parallel to the a axis.
The chains are interconnected through molecules of water (O7) by hydrogen bonds (O7–
H7A···N2 and N7–H7···O7), which link neighboring chains into a two-dimensional network
parallel with the plane ac (Figure S5a). An additional C–H···π interaction connects the
layers into a three-dimensional network (Figure 3b, ESI Figure S5b).

2.3. UV-VIS Absorption Spectroscopic Studies

The absorption spectrum of L obtained in dichloromethane (Figure S6; c = 2.1 mmol/L)
shows bands at 346 nm (444 L·mol−1·cm−1) and 448 nm (241 L·mol−1·cm−1), which
correspond to the π-π* transitions from the ferrocenyl to the pyridyl-triazole moiety and to
d-d transitions, probably mixed with d-π* transitions, respectively. Due to high intensity,
further absorption bands in the UV region were studied at a lower concentration (Figure S6;
c = 43.2 µmol/L). These bands at 228, 256, and 292 nm with molar absorption coefficients
26,530, 31,729, and 35,417 L·mol−1·cm−1, respectively, correspond to the π-π* transitions
from the ferrocenyl to the pyridyl-triazole moiety [25,26].

2.4. Electrochemical Properties

The electrochemical properties of L were studied with cyclic voltammetry in CH3CN (1
× 10−3 M) containing tetrabutylammonium perchlorate as the supporting electrolyte. The
cyclic voltammogram of L shows irreversible redox behavior providing one oxidation peak
at E1/2 = 1.133 V vs. SHE (∆Ep = 90 mV; Figure 4). The large anodic to cathodic peak current
ratio (ia/ic = 3.62) is attributed to substrate deposition at the working electrode [27]. The
observed value of E1/2 is shifted to more positive potentials in comparison with ferrocene
(E1/2 = 0.619 V vs. SHE), owing to the substitution of the cyclopentadienyl rings with
electron withdrawing carboxamide groups. A similar phenomenon was observed for
several ferrocene derivatives containing a carboxamide group [28].
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dashed lines). Hydrogen atoms not involved in hydrogen bonding have been omitted for the sake
of clarity. (b) Capped stick representation of L, showing a three-dimensional network formed by
hydrogen bonds (red dashed lines) and C–H···π interaction (green dashed lines).

2.5. Magnetic Properties

The magnetic properties of 1 were measured in the temperature range of 2 to 300 K
and are displayed as the effective magnetic moment (µeff) in Figure 5. The µeff is practically
constant in the whole temperature range adopting the value of 2.1 µB.
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Figure 5. The temperature dependence of the effective magnetic moment (calculated from the
magnetization measured at B = 0.2 T) of 1 (left). Blue and magenta lines show typical values for
LS and HS FeII species. The linear regression to the reciprocal molar susceptibility according to
Equation (1) (right).

The theoretical value of FeII in the high-spin (HS) state should span the interval
between 4.90 µB (g = 2.00) and 5.39 µeff (g = 2.20), while the low-spin (LS) state of FeII is
diamagnetic (µB is Bohr magneton). Thus, the experimental magnetic data clearly say that
FeII coordinated to L and tcm anions in 1 is present both in the LS and HS spin states and
evidently spin crossover is not induced by a temperature change. The average value of µeff
of 1 was used to estimate the ratio of LS and HS according to Equation (1) based on the
Curie–Weiss law:

χmol = xHSχHS + (1− xHS)χLS = xHS
NAµ0µ2

B
3k

SHS(SHS + 1)
g2

HS
T −Θ

(1)

where NA is the Avogadro constant, µ0 is the permeability of vacuum, k is the Boltzmann
constant, xHS is the molar ratio of the HS species, and χHS and χLS are the molar suscep-
tibilities of the HS and LS states, respectively. Linear regression of 1/χmol provided the
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value of the Weiss constant Θ = −5.0 K and the product value of xHS·g2
HS = 0.743 (Figure 5).

Therefore, xHS should cover the interval between 19% and 15% as calculated with g = 2.00
and g = 2.20, respectively.

2.6. 57Fe Mössbauer Spectroscopy

The Mössbauer spectroscopy of 57Fe was applied to compound 1. First, the low
temperature spectrum of 1 was acquired at 5 K, and it consists of three doublets (Figure 6a).
The first doublet was fitted with the isomer shift δ = 0.53 mm·s−1 and the quadrupole
splitting ∆EQ = 2.28 mm·s−1. These isomer shift and quadrupole splitting values are
similar with the values for ferrocene and its amide derivatives [29,30]; therefore, this signal
was assigned to iron ions coordinated to cyclopentadienyl moieties labelled as {Fe(Cp)}
in Table 2. The second doublet was fitted with the isomer shift δ = 0.41 mm·s−1 and the
quadrupole splitting, ∆EQ = 0.48 mm·s−1. The isomer shift value and the quadrupole
splitting are similar with the values for octahedral low-spin FeII complexes [31] and was
assigned to iron ions coordinated to abpt moieties labelled as {Fe(abpt)}LS in Table 2. The
third doublet was fitted with the isomer shift δ = 1.18 mm·s−1 and the quadrupole splitting
∆EQ = 3.15 mm·s−1. Such values of the parameters are similar with the values for octahedral
high-spin FeII complexes, and thus can be assigned to {Fe(abpt)}HS. The integrated areas of
the doublets were found to be in the ratio 37:13:50 for {Fe(abpt)}LS:{Fe(abpt)}HS:{Fe(Cp)}.
This ratio corresponds to the analysis of magnetic data. Next, the room temperature (298 K)
spectrum was measured, and again it consists of three doublets (Figure 6b). Analogous
analysis resulted in parameters listed in Table 2. There is a small decrease of the isomer
shift and the quadrupole splitting values upon increasing the temperature, which is due
to the second-order Doppler effect and due to the temperature-dependent Boltzmann
population of the iron(II) d-orbitals split by low-symmetry ligand field, respectively [32].
The integrated areas of the reported doublets were found to be in the ratio 50:13:37 for
{Fe(abpt)}LS:{Fe(abpt)}HS:{Fe(Cp)}. Evidently, the ratio of the three signals changed with
the temperature, which would usually indicate spin crossover. However, as the magnetic
measurements excluded this phenomenon, the change in the intensities can be assigned to
different temperature dependence of Lamb–Mössbauer factors of these species. Moreover,
the analyzed parameters of δ and ∆EQ are consistent with the parameters found in other
FeII complexes [33,34] with the abpt ligand as showed in Table 2, thus confirming the
correct assignment in the case of compound 1.
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Table 2. Experimentally determined 57Fe Mössbauer parameters for 1 and other FeII complexes with
abpt ligand a.

{Fe(abpt)}LS {Fe(abpt)}HS {Fe(Cp)}

Experimental data b δ ∆EQ δ ∆EQ δ ∆EQ

1 (5 K) 0.41(1) 0.48(1) 1.18(1) 3.15(2) 0.53(1) 2.28(1)
1 (298 K) 0.33(1) 0.44(1) 1.08(4) 2.83(1) 0.43(1) 2.27(1)

[Fe(DAPP)(abpt)](ClO4)2
(80 K) [33] 0.570(1) 0.419(1)

[Fe(DAPP)(abpt)](ClO4)2 (211 K) [33] 1.022(1) 1.385(2)
[Fe(abpt)2(µ-Fe(CN)5(NO))]n (25 K) [34] 0.517 0.478 1.065 3.736

DFT calculated data δ ∆EQ δ ∆EQ δ ∆EQ

1’(LS) 0.54 0.63 0.60
0.60

2.24
2.25

1’(HS) 1.14 3.28 0.60
0.60

2.24
2.25

[Fe(DAPP)(abpt)]2+ (LS) 0.61 0.25
[Fe(DAPP)(abpt)]2+ (HS) 1.06 3.41

a LS and HS labels correspond to low-spin and high-spin FeII ions coordinated by abpt moieties {Fe(abpt)}, and
{Fe(Cp)} and correspond to low-spin FeII in the ferrocene-subunit of metalloligand L; DAPP = bis(3-aminopropyl)(2-
pyridylmethyl)amine. b values of the isomer shifts and quadrupole splitting are in mm·s−1.

2.7. Theoretical Calculations

First, the molecular and electronic structure of the metalloligand L was theoretically
studied at the DFT/TD-DFT level of theory using ORCA 5.0 software. The molecular
structure of the metalloligand L was optimized with TPSS functional upon application of
the SMD solvation model for dichloromethane (Figure 7, Table S2). Next, the optimized ge-
ometry underwent TD-DFT calculations with TPSSh functional comprising three hundred
excited states. The resulting absorption spectrum is shown in Figure 8. In order to analyze
the calculated spectrum, Multiwfn software was utilized [35]. Herein, the intensities cal-
culated from the TD-DFT oscillator strengths were transformed into the molar absorption
coefficients as implemented in Multiwfn. The compound L was divided into five fragments
as graphically depicted in Figure 7. The iron atom is labelled as M, two carboxamide-
functionalized cyclopentadienes are labelled as L2 and L3, and dipyridyl-triazole units are
labelled as L4 and L5. This enabled us to calculate interfragment charge transfer during
electron excitation (IFCT) [36] and analyze the individual contribution of the metal-centered
states (MC), intra-ligand states (IL), metal-to-ligand charge transfer states (MLCT), ligand
to-metal charge transfer states (LMCT), and ligand-to-ligand charge transfer states (LLCT)
as showed in Figure 8. Evidently, the strongest absorption band located at ~33,000 cm−1

is based on the dominant contributions of the intra-ligand excitation of the L4 and L5
fragments with a minor contribution of MLCT (Figure 8a). Much weaker absorption in the
visible part of the spectrum (~21,800 cm−1) is mainly caused by the combinations of the MC
and MLCT contributions (Figure 8b), where L2 and L3 fragments based on cyclopentadiene
and also L4 and L5 fragments based on abpt are involved within the MLCT contributions.
To conclude, the main features of the UV/VIS spectrum of L reproduced with TD-DFT and
IFCT analyses helped us to understand the origin of these electron excitations.
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Figure 8. The TD-DFT calculated absorption spectrum of L in the UV (a) and visible part (b) with the
individual fragment contributions as deduced from IFCT analysis. The metal-centered states (MC),
intra-ligand states (IL), metal-to-ligand charge transfer states (MLCT), ligand to-metal charge transfer
states (LMCT), and ligand-to-ligand charge transfer states (LLCT) are numbered according to the
molecular fragments showed in Figure 7. The spectrum was calculated by setting value of 2500 cm−1

for full width at half maximum (FWHM).

Next, we also analyzed the properties of 1, and with the aim to support the observation
from 57Fe Mössbauer spectroscopy, a part of the presumed polymeric structure of 1 labelled
as 1′ was optimized both for the LS and HS states using TPSS functional together with
SMD solvation model for water (Figure 9, Tables S3 and S4). Such functional was utilized
for the geometry optimization in the computation study by Krewald et al. focused on the
57Fe Mössbauer spectroscopy [37].
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Figure 9. The DFT optimized molecular structure of 1′ in the low-spin state used for the calculation
of 57Fe Mössbauer parameters. The atoms are colored as following: iron (orange), nitrogen (blue),
oxygen (red), and carbon (dark gray). Hydrogen atoms were omitted for clarity.

Afterwards, TPSSh functional and ORCA 4.2.1 were used to calculate the quadrupole
splitting (∆EQ

TPSSh) and the electron density at the iron nucleus (ρ0
TPSSh)—Table S8. The

methodology reported in [37] was then utilized to calculate final values of the isomer shift
(δ) and the quadrupole splitting(∆EQ) for all studied complexes. Herein, we employed the
reported calibration equations for TPSSh functional:

δ = 6225.57816− 0.52665 · ρTPSSh
0 (2)

∆EQ = −0.12779 + 1.03297 · ∆EQ
TPSSh (3)

The results are summarized in Table 2. Here, the iron ions undergoing the change of
the spin state are labelled as {Fe(abpt)}, and the iron ions coordinated to cyclopentadienyl
moieties are labelled as {Fe(Cp)}. The isomers shift values are in very good agreement with
those measured at 5 K (Table 2) as can be seen for DFT-calculated values 0.54 mm·s−1 and
1.14 mm·s−1 for LS and HS {Fe(abpt)} compared to the experimental data 0.41 mm·s−1

and 1.18 mm·s−1. Furthermore, the quadrupole splitting parameters are also consistent:
0.63 mm·s−1 and 3.28 mm·s−1 for LS and HS {Fe(abpt)} agrees well with the experimental
data 0.48 mm·s−1 and 3.15 mm·s−1. Also, the values of δ and ∆EQ for the {Fe(Cp)} fragments
are consistent with the experimental data. Therefore, it seems that the DFT-optimized
molecular structures of 1′ is appropriate. The same procedure was applied also to the above
mentioned [Fe(DAPP)(abpt)]2+ complex (Tables S5 and S6) (DAPP = [bis(3-aminopropyl)(2-
pyridylmethyl)amine), and in this case there is good agreement found for the isomer
shifts, whereas larger discrepancies are observed for the quadrupole splitting, which
can be most likely assigned to higher temperatures at which the experimental data were
acquired—Table 2. Nevertheless, the calculated data are similar to 1′.

3. Materials and Methods
3.1. Materials and Syntheses

Some of the manipulations were performed under a dry nitrogen or argon atmo-
sphere. All chemicals and solvents were purchased from commercial sources (Across
Organics, Sigma-Aldrich, and Lachema) and used as received. Chloroform (CHCl3) and
dichloromethane (DCM) were dried using standard protocols and stored over molecu-
lar sieves under an argon atmosphere [38]. The ligand bis(N-4-[3,5-di-(2-pyridyl)-1,2,4-
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triazoyl])ferrocene carboxamide (L) was synthesized according to modified literature pro-
cedures [39,40].

3.1.1. Synthesis of the Ligand (L)

In a round three-neck flask 1,1′-ferrocenedicarboxylic acid (548.7 mg, 2.00 mmol)
and pyridine (161 µL, 1.99 mmol) were dissolved in dry CHCl3 (10 mL) under a nitrogen
atmosphere at room temperature. To the well stirred mixture, oxalyl chloride (560 µL,
6.62 mmol, 3.3 eq) was added dropwise. The reaction mixture was heated to 60 ◦C under
a reflux condenser for 2 h, and then all volatile solvents were evaporated under vacuum
to give a dark red solid of 1,1′-ferrocenyl dichloride. In the next step, 1,1′-ferrocenyl
dichloride was used without further purification. It was dissolved in dry DCM (10 mL)
under a nitrogen atmosphere, and a solution of 4-amino-3,5-di(pyridyl)-4H-1,2,4-triazole
(973.6 mg; 4.09 mmol, 2 eq) and pyridine (330 µL, 4.08 mmol) in dry DCM (10 mL) was
added. The reaction mixture was stirred over a period of 48 h at room temperature. The
obtained dark orange suspension was washed with 0.01 M HCl (4 × 10 mL). The organic
phase was dried over anhydrous sodium sulfate, filtered, and evaporated in vacuum. The
crude product was purified with column chromatography using silica gel and a mixture
of CHCl3, MeOH and ammonia (w = 25%) in a volume ratio of 15:4:0.5 as a mobile phase.
Fractions containing the product (Rf = 0.75) were collected. The volatiles were evaporated
under reduced pressure. The product was obtained as an orange solid and dried in vacuo
overnight. Yield 52% based on 1,1′-ferrocenedicarboxylic acid.

Anal. Calcd. (%) for C37H27Cl3Fe1N12O2 (Mr = 833.89): C, 53.29; H, 3.26; N, 20.16.
Found: C, 53.06; H, 3.64; N, 20.49. 1H NMR (CDCl3, δ) 4.54 (s, 4H, H2), 5.03 (s, 4H, H1), 7.20
(t, 4H, H9, 3JHH = 5.87 Hz), 7.82 (t, 4H, H8, 3JHH = 7.43 Hz), 8.35 (d, 4H, H7, 2JHH = 7.83 Hz),
8.42 (d, 4H, H10, 2JHH = 3.91 Hz), 11.66 (s, 2 H, NH). 13C NMR (CDCl3, δ) 70.39 (CH Cp,
C1), 72.36 (CH Cp, C2), 73.12 (C Cp, C3), 124.37 (CH pyridyl, C7), 124.80 (CH pyridyl,
C9), 137.24 (CH pyridyl, C8), 146.43 (CH pyridyl, C6), 148.21 (CH pyridyl, C10), 151.82 (C
triazole, C5), 170.46 (CO, C4). MS (+) m/z: 715.15 [L1+H]+ (Irel = 4 %); 737.18 [L1+Na]+

(Irel = 100 %). FT-IR (ATR, cm−1): 3241 br, 1676 vs, 1586 m, 1511 s, 1448 s, 1431 sh, 1375 m,
1310 m, 1278 s, 1138 m, 992 m 791 s, 740 m, 705 m, 693 sh, 604 m, 499 m.

3.1.2. Synthesis of the Complex {Fe(L)(C(CN)3)2}n (1)

Iron(II) chloride tetrahydrate (38.4 mg, 0.19 mmol) was dissolved in 10 mL of a
methanol–water mixture (1:1 volume ratio) under an argon atmosphere at room tempera-
ture, and then a solution of L (158.4 mg; 0.19 mmol) in 50 mL of methanol-DCM (10:1) was
added in small portions. The obtained orange solution was stirred for 1 h at room tempera-
ture. Then solid potassium tricyanomethanide (50.3 mg; 0.39 mmol) was added, and the
reaction mixture was stirred overnight. The product was isolated with centrifugation and
washed three times with water. The resulting red powder was dried in a desiccator over
NaOH overnight. Yield was 83% based on the ligand L.

Anal. Calcd. (%) for C44H26Fe2N18O2 (Mr = 950.49): C, 42.16; H, 4.11; N, 6.64. Found:
C, 42.08; H, 3.96; N,6.76. FT-IR (ATR, cm−1): 3407 sh, 3104 br, 2159 vs, 1689 s, 1622 m, 1588
m, 1553 m, 1448 vs, 1432 sh, 1374 m, 1273 s, 994 w, 790 s, 742 m, 698 m, 643 m, 615 m, 562 m,
496 m.

3.2. Analytical Methods

Elemental analysis (C, H, N) was performed on a Flash 2000 CHNO-S Analyzer
(Thermo Scientific, Waltham, MA, USA). Infrared spectra (IR) were recorded on a Jasco
FT/IR-4700 spectrometer (Jasco, Easton, MD, USA) using the ATR technique on a diamond
plate in the range 400–4000 cm−1. Electronic spectra were recorded on a Cintra 3030 (GBC
Scientific Instruments, IL, USA) spectrometer with 10 mm path length quartz cuvettes in
dichloromethane. The mass spectra (MS) were collected on a LCQ Fleet Ion Mass Trap mass
spectrometer (Thermo Scientific, Waltham, MA, USA) equipped with an electrospray ion
source and a three-dimensional ion-trap detector in the positive mode. Cyclic voltammetry
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(CV) measurements were carried out using an electrochemical analyzer CHI600C (CH
Instrument, Austin, TX, USA) with a three-electrode-type cell. A glassy carbon working
electrode, a platinum wire auxiliary electrode, and a Ag/Ag+ reference electrode (0.01 M
AgNO3 in 0.1 M TBAP, CH3CN) were used during the measurements. The internal Fc/Fc+

standard (E1/2 = 0.077 V vs. reference electrode, E1/2 = 0.624 V vs. SHE) was employed
in order to obtain the final potential values referred to SHE [41]. The measurements
were performed under an inert argon atmosphere in an acetonitrile solution containing
tetrabutylammonium perchlorate (TBAP), as a supporting electrolyte. The 1H and 13C
NMR spectra were recorded at 298 K on a Varian 400 MHz NMR spectrometer (Varian, Palo
Alto, CA, USA) operating at 399.95 MHz (1H) and 100.60 MHz (13C). The signal assignments
in 1H and 13C NMR spectra were based in part on two-dimensional COSY, HMBC and
HMQC experiments. The multiplicity of the signals was indicated as follows: s—singlet,
d—doublet, and t—triplet. The transmission 57Fe Mössbauer spectrum of complex 1
was measured with laboratory Mössbauer spectrometer with a 57Co(Rh) radiation source.
The Mössbauer spectrum was fitted with the Lorentzian line shapes using MossWinn 4.0
program. The isomer shift values were referred to the 28 µm α-Fe foil (Ritverc). For the low-
temperature Mössbauer measurement (5–300 K), the sample was placed inside the closed-
cycle cryogen-free cryogenic system for Mössbauer spectroscopy (Cryostation, Montana
Instruments). The magnetometry was performed using a low temperature vibrating sample
magnetometer (Cryogenic Limited) in the temperature range 2–300 K in the magnetic field
of 0.2 T. The experimental data were corrected for the diamagnetism of the sample and for
the diamagnetism of the sample holder.

3.3. X-ray Crystallography

Single crystals of L for X-ray structure analysis were prepared with slow evaporation
of a chloroform-methanol solution. Data collection for L was done using an XtaLAB
Synergy-I diffractometer with a HyPix3000 hybrid pixel array detector and microfocused
PhotonJet-I X-ray source (Cu Kα). The structure was solved using SHELXT [42] program
and refined through the full matrix least-squares procedure with Olex2.refine [43] in
OLEX2 (version 1.5) [44]. The multi-scan absorption corrections were applied using the
program CrysAlisPro 1.171.40.82a [45]. Figures with detailed structure features were drawn
using Diamond software [46]. Non-routine aspects of crystal structure determination and
refinement are as follows: The isolated single-crystals were of a poor quality, and this
affected the data collection. We collected complete a data set for diffractions only up
to resolution 0.88 Å. One of the abpt moieties L exhibited positional disorder that was
modeled as disorder over two positions (ratio of occupational factors: 0.55:0.45).

The crystallographic data and refinement data for L are as follows: C36H28FeN12O3,
Mr = 732.55, T = 298(2) K, light orange color, 0.23 × 0.13 × 0.10 mm3, monoclinic, space
group P21/c, a = 7.8354(3), b = 19.2990(7), c = 22.5050(12)Å, α = 90◦, β = 90.709(5)◦, γ = 90◦,
V = 3402.8(3) Å3, Z = 4, Dcalc = 1.430 g·cm−3, F000 = 1512, 15,556 reflections collected,
5992 unique (Rint = 0.0435), GoF = 1.169, R1 = 0.0892, wR2 = 0.1722, R indices calculated
with I > 2s(I). CSD deposition number: 2177052. Selected bond lengths and angles are
shown in Table 1.

3.4. Theoretical Calculations

The ORCA 4.2 or ORCA 5.0 software was used for all quantum chemical calcula-
tions [47,48]. The molecular geometries were optimized with ORCA 5.0 using the polarized
triple-ζ quality basis set def2-TZVP for all atoms, except carbon and hydrogen atoms for
which the def2-SVP basis set was applied [49]. The calculations utilized the Split-RI-J
Coulomb approximation [50] with the auxiliary basis sets def2/J [51]. Increased integration
grids (DEFGRID3) and tight SCF convergence criteria were used in all calculations. The
meta-GGA functional TPSS was employed together with the atom-pairwise dispersion
correction (D3BJ) [52,53]. The geometry optimization was not done in vacuum but us-
ing a SMD solvation model [54]. Moreover, the tight optimization criteria were required
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(TightOpt), and all convergence criteria must have been fulfilled (EnforceStrictConvergence
was set to True). The vibrational analyses confirmed proper convergence for complexes at
local energy minimum (no imaginary frequencies)—Table S7. The subsequent calculations
utilized hybrid meta-GGA functional TPSSh [55,56] together with the chain-of-spheres
(RIJCOSX) approximation to exact exchange [57,58] as implemented in ORCA.

4. Conclusions

In conclusion, we have designed, synthesized, and characterized with different spectral
analyses a new ferrocene-based metalloligand with two triazole carboxamide pendant
arms L and presumable polymeric FeII complex 1. The structure of L was characterized
through single crystal X-ray structure analysis. Magnetic data and 57Fe Mössbauer spectra
of 1 confirmed the presence of the mixture of low- and high-spin species. For better
understanding of the electronic spectra of L, as well as magnetic properties and Mössbauer
spectra of complex 1, theoretical calculations were performed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10110199/s1, Figure S1: 1H-1H g-COSY NMR spec-
trum of L; Figure S2: 1H-13C g-HMQC NMR spectrum of L; Figure S3: 1H-13C g-HMBC NMR spec-
trum of L; Figure S4: Comparison of FTIR spectra of studied ligand (L) and complex (1); Figure S5:
(a) Representation of the two-dimensional hydrogen-bonding network in the crystal structure of L.
The network of interconnected neighboring molecules of L is parallel with the plane ac. (b) Rep-
resentation of the final three-dimensional network created through interconnection of layers with
C–H···π interactions. The layers are colored for clarity (orange and green); Figure S6: The UV-Vis
absorption spectrum of ligand L in DCM solution with molar concentrations c = 2.1 mmol/dm3 (top)
and c = 43.2 µmol/dm3 (bottom); Table S1: Crystal data and structure refinements for L; Table S2:
The XYZ coordinates of the molecular structure of L optimized with DFT; Table S3: The XYZ coordi-
nates of the molecular structure of 1′ in the low-spin state optimized with DFT; Table S4: The XYZ
coordinates of the molecular structure of 1′ in the high-spin state optimized with DFT; Table S5: The
XYZ coordinates of the molecular structure of [Fe(DAPP)(abpt)]2+ in the low-spin state optimized
with DFT; Table S6: The XYZ coordinates of the molecular structure of [Fe(DAPP)(abpt)]2+ in the
high-spin state optimized with DFT; Table S7: The list of calculated frequencies for DFT optimized
molecular structures in Tables S2–S7; Table S8: The list of TPSSh calculated values of the electron
density at the iron nucleus and the quadrupole splitting for DFT optimized molecular structures in
Tables S3–S7.
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