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Abstract: This article proposes a definition for the term “pnictogen bond” and lists its donors, ac-

ceptors, and characteristic features. These may be invoked to identify this specific subset of the inter- 

and intramolecular interactions formed by elements of Group 15 which possess an electrophilic site 

in a molecular entity. 
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1. Preface 

This paper proposes a definition of the term “pnictogen bond”, followed by a list of 

electron density donors and acceptors of pnictogen bonds and their accompanying exper-

imental and theoretical features. It proposes that the definition be used to designate a sub-

set of the family of inter- and intramolecular interactions formed by the members of the 

pnictogen family [1], the elements of Group 15 of the periodic table, in molecular entities. 

This proposal follows from the IUPAC recommendations for hydrogen bonds (HBs) [2], 

halogen bonds (XBs) [3], and chalcogen bonds (ChBs) [4]. 

Nitrogen, the lightest member of the pnictogen family, Group 15, has the highest 

electronegativity and lowest polarizability [5]. It often serves as a nucleophile when pre-

sent in molecules, such as in N2, NH3, and ammine derivatives, for example [6–10]. The 

heavier members of the family exhibit similar behavior when they are a constituent of 

many chemical systems. This presumably applies to Moscovium as well, although little is 

known about its chemistry. As electron density donors, they are capable of acting as ac-

ceptors of, inter alia, hydrogen bonds, halogen bonds, chalcogen bonds, and any other 

non-covalent interaction. In such cases, the pnictogen atom behaves as a nucleophilic moi-

ety that attractively engages (via coulombic interaction) with its interacting electrophilic 

partner(s). 

The pnictogen atoms in molecular entities also have the ability to act as electron-poor 

(electrophilic) sites [6,7,11–14]. This occurs when they are bonded to electronegative 

and/or electron-withdrawing groups such as F, CN, NO2, and C6F5. In such instances, they 

are capable of attracting an electron-rich (nucleophilic) site in the same or in a separate 

molecular entity when in close proximity. 

The difference between the two situations described above depends on the electronic 

structure profile of the bound pnictogen atom in the molecular entity; it acts as a nucleo-

phile in the first case and as an electrophile in the second. In the latter case, the bound 

pnictogen atom may be directionally oriented toward the nucleophilic site, resulting in 

the development of a linear or quasi-linear non-covalent interaction [6,7,11–14]. If the en-

tire electrostatic surface of the bound pnictogen atom in a molecular entity is electrophilic, 

it may lead to the formation of non-linear (or bent) attractive interactions [6,7,11–14]. The 
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term “pnictogen bond” is used uniquely to designate the latter set of non-covalent inter-

actions, where the pnictogen atom acts as an electrophile. The presence of an electrophilic 

and a nucleophilic site on a pnictogen atom in molecular entities can be unequivocally 

identified by experimental and/or theoretical methods [6,7,11–14]. 

The IUPAC definition of hydrogen bonds was revised in 2011, adding various fea-

tures, characteristics, and footnotes [2]. The same format was adopted for halogen bonds 

[3] and chalcogen bonds [4]; the only change in the definition was a change in the family 

name. Thus, in the definition of “halogen bond,” “hydrogen” was replaced by “halogen”; 

the same was carried over to “chalcogen bond,” with “hydrogen” being replaced by “chal-

cogen”. The purpose of this was to unify the terminology of chemical bonding. The hy-

drogen, halogen, and chalcogen atoms in molecular entities that form hydrogen, halogen, 

and chalcogen bonds are electrophiles, i.e., they exhibit electrophilic properties while 

forming hydrogen, halogen, and chalcogen bonds in chemical systems, respectively. 

In the near future, an IUPAC working group may recommend definitions for the 

terms “tetrel bond (TtB)”, “pnictogen bond (PnB)”, and any other non-covalent interac-

tion. The first two terms have been increasingly used in the current literature to describe 

the attractive interactions formed when respective elements of Groups 14 and 15 act elec-

trophilically on nucleophiles in the solid, liquid, and gas phases. 

A brief definition of the term “pnictogen bond” is provided below, followed by illus-

trative examples in the form of a non-exhaustive list of common pnictogen bond donors 

and acceptors. This proposal was developed by reviewing the list of experimental and 

theoretical features already extensively documented in the literature. Although not com-

prehensive, we suggest that this definition and its accompanying features be used as po-

tential signatures when attempts are made to identify and characterize pnictogen bonds 

in chemical systems. 

2. Definition and Recommendations 

A pnictogen bond occurs in chemical systems when there is evidence of a net attractive inter-

action between an electrophilic region associated with a pnictogen atom in a molecular entity and 

a nucleophilic region in another, or the same molecular entity. 

Note 1: A pnictogen bond is usually represented by three dots in the geometric motif R–

Pn···A, where Pn is the PnB donor, representing any pnictogen atom (possibly hyperva-

lent) that has an electrophilic region on it; R is the remaining part of the molecular entity 

R–Pn containing the PnB donor; A is a PnB acceptor, which may or may not represent a 

molecular entity, but that has at least one nucleophilic region. 

Note 2: An electrophilic site on the PnB donor Pn generally refers to the lowest electron 

density region, while a nucleophilic site on the PnB acceptor A usually refers to the highest 

electron density region, and the resulting interactions formed between the two entities 

exhibit different directional features and complementarity. 

Note 3: At an equilibrium configuration, PnB donors Pn exhibit the ability to act as elec-

tron density acceptors, and PnB acceptors A exhibit the ability to act as electron density 

donors. 

Note 4: A pnictogen bond may occur within a neutral molecule [12,14] or between two 

neutral molecules in close proximity [12,13]; it can also occur between a neutral molecule 

with a PnB donor Pn and an anion containing A [15]; between a PnB donor in a molecular 

cation and a nucleophile (or negative -density) A on a neutral molecule [16]; between an 

electron-poor delocalized region (positive -density) as the PnB donor Pn and nucleophile 

A (or negative -density) on the acceptor entity; or between two molecular entities of op-

posite charge polarity (i.e., an ion pair)) with a PnB donor and a PnB acceptor [7,17,18]. 
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Note 5: Because of its hypervalent character, a pnictogen atom in a molecular entity may 

form one or more than one pnictogen bond concurrently [6,11–14]. 

Note 6: Because of its variable electrostatic character, a pnictogen atom in a molecular 

entity may engage in a number of interactions that lead to the appearance of a variety 

electronic and geometric features [6,7,11–14,19]. The term pnictogen bond should not be 

used for attractive interactions in which the pnictogen atom (frequently nitrogen and 

sometimes phosphorous) functions as a nucleophile. 

Note 7: The electrophilic and nucleophilic characteristics of a bound pnictogen atom and 

its PnB forming ability may be found by searching for the local minima and maxima of 

the potential on the electrostatic surface of the molecular entity [6,7,11–14,20–28]. The elec-

trophilic region on the surface of the bound pnictogen atom along the outermost extension 

of the R–Pn covalent or coordinate bond in an isolated monomeric entity is often (but not 

always) represented by a local maximum of the potential and may be used to search for 

pnictogen bonds between it and the nucleophilic regions on atoms in the entities with 

which it interacts [6,7,11–14,20–28]. 

Note 8: Two pnictogen atoms in two different molecular entities may be involved in an 

attractive engagement to form a pnictogen bond, in which case, one of the pnictogen at-

oms must act as a pnictogen bond donor, and that in the partner molecular entity must 

act as a PnB acceptor, such as in NO2HP···NH3 [29]. 

Note 9: The pnictogen bond should be viewed as an attractive interaction between PnB 

donor site Pn and PnB acceptor site A of opposite charge polarity (Pn+ and A–), resulting 

in a coulombic interaction between them; the charge polarity + and – symbolically refers 

to the local charge polarity on the interacting regions on Pn and A, respectively. 

Note 10: The pnictogen bond should follow the Type-II topology of non-covalent bonding 

interactions; a Type-II interaction, R–Pn···A, is often linear or quasi-linear (but may be 

non-linear) and satisfies Note 9. 

3. Some Common Pnictogen Bond Donors and Acceptors 

Some common PnB donors and acceptors are listed below. We emphasize that the 

list, which emerged from a search of the Cambridge Structural Database [30] and Inor-

ganic Crystal Structure Database [31,32], is illustrative rather than comprehensive. 

The PnB donor Pn can be: 

– A pnictogen in a trihalide: PnX3 (Pn = N, P, As, Sb, Bi; X = halide). 

– Nitrogen in a geminal-difluoramine (NF2) (as in N,N-difluoroamino-2,4-dinitroben-

zene [33] and in 1-(3-(5,5-bis(difluoroamido)-2-oxopyrrolidinyl)-2-oxopropyl)pyrrol-

idine-2,5-dione, C11H12F4N4O4 [34]). 

– The N of covalently bonded azides, such as –N = N = N (as in 2,4,6-triazidobora-

zine (H3B3N12) [35], 5-diazonio-4-(2H-tetrazol-5-yl)-1,2,3-triazol-1-ide (C3HN9) [36]), 

and 2,2,4,4,6,6-hexaazido-2,4,6-triphospha-1,3,5-triazine (P3N21) [37], or nitrogen in 

the diazonio fragment, such as in –N = N (as in 4-diazonio-3,5-dinitropyrazol-1-ide 

(C3N6O4) [38] and in diazonionaphthalen-1-olate (C10H6N2O) [39]. 

– The nitrogen in ammonium, diammonium, and (chain and arene) derivatives of 

ammonium (for example, NH4+, NH3NH32+, NH3NH2+, CH3NH3+, [CnH2n+1NH3]+ (n = 

2, 3, …, 18), and [NH3(CH2)mNH3]2+ (m = 2, 3, …, 8) [7]). 

– The pnictogen atom in many cations (NH3OH+[40]; C6F5ClP5+; AsMe3H+; derivatives 

of [Sb(C6H5)4]+ (as in [16,18,41–44]; [Sb(C6H5CH3)4]+ [42]; [Bi(C6H5OCH3)3(CH3)]+ [45]; 

BiMe4+; and [Bi(C6H5)4]+ [46–48] and its derivatives [49], etc.). 

– The nitrogen in a nitro group (e.g., O2NN(H)C(O)N3] [50] and C5H5N5O3) [51]. 
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– The phosphorous in phosphoryl halides (POF3, POCl3, and POBr3) [11]; phospho-

rus(V) triazides OP(N3)3 and SP(N3)3 [52]; diphosphorus tetraiodide P2I4, phosphorus 

tricyanide, P(CN)3, and 4,4′,4′’-phosphinetriyltripyridine [53]; and disphospha-func-

tionalised naphthalenes (such as Nap(PCl2)2 Nap(PBr2)2 and Nap(PI)2 (Nap = naph-

thalene-1,8-diyl) [54]) and phosphorus diisocyanate chloride P(CO)2 [55], etc. 

– Phosphorous in derivatives of halo-substituted phosphazenes (viz. cyclo-

tetrakis(difluorophosphazene) F8N4P4 [56], decafluorocyclo-pentaphosphazene 

F10N5P5 [57], hexachloro-cyclo-triphosphazene Cl6N3P3 [58], cyclo-tetrakis(phospho-

rus(V) nitride dichloride) Cl8N4P4 [59], nonachlorohexahydroheptaazahexaphospha-

phenalene Cl9N7P6, [60], tris(dibromophosphazene) Br6N3P3 [61], octabromocyclo-

tetraphosphazene Br8N4P4, [62], etc.). 

– Phosphorous in phosphorus oxides (phosphorus(V) oxide P2O5 [63], tetraphospho-

rus(III) oxide P4O6 [64], tetraphosphorus(III,IV) heptaoxide P4O7 [65], phosphorus(II) 

oxide P4O8 [66], tetraphosphorus(II,III) nonaoxide oxide P4O9 [67], tetraphospho-

rus(V) oxide P4O10 [68], phosphorus ozonide P4O18 [69], etc.). 

– Pnictogen in halide-, amino-, imidazole-, oxy-, and thio-substituted heavier 

pnictogen derivatives, in diaryl halido-substituted bismuthanes (e.g., C24H34BiI [70]), 

and in BiMe3Cl2, AsMe3, SbMe3, BiMe3, etc.). 

– The arsenic atom in methylenebis(dichloroarsane) [71], 5,10-epithio-5,10-dihy-

droarsanthrene [72], 8,8′-(phenylarsanediyl)diquinoline [73], 2-chloro-1,3-dimethyl-

1,3-diaza-2-arsolidine [74], 4-(1,3,2-dithiarsinan-2-yl)aniline [75], etc. 

– The antimony in bis(dimethylstibanyl)sulfane [76], bis(dimethylstibanyl)oxane [76], 

(trimethyl-stibino)-dimethyl-stibonium [77], trichloro-dipyridine-antimony [78], tri-

phenyl-bis(p-tolylacetato)-antimony [79], bis(3-methoxyphenylacetate)-triphenyl-

antimony [79], bis(acetato-O)-(2,6-bis(t-butoxymethyl)phenyl-C)-antimony(III) [80], 

bis(trichloro-antimony) [81], etc. 

– Arene-substituted pnictogen derivatives, including the bismuth in triphenyl-

bismuth Bi(C6H5)3 and pyridine dipyrrolide complexes, C43H37BiIN3, etc. 

– A positive π system (species featuring a double or triple bond (e.g., midpoint of the 

NN bond in N2; P in P2; Bi in Bi2; N in NO2) of neutral and cationic entities). 

The PnB acceptor entity A can be: 

– A lone pair on an atom in a molecule. There are almost limitless possibilities, for ex-

ample, the N in pyridines or amines, or even in N2; the O in H2O, CO, CO2, an ether, 

or a carbonyl group, or a phosphorus oxide; covalently bonded halogens in mole-

cules; As in AsMe3; a chalcogen in a heterocycle such as a thio-, seleno-, and telluro-

phene derivatives as well as fused polycyclic derivatives thereof; furoxans, 2,5-thia-

diazoles N-oxides, sulfoxide, aryl sulfoxides, and tellurazoles N-oxides; derivatives 

of macrocyclic crown-ethers such as 18-crown-6, 15-crown-5 and 21-crown-7, etc. 

– Many anions, such as halide anions; NO3−; CF3SO3−; BF4−; tetraphenylborate C24H20B−; 

ClO4−; 5-oxotetrazole CHN4O−; I3−; Br3−; N3−; BF4−; AuCl4−; PF6−; AsF6−; pentazolide N5−; 

5,5′-bistetrazolates C2N82−; p-tosylate C7H7SO3−; polyatomic oxyanions such as C2O42−; 

GaCl4−; ZnCl42−; ReO4−; AsCl4−, SbCl4−; BiCl4−; etc. 

– A (negative) π system (species featuring a double or triple bond) and arene moieties 

of any kind, such as the centroid of the arenes and the midpoints of molecular As2 

and N in NO3–, etc. 

4. Examples of Chemical Systems Featuring Pnictogen Bonding 

The attractive intermolecular interactions between the nucleophilic regions on the 

nitrogen atoms in N2, ammonia, alkyl cyanides, or amine derivatives and the electrophilic 

protons of other amine, halogen, and chalcogen derivatives are not pnictogen bonds; they 

are hydrogen bonds, halogen bonds, and chalcogen bonds, respectively (see Figure 1a–c, 

respectively, which show the N in methyl cyanide as the nucleophile). The attractive in-

termolecular interaction between Bi in a bismuth trihalide and N in amine derivatives is 
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a pnictogen bond. The attractive interaction between As, Sb, or Bi containing chemical 

systems (not all, but many) and O in water, carboxylic acids, aldehydes, nitrates, and ke-

tones, etc., is a pnictogen bond, not a chalcogen bond (for example, the As···O pnictogen 

bond between the PnB donor atom As and the acceptor atom O in 2-(dicyanoarsino)-1,3-

diisopropyl-4,5-dimethyl-1H-imidazol-3-ium [82]; the Sb···O pnictogen bond between the 

PnB donor atom Sb and the PnB acceptor atom O (acetato-O in a pair of two interacting 

building blocks in crystalline (R)-tris(trifluoroacetato-O)-antimony(III); the Sb···O pnicto-

gen bond between Sb and the O in crystalline 8-(diphenylphosphino)naphthalen-1-yl)-

triphenyl-antimony trifluoromethanesulfonate (CSD ref code: APOXIO) [41]; and the 

Sb···O pnictogen bond in 1,4-bis(2-nitrophenyl)-1,4-diarsa-2,3,5-trithiacyclopentane) (CSD 

ref code: ASADUT) [83]. The attractive intermolecular interaction between the Bi or Sb of 

bismuth or antimony trihalides and the O sites in crown ether derivatives is a pnictogen 

bond [84–88]. The attractive intramolecular interaction between antimony and chlorine in 

crystalline dichloro-triphenyl-antimony-trichloro-antimony (CSD ref: BUMGEV) [89] is 

not a halogen bond, it is a pnictogen bond. The attractive intramolecular interaction be-

tween arsenic and bromine in crystalline dibromo-trimethyl-arsenic is not a halogen bond, 

it is pnictogen bond [90]. Additionally, the attractive intramolecular interaction between 

arsenic and chlorine in crystalline 3,4,5,6-tetrachloro-1,2-diarsa-closo-hexaborane is a 

pnictogen bond, not a halogen bond [91]. The pnictogen-centered Pn···A intermolecular 

interactions between interacting units in selected crystalline solids shown in Figure 1d–i, 

viz. P···F (Figure 1d), P···O (Figure 1e,f), As···F (Figure 1g), Sb···S (Figure 1h), and Bi··· 

(Figure 1i), are pnictogen bonds and are not chalcogen bonds, halogen bonds, or tetrel 

bonds. 

 

Figure 1. Illustration of various types of non-covalent interactions between building blocks found 

in selected crystalline materials: (a) 1,12-diammonia-closo-dodecaborate acetonitrile solvate (CSD 

ref: HESCAM) [92]; (b) bis(μ4-h2-vinylidene)-bis(μ2-bis(diphenylphosphino)methane)-dodecacar-
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bonyl-hexa-ruthenium (CSD ref: AGOQOC) [93]; (c) tetrathiafulvalene 9-dicyanomethylene-2,7-di-

nitrofluorene (CSD ref: AHAWUD) [94]; (d) pentabromodiphosphonium tetrakis(perfluoro-t-

butoxy)-aluminium (HUHJID) [95]; (e) phosphorisocyanatidous dichloride (CSD ref: ITOLIO) [96]; 

(f) phosphorodi-isocyanatidous chloride (CSD ref: ALOYOS) [55]; (g) tetrabromoarsonium 

tetrakis(tris(trifluoromethyl)methoxy)-aluminium (CSD ref: XALVOW) [97]; (h) sesqui(N,N′-di-

ethyldithio-oxamide) trichloro-antimony (CSD ref: BODBOL) [98]; and (i) trichloro-bismuth toluene 

(CSD ref: WIKDIE) [99]. Selected intermolecular bond angles and bond lengths are given in Å and 

degrees, respectively. Dotted lines between PnB donor atom Pn and PnB acceptor atom A represent 

an attractive interaction; the same is true for other noncovalent interactions, such as the hydrogen 

bond in (a–c) and tetrel () bond in (e–f). 

Some further examples of chemical systems illustrating the variable nature of the ge-

ometric appearance of pnictogen bonding between the various PnB donor atoms Pn and 

various PnB acceptor atoms A in the interacting molecular entities are shown in Figure 2 

(Note 3). The PnB donor atoms Pn are either in neutral species (Figure 2a–d,j–k), or in 

cations (Figure 1e–i), or in -systems (Figure 2m–p); the PnB acceptor sites A are either 

lone pairs in neutral molecules (Figure 2a–e,m–p), in anions (Figure 2f–h,j), or -systems 

(Figure 2i,k,l). 
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Figure 2. Some selected solid-state systems featuring pnictogen bonding: (a) 9-phenyl-9H-bismolo 

[2,3-c:5,4-c’]dipyridine [100]; (b) 3′,3′’,3′’’-Phosphinetriyltripropionitrile [101]; (c) trifluoroamine 

[102]; (d) antimony triiodide molecular sulfur S8 [103]; (e) bis(tetrakis(4-methylphenyl)-antimony) 

hexabromo-iridium [104]; (f) tris(4-methylphenyl)-(2-(phenylsulfanyl)phenyl)-antimony tetra-

fluoroborate [42]; (g) diphenylphosphenium bromide [105]; (h) 4-(di-iodoarsino)anilinium 4-

methylbenzenesulfonate [106]; (i); (1,1′-(pyridine-2,6-diyl)bis[N-[2,6-di-isopropylphenyl]ethan-1-

imine])-antimony [107] (j) 5-oxo-4,5-dihydrotetrazol-1-ide azane oxide [40]; (k) (2,2′-[sul-
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fanediylbis(methylene)]di(phenyl))-iodo-bismuth(III) [108]; (l) 10-(4-fluorophenyl)-10H-phenoxar-

sinine [109]; (m) 2-diazonio-1-oxo-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-3-olate [110]; (n); 

molecular nitrogen [111]; (o) naphthalene-2-diazonium-3-carboxylate [112]; and (p) azido-nitra-

mino-carbonyl [50]. Selected bond lengths and bond angles are in Å and degrees, respectively. Cam-

bridge Structural Database [30] references are in uppercase letters, and Inorganic Crystal Structure 

Database [31,32] references are in numbers. Selected atoms acting as PnB donor and PnB acceptor 

in (a–p) are marked. Dotted lines between PnB donor atom Pn and PnB acceptor atom A represent 

an attractive interaction. 

The geometric arrangement between the interacting entities in Figure 2a–d shows 

how pnictogen bonds are formed between the electrophilic sites on Bi, P, N, and Sb and a 

lone pair on N (in C16H11BiN2), N (in (P(CH2)2CN)3), F (in NF3), and S (in S8), respectively. 

Shown in Figure 2e–I are the PnB donor atoms Sb, Sb, N, As, and Sb, which sustain attrac-

tive interactions with the PnB acceptor sites N (lone pair on N in neutral (CH3)2SO), F (lone 

pair on F in anionic BF4−), Br (lone pair in Br in Br−), and  (arene moiety in the anion 

[C6H4(CH3)(SO3)]−) and  (arene moiety in toluene), respectively. Similarly, the geometric 

arrangement between the interacting entities in Figure 2j–l represents PnB donor atoms 

N, Bi, and Si in neutral entities that sustain attractive interactions with the PnB acceptor 

sites N and π in interacting systems. In the systems in Figure 2m–p, the PnB donor site 

N() of an R-N2 or R-N3 entity are attractively engaged with the nucleophiles on the O or 

N sites of the PnB acceptors. 

5. A List of Characteristic Features 

Evidence of the presence of a pnictogen bond in molecular entities, crystals, and 

nano-scale materials may emerge from experimental measurements (e.g., X-ray diffrac-

tion, infrared, Raman and NMR spectroscopy, etc.), or signatures from ab initio studies, 

or a combination of both. The evidence could be very similar to that already recommended 

by the IUPAC for HBs, HBs, and CBs. The following list is not exhaustive but includes 

some distinguishing features that may be useful as indicators of the occurrence of pnicto-

gen bonding interactions in chemical systems. The more of these features that are met, the 

more reliable is the identification of the interaction as being a PnB interaction. 

On the formation of a typical pnictogen bond R–Pn···A between two interacting enti-

ties: 

a. The separation distance between the PnB donor atom Pn and the nucleophilic site of 

PnB acceptor A tends to be smaller than the sum of the van der Waals radii of the 

respective interacting atomic basins [6,7,11–14] and larger than the sum of their co-

valent bond radii [2–4]; the deviation of the former is likely since the known van der 

Waals radii of atoms are only accurate with 0.2 Å [13,113,114]; 

b. The PnB donor site on Pn tends to approach the PnB acceptor site A along the outer 

extension of a σ covalent or coordinate bond, and the angular deviation from the 

extension is often more pronounced in PnBs [6,7,11–14] than in halogen bonds, as in 

ChBs [4], with the latter possibly being due to the involvement of secondary interac-

tions; 

c. The angle of interaction, ∠R–Pn⋯A, tends to be linear or quasi-linear when the ap-

proach of the electrophile on Pn is along the σ covalent/coordinate bond extension, 

but this can be non-linear or have a bent shape when the pnictogen bond occurs be-

tween an electron density-deficient (electrophilic) -type orbital of the bonded pnic-

togen atom and the nucleophilic region on A [6,7,11–14] or when secondary interac-

tions are involved; 

d. When the nucleophilic region on the PnB acceptor site A is a lone pair orbital or an 

electron density-rich π region, the PnB donor Pn tends to approach A along the axis 

of the lone pair or orthogonally to the π bond plane [6,7,11–13,115]; 

e. The distance of the R–Pn covalent bond opposite to the PnB in a molecular adduct is 

typically longer than that in the isolated (unbound) PnB donor; 
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f. The infrared absorption and Raman scattering observables of both R–Pn and A are 

affected by PnB formation; the vibrational frequency of the R–Pn bond may be red-

shifted or blue-shifted depending on the extent of the interactions involved com-

pared to the frequency of the same bond in the isolated molecular entity; new vibra-

tional modes associated with the formation of the Pn···A intermolecular pnictogen 

bond should also be characteristically observed [116,117], as observed for ChBs; 

g. A bond path and a bond-critical point between Pn and A may be found when an 

electron density topology analysis based on the quantum theory of atoms in mole-

cules (QTAIM) [118] is carried out, together with the emergence of other charge den-

sity-based signatures [119–123]; 

h. Isosurface volumes (colored greenish, blue, or mixed blue–green between Pn and A, 

representative of attractive interactions [6,7,11–13,124]) may be seen if a non-covalent 

index analysis based on reduced charge density gradient [125–127] is performed; 

i. The UV–vis absorption bands of the PnB donor chromophore may experience a shift 

to longer wavelengths [128]; 

j. At least some transfer of charge density from the frontier PnB acceptor orbital to the 

frontier PnB donor orbital may occur [15,129,130]; when the transfer of electron 

charge density between them is significant, the formation of a dative coordinate in-

teraction is likely [131]; the occurrence of the IUPAC-recommended phenomena for 

HBs (see Criteria E1 and Characteristic C5 of Ref. [2]) is also applicable to XBs [132–

135] and ChBs [136–138]; 

k. The NMR chemical shifts of the nuclei in both R–Pn and A [4,128,139–143] are typi-

cally affected, as found for R–X···A XBs and R–Ch···A ChBs [144]; 

l. The PnB strength typically decreases with a given acceptor A, as the electronegativity 

of Pn increases in the order Bi < Sb < As < P < N, and the electron withdrawing ability 

of R decreases; 

m. The PnB bond strength increases for a specific PnB acceptor A and the remaining R, 

as the polarizability of the pnictogen atoms in the molecular entities increases (Bi > 

Sb > As > P > N) [15]. This is the same as what is observed for the halogen derivative 

forming XB (I > Br > Cl > F) [145,146] and the chalcogen derivatives forming ChB (Te 

> Se > S > O) [147]. However, if secondary interactions (e.g., a hydrogen bond, halogen 

bond, chalcogen bond, tetrel bond, etc.) are simultaneously involved with either the 

PnB donor or PnB acceptor, the order of interaction strength may also be altered; 

n. Coulombic interaction occurs between the PnB donor and the PnB acceptor entities 

at equilibrium, and the energetic contributions to the binding energy arising from 

electrostatic polarization (and/or induction), exchange repulsion, and long-range dis-

persion should not be neglected [15,148]. 

6. Concluding Remarks 

Pnictogen bonding is a non-covalent interaction with the potential to serve as an elec-

tronic glue in the assembly of molecular entities in the process of developing molecular 

complexes, crystalline solids, supramolecular structures, and functional nanomaterials. 

Its implications in crystal engineering [6,7,11–14,123,149–151], anion transport [152], ca-

talysis [20,153–155], and photovoltaics [7,156,157] are appreciable. A pnictogen bond falls 

under the umbrella of - and/or -hole-centered non-covalent interactions, provided that 

it is a result of an attractive engagement between an electrophilic PnB donor moiety Pn 

containing a - and/or a -hole interacting with a nucleophilic site on A [6,7,11–14,158–

162]; - and -holes are electron density-deficient electrophilic regions on the PnB donor 

moiety Pn along the outermost extension of the R–Pn covalent (or coordinate) bond and 

perpendicular to that bond, respectively. The list of PnB donors and PnB acceptors and 

the characteristic features of PnB is vast, and only a few are listed in this paper. Several 

illustrative examples are provided that can assist in recognizing chemical situations where 

pnictogen bonding in and between molecular entities is likely to occur. The definitions 
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and features proposed in this paper should be useful for researchers and graduate stu-

dents working in diverse research fields to identify and characterize pnictogen bonding 

in the novel chemical systems in which they are hosted. 
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