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Abstract: The significance of the optical biosensor is its ability to detect biomolecules in their natural
form. Among them, photonic crystal-based biosensors analyze the refractive index changes due to
molecular interaction, and that is correlated to the sample concentration instead of sample mass. In
this paper, we report the sensing performance of a one-dimensional photonic crystal-based sensor
for the detection of hemoglobin concentration using an asymmetric periodic structure with a single
defect. We have used the transfer matrix method to analyze the reflectance properties of the photonic
crystal. The resonant dip in the spectra and its shift with hemoglobin concentration is the basis of our
sensor design. The proposed sensor is efficient in sensing hemoglobin concentration, the sensitivity
and other sensor parameters were derived numerically, and the obtained parameters are comparable
to the many of the reported values of photonic crystal-based sensors. The dependence of the defect
layer thickness on the position of resonant dips and sensitivity is also demonstrated in our work. The
numerical results prove that these photonic crystal biosensors are simple, cost effective and highly
accurate for detecting the hemoglobin concentration.

Keywords: one-dimensional photonic crystals; defect modes; hemoglobin; biosensor

1. Introduction

The detection and sensing of various diseases and biological samples with high
efficiency has been a challenge for decades. Optical refractive index biosensors are a
class of biosensors that can possibly render sensors of improved efficiency [1]. These
are based on photonic crystals, Bragg reflectors, surface plasmon resonance and long
period fiber gratings. Very often, PCs have been found useful in the biomedical field as
sensing devices. Photonic crystals are a novel class of dielectric devices which have shown
beneficial developments in the recent decades [2]. They have been more advantageous than
many electronic devices owing to the speed of light in such media. The bandgap in PCs
prevents photons with energy there from moving through the material. For the purposes of
photonic information technology, this offers the chance to control and manipulate the flow
of light. Absorption or emission transitions are not the basis for PC characteristics. Instead,
they are totally controlled by the periodicity of the index of refraction, which is scalable
from submicron dimensions (to regulate UV/VUV light) to the centimeter scale (to control
microwaves). PCs do not need to be scaled down to the tens of nanometer range because
the wavelengths being regulated are often of the order of hundreds of nanometers or longer
(visible to infrared) [3]. Photonic crystal devices in the near IR regime have generally very
small dimensions around the order of 300–400 nm. Due to this reason, photonic crystals
offer the ability to control light effectively and at the same time are suitable for chip-level
integration. They can also incorporate wavelength-dependent functionalities over small
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operational volumes. These characteristics highlight the development of next-generation
optoelectronic systems using PhCs [4,5].

Photonic crystals have been of immense research interest on account of their charac-
teristic properties. The idea of photonic crystals and bandgap materials started from the
remarkable works of Yablonvitch and John [6]. The peculiar properties of these special
types of structures are photonic bandgaps and photon localization. These properties are
the result of periodic modulation of the dielectric functions, which significantly modifies
the spectra of electromagnetic waves passing through it [7]. PC structures can be used in
various configurations. Of these, one-dimensional PC structures are more appealing than
two and three-dimensional structures owing to their simple fabrication, low cost, and fewer
parameters for optimization. The periodic permitivity modulations in this structures result
in photonic bandgaps (PBGs) [8,9]. The existence of this photonic bandgap is responsible
for various properties exhibited by the photonic crystal. These properties paved the way
for various sensing applications including optical, physical and biomedical [10,11].

Hemoglobin is the prime component of blood. It plays a crucial role in various
physiological process due to its association with the transport of oxygen and carbon-
dioxide. Owing to this, it is significant to maintain proper hemoglobin concentrations in
the blood. The diagnosis of hemoglobin concentrations can be reliable in the identification
of such physiological processes [12,13]. There have been many conventional methods
for detecting hemoglobin levels in the blood; often, these methods have been inaccurate
with high costs. Consequently, there is immense research interest in developing simple,
cost-effective and highly accurate optical biosensors. The development of photonic crystal
sensors has been a new light toward the realization of these [14]. The optical properties
and sensor parameters of these photonic crystal-based sensors have been studied using
various computational techniques such as transfer matrix method, plane wave expansion,
finite element method and finite difference time domain method [15,16].

In this paper, we present a one-dimensional photonic crystal-based optical biosensor
for sensing and detection of the hemoglobin concentration. We used TiO2 and SiO2 as the
dielectric materials of the 1D periodic structure with an asymmetric periodicity around
the single defect layer. Fundamentally, the dependence of hemoglobin concentration on
its refractive index is considered [15,17]. Here, we have performed the studies using the
transfer matrix method and analyzed the reflection spectra for calculating variations in the
hemoglobin concentration.

2. Theoretical Analysis

The schematic diagram of our proposed design based on a one-dimensional defective
photonic crystal is depicted in Figure 1. In our design, the periodic structure consists of
two different dielectric materials labeled A and B of thickness (d1 and d2) and refractive
index (n1 and n2), respectively. There are a total of N periods for the periodic structure.
The layer D is the defect layer, which has dd thickness and nd refractive index. This defect
layer is sandwiched between the two periodic structures. There is a substrate layer (S) on
one end and other end is air; the surrounding media also determines the characteristics of
the structure.

A B DA B SA BA B

N N

Figure 1. Schematic diagram of one-dimensional defective photonic crystal of asymmetric geometry
(AB)N D (AB)NS.
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Theoretical analysis of the reflectance properties is derived using the transfer matrix
method [18]. The whole structure can be specified by a matrix equation [19]:

M(w) = F(Na)D(dd)L(Na) =
(

M11 M12
M21 M22

)
(1)

The total characteristic matrix M is the product of three matrices. The first one describes
the left periodic structure, and the last one represents the right periodic structure in between
a defect layer matrix, which is denoted by D. The w in M(w) is the lattice period of the
whole structure where w = a(N + N) and lattice constant a = d1 + d2 .

According to Abeles theory, the left periodic structure can be described by the ma-
trix [19],

F(a) =
(

f11 f12
f21 f22

)
(2)

the elements f11, f12, f21 and f22 are given by,

f11 = cosδ1cosδ2 −
p2

p1
sinδ1sinδ2 (3)

f12 =
−i
p1

sinδ1cosδ2 −
i

p2
cosδ1sinδ2 (4)

f21 = −ip1sinδ1cosδ2 − ip2cosδ1sinδ2 (5)

f22 = cosδ1cosδ2 −
p1

p2
sinδ1sinδ2 (6)

where
δ1 =

2πd1

λ
n1cosθ1, δ2 =

2πd2

λ
n2cosθ2 (7)

and,
p1 = n1cosθ1, p2 = n2cosθ2 (8)

For N period, the matrix is given by,

F(Na) =
(

F11 F12
F21 F22

)
(9)

the elements in F(Na) can be related to the single period matrix elements by,

F11 = f11UN−1(Ψ)−UN−2(Ψ) (10)

F12 = f12UN−1(Ψ) (11)

F21 = f21UN−1(Ψ) (12)

F22 = f22UN−1(Ψ)−UN−2(Ψ) (13)

where

Ψ =
1
2
( f11 + f22), UN(Ψ) =

(sin(N + 1)cos−1Ψ)√
1−Ψ2

(14)

Next, the matrix of the defect (D) is given by,

D(dd) =

(
cosδd sinδd

−i
pd

−ipdsinδd cosδd

)
(15)
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where

δd =
2πdd

λ
ndcosθd, pd = ndcosθd (16)

The matrix of the right periodic structure is similar to that of the left one, which
is obtained earlier in (Equation (9)). From these three matrices, we obtain the whole
characteristic matrix of the structure (Equation (1)), which enables us to calculate the
reflection coefficient (r),

r =
(M11 + M12 js)j0 − (M21 + M22 js)
(M11 + M12 js)j0 + (M21 + M22 js)

(17)

where

j0 =

√
ε0

µ0
n0cosθ0, js =

√
ε0

µ0
nscosθs (18)

Finally, the reflectance is given by,

R = r2 (19)

3. Results and Discussion

In this section, we had analyzed the numerical results of reflection properties of the
proposed sensor design given in Figure 1. We focused on the reflectance properties in the
visible light region for the normal incidence of TE mode [20]. The shift of resonant dip
in the photonic bandgap due to the presence of the defect layer is measured. Based on
the refractive index of the sample, there is a shift of resonant dip as well as change in its
intensity, which eventually corresponds to a particular hemoglobin concentration.

In our proposed sensor structure given in Figure 1, we chose TiO2 as layer A with a
thickness of d1 and the refractive index given [21] by the Sellmiers equation,

n 2
TiO2

= 1 +
4.6796λ2

λ2 − 0.00400086
(20)

The layer B is of SiO2, with a thickness d2 and refractive index n2 = 1.47. The choice of
material was based on the experimnetal results obtained by Jena et al. [22]. The dispersion
curves versus wavelength show that the lower band edge varies with the increase in
angle of incidence, and the structure offers a huge bandwidth. We have used a quarter
wavelength thickness for layers A and B (n1d1 = n2d2 = λ0

4 ), with a design wavelength
λ0 = 700 nm. This structure is composed of N periods, where N = 5, which is the number
of periodic dielectric structures on both sides of the defect. The defect layer thickness is
given by dd and refractive index nd; here, dd = k(d1 + d2), where k = 1, 2, 3. We have used
glass as a substrate with a refractive index of ns = 1.524. In a perfect photonic crystal
without defects, we observe a pure bandgap, and when the defect is introduced, it leads
to localization of the defect modes, and a certain dip is obtained in the reflectance spectra.
The defect sample we introduce is hemoglobin solution of different concentrations. The
refractive index of hemoglobin solution depends on its concentration, and the variation is
taken from a model function from ref [23].

Investigating the reflectance properties of the proposed design with samples of differ-
ent hemoglobin concentrations, we observed a red shift in resonant peak with increase in
concentration. For the defect layer as air, the resonant peak in Figure 2 was observed at
714.7 nm, and it shifts to 764.1 nm, 773 nm for hemoglobin solution of 46 g/L and 287 g/L
concentrations, respectively.
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Figure 2. Reflectance spectra of our design at normal incidence with defect layer as air.

In Figure 3, we can see the reflectance spectra of our proposed design with defect samples
of various hemoglobin concentrations. Analyzing the spectra in detail in Figure 4, we can
see the shift of resonant dip to a higher wavelength region with the increment in hemoglobin
concentration. Apart from the shift, the intensity of the dip almost remains unchanged.
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Figure 3. Reflectance spectra of hemoglobin sample-filled structure.
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Figure 4. Reflectance spectra of the sensor for different hemoglobin concentration.

For a change in refractive index of 0.341, there is a shift of 49.3 nm in the resonant
modes. This shift can be explained as the result of the central wavelength dependence
on the refractive index and thickness of the defect layer. Based on quarter wavelength
thickness, the change in refractive index produces the shift in the resonant dip position,
resulting from the Bragg scattering of incident waves [20]. This is the key idea used in this
model. From Table 1, we observed that the proposed design is very sensitive to variation
in refractive index. From Figure 5, it is observed that when we vary the thickness of defect
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layer, there is a linear change in the position of resonant dips for different hemoglobin
concentrations. This response is due to the strong dependence of the central wavelength
also on the thickness of the defect layer. This inference provides a key to improve the
sensitivity of the sensor by means of increasing the defect layer thickness.
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287 g/L

Figure 5. Effect of defect layer thickness on resonant dip position.

Table 1. Variation of resonant dip position, wavelength shift and spectral half width with various
hemoglobin concentrations.

Concentration n λres (nm) M λres (nm) M λ 1
2

(nm)

46 g/L 1.341 764.1 49.3 3.3
104 g/L 1.356 766.1 51.3 3.3
165 g/L 1.374 768.8 54.0 3.5
287 g/L 1.404 773.0 58.2 3.7

Sensitivity is a significant factor that determines the efficiency of a sensor, which can
be calculated from the following equation.

S =
M λres

M n
(21)

where M λres is the shift in resonant wavelength for a change in refractive index M n.
In this case, we calculate the change in wavelength of resonant peak taking air as the
reference. Table 2 shows the calculated sensitivity for various hemoglobin concentrations.
Our calculated value of sensitivity was 144.50 nm/RIU for 44 g/L, which is much higher
than the previously reported value of a one-dimensional photonic crystal-based sensor for
hemoglobin detection and sensing [24].

Table 2. Sensitivity, signal to noise ratio, detection limit, sensor resolution, and figure of merit of
proposed sensor at various hemoglobin concentrations.

c (g/L) S (nm/RIU) SNR δn SR FOM

46 144.50 14.939 0.00774 1.1184 43.787
104 144.10 15.545 0.00768 1.1078 43.66
165 144.38 15.428 0.00815 1.1773 41.251
287 144.05 15.729 0.00859 1.2383 38.934

Apart from sensitivity, we calculated some other performance parameters of our
refractive index sensor [25], as shown in Table 2.
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The detection limit (δn) is the smallest change in refractive index that can be detected
with our sensor; it is the ratio of sensor resolution to sensitivity(s) [26].

δn =
SR
S

(22)

where sensor resolution (SR) is the smallest spectral shift that can be measured, and it is
given by

SR =
M λ 1

2

1.5(SNR)
1
4

(23)

where M λ 1
2

is the spectral half width of the resonant dip, and the signal to noise ratio (SNR)
is given by,

SNR =
M λres

M λ 1
2

(24)

where M λres is the shift in wavelength of the resonant dip. The figure of merit (FOM) is
obtained by the taking the ratio of sensitivity to the spectral half width of resonant dip,

FOM =
S

M λ 1
2

(25)

From Figure 6, it is clear that sensitivity is increasing as we increase the defect layer
thickness; this develops a path for improving the sensitivity of the proposed sensor. This
linear increase for various defect thickness implies the novelty of our sensor structure to
detect hemoglobin concentration [25].
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Figure 6. Variation of sensitivity with the defect layer thickness for different hemoglobin concentrations.

4. Conclusions

In this paper, we theoretically explored the possibility of defective one-dimensional
photonic crystal as a refractive index sensor. We focused our study on the usage of this
structure to detect the hemoglobin concentration in the blood sample. Reflectance char-
acteristics were studied using the transfer matrix method, and we obtained a sensitivity
of 144.50 nm/RIU for 46 g/L hemoglobin concentration. The position of the resonant dip
shifts as the concentration changes, which signifies the dependence of refractive index on
the hemoglobin concentration. The defect layer thickness also plays an important role
in increasing the sensitivity and other parameters, which can be utilized for improving
the proposed sensor for measuring hemoglobin concentrations with higher accuracy and
stability. The proposed optical biosensor design is found to be a cost effective, simple, and
very effective non-invasive way for observing hemoglobin concentration in blood with an
ease of sensor fabrication.
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