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Abstract: The analysis of body fluids is desirable to minimize the invasiveness of diagnostic tests
and non-destructive forensic investigations. In this study, surface-enhanced Raman spectroscopy
(SERS) is employed for sensitive and reproducible detection of biomolecule focusing on ‘hot spots’
generation and automated flow system. Here, we have demonstrated how the plasmon frequency of
nanoparticles can be tuned using different aggregating agents for optimal SERS signals. We have
compared the effect of different aggregating agents on silver colloids and the resulting enhancement in
Raman signals for Tryptophan which is an important amino acid present as an integral component of
various body fluids including blood, saliva, tears, and cerebrospinal fluid. The automated segmented
flow system, Lab-on-a-chip (LOC), is employed to trap the analyte in droplets while obtaining
reproducible SERS spectra of Tryptophan at µM concentration. Further for a thorough interpretation
of enhanced vibrational modes of Tryptophan, a theoretical approach has been applied. By combining
both experimental and computational approaches we have identified the most preferable site of
Tryptophan for interaction with metal nanoparticles and accurately assigned the enhanced Raman
bands. The present study demonstrates that the union of SERS and microfluidics has the potential for
spectral fingerprinting of biomolecules present in body fluids with high sensitivity.

Keywords: Surface Enhanced Raman Spectroscopy (SERS); Lab-on-a-chip (LOC); Density Functional
Theory (DFT); Electrostatic Surface Potential (ESP); optical detection; Tryptophan; nanoparticles;
surface plasmons

1. Introduction

The characterization and identification of various bio-components of body fluids are
crucial for early diagnosis as well as for forensic investigations [1–5]. The composition
of biomolecules is important to know the identity of the fluid and distinguish it from
others which is an important aspect of forensic screening [1,5]. On the other hand, changes
in quantities and/or conformation of the biomolecules present in the biologic fluids are
related to the health of the subjects. The body fluids such as blood, urine, saliva, tears,
and cerebrospinal fluid contain thousands of biomolecules coming as by-products from
the diseased part of the organism which can be utilized as biomarkers [6–8]. Currently
used tests target one particular chemical component at a time and require isolation of these
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molecules before detection which is usually cumbersome and time-consuming. Also, these
conventional methods require a large number of samples and individuals with specialized
skills [1,5]. Non-invasive detection of disease and identification of body fluids at the crime
scene ideally need multidimensional tools, which can target many biomarkers in a single
measurement. Raman spectroscopy can be a powerful tool for differentiating various
kinds of chemical moieties owing to their specific structure which gives distinct Raman
signals [9–12]. However, it has limited applicability as it is an inherently weak phenomenon.
Surface-enhanced Raman spectroscopic (SERS) technique has the potential to serve as such
a tool due to its high sensitivity, specificity, multiplexing capability, and most importantly
its universal applicability toward the analysis of all body fluids [13–15].

SERS involves the use of nanoparticles that simultaneously reduces the fluorescence
background and enhance the weak Raman signals [5,16]. The enhanced Raman signals
were first observed for pyridine which was adsorbed on a roughened silver electrode by
Fleishchmann et al. (1974). It was attributed to the increase in the number of molecules
adsorbed on the roughened surface due to an increase in the surface area [17–19]. The effect
came to be known as surface-enhanced Raman scattering, subsequently. The enhancement
observed with SERS is characterized by two main mechanisms: (i) a long-range electro-
magnetic effect, and (ii) a short-range chemical (charge-transfer) effect [20–23]. Since the
observation of this phenomenon (1974), SERS has been widely used for the enhancement of
the Raman signals from various analytes including drugs, proteins, various biomolecules,
pollutants, and explosives [24–27]. However, the consistent reproducibility of SERS spectra
under similar experimental conditions is a key concern.

SERS spectroscopic measurements in flow cells like Lab-on-a-chip (LOC) have opened
new ways of improving reproducibility. These systems keep the time delay between the
addition of the activation agent and the measurement constant, additionally, the mixing and
stirring conditions will be the same for different experimental measurements as compared to
conventional SERS [28–30]. Integration of SERS with LOC technology allows an automatic
and sensitive detection from minimal sample volumes at the microscale specified by the
dimensions of flow channels in the chip system. Further, LOC systems reduce measurement
time, which minimizes wastage and background reduction as the volume of the medium
under investigation is small. The high degree of mixing of Ag or Au colloids and the
analyte solution is achieved by introducing various shapes or microstructures in the LOC
systems since the flow is characterized as a laminar flow. These microstructures can be
either in the form of pillar array or zigzag-shaped; furthermore, high mixing efficiency can
be achieved by introducing loops into a LOC device [31]. A segmented flow system using a
hydrophobic separation and carrier fluid (e.g., mineral oil) not only enhances the mixing
in loop systems but also prevents the adhesion of analyte and nanoparticle aggregates
to the microchannel walls promoting the reuse of the LOC device [29]. In this case, the
analyte and colloid solutions flow in droplet form and the flow control is performed using a
syringe pump. Flow can be adjusted to acquire one spectrum from a droplet [28,29,32]. This
segmented flow allows the analyte to be trapped in droplet form and optical measurements
can be done on each drop separately. Integration of LOC devices to the SERS measurements
is applied in various areas of bioanalytics ranging from quantification and monitoring of
drugs, pollutants, proteins, nucleic acids to the investigation of microorganisms [5,30,33–35].
Further, infectious samples can also be handled with less risk [5,35,36].

Generally, colloidal metal nanoparticles are employed for SERS study in flow sys-
tems. However, in some cases, LOC channels are coated with metal nanostructures but
are not favored as they are hard to clean after interaction with analytes which limits the
reuse of microfluidic devices [37]. Furthermore, colloidal metal nanoparticles are easy
to synthesize, cost-effective, and enable additional chemical manipulation. The use of
activating agents (e.g., KCl, NaNO3, Na2SO4) in the solution phase facilitates charge trans-
fer between the nanoparticle and the adsorbate and manipulates the orientation of the
analyte on the metal surface due to electrostatic interactions. Additionally, these activating
agents facilitate the aggregation process which helps to increase the number of ‘hot spots’
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with less effort and hence improve the Raman signals [16,29,38]. In the present study
we have (i) examined the influence of different activating agents (KCl, NaNO3, Na2SO4)
and pH of the solution on the aggregation of nanoparticles using electronic absorption
spectroscopy, (ii) identified suitable activating agents and pH to trap Tryptophan within
the ‘hot spots’ for sensitive optical detection, (iii) applied a theoretical approach to under-
stand the interaction of Tryptophan with nanoparticles and selective modes enhancement,
and lastly (iv) demonstrated the utilization of a LOC system to produce reproducible
SERS signals.

2. Materials and Methods

Chemicals: AgNO3, KCl, HCl, NaNO3, HNO3, Na2SO4, H2SO4, pyridine, and Trypto-
phan (Trp) were purchased from Sisco Research Laboratories (SRL) Pvt. Ltd. The solutions
were prepared using Milli-Q water (Bio cell Laboratories, Inc., Quantum® EX, Rancho
Dominguez, CA, USA).

Preparation of Colloids: Silver colloids were synthesized by the reduction of silver
nitrate solution using (a) trisodium citrate solution [39] and (b) sodium borohydride
solution [40]. Briefly, 45 mg of AgNO3 was dissolved in 250 mL of water, and 5 mL
of 1% trisodium citrate solution (aqueous) was added to boiling silver nitrate solution
and left to boil for 1 h. Such synthesis methods give rise to a typical concentration of
~1011 particles/mL [41]. The resulting colloids (named Ag1) were filtered and stored in a
cool and dark place for SERS studies. In the second protocol, 50 mL of AgNO3 (10−3 M)
aqueous solution was added dropwise to 150 mL of vigorously stirred ice-cold NaBH4
(10−3 M) solution. The resulting colloidal solution (named Ag2) was stirred for 1 h at 4 ◦C
and stored in a cool and dark place for further studies. The concentration of Ag2 colloids
was ~1013 particles/mL [42].

Sample Preparation for Aggregation studies: Aqueous solutions (0.1 M) of electrolytes
(KCl, NaNO3, Na2SO4, HNO3, HCl, H2SO4, and NaOH) were prepared using Milli-Q wa-
ter. The absorption spectra for the mixture of Ag1 colloids (200 µL) and activating agents
(200 µL; KCl/NaNO3/Na2SO4) were recorded by diluting the mixture with 400 µL of
Milli-Q water. The absorption spectra for the diluted mixture of 200 µL of Ag1 colloids
and 195 µL of activating agents (KCl or NaNO3 or Na2SO4) were also recorded by vary-
ing pH using respective acids or NaOH (5 µL; HNO3/HCl/H2SO4/NaOH) as shown in
Figure 1A. Likewise, the absorption spectra for the mixture of Ag2 colloids (400 µL) and
activating agents (400 µL; KCl/NaNO3/Na2SO4) were recorded. The absorption spectra
for the mixture of 400 µL of Ag2 colloids and 395 µL of activating agents (KCl or NaNO3
or Na2SO4) were also recorded by varying pH using respective acids or NaOH (5 µL;
HNO3/HCl/H2SO4/NaOH) as shown in Figure 1B. The aggregation effect induced by dif-
ferent electrolytes (activating agents) on the silver colloids was monitored using electronic
absorption spectroscopy. The absorption spectra were recorded from the diluted solution of
Ag1 (600 µL of water + 200 µL of Ag1) and Ag2 (400 µL of water + 400 µL of Ag2) colloids
without aggregating agents for comparison. The pH measurements of colloids under
various aggregating conditions were made using pH meter calibrated with 4 and 7 buffer
solutions under room temperature.

Absorption Spectroscopy: Electronic absorption spectra (300–800 nm) for Ag colloids
and mixture of colloids and activating agent were recorded using a Perkin-Elmer lambda750
UV-visible-NIR Spectrophotometer using 1 mm thick disposable cuvettes (Gerresheimer
Wertheim GmbH, Wertheim, Germany).
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Figure 1. Electronic absorption spectra for pure and activated (using different activating agents
as mentioned) (A) sodium citrate reduced silver nanoparticles (Ag1)—top panel and (B) sodium
borohydride reduced silver nanoparticles (Ag2)—bottom panel. The pH values of different solutions
are mentioned on the label of each graph.

Raman Spectroscopy: Raman spectra were recorded using commercial Renishaw InVia
Raman Microscope in back-scattering. The instrument was calibrated to 520.5 cm−1 (as-
signed to Silicon as a reference) before acquiring the Raman spectra from the samples. The
samples were excited with 514 nm air-cooled Ar ion laser (Power on the sample = 15 mW).
The spectra were collected with a 50× long working distance (NA = 0.5) objective lens.
The scattered radiations were resolved using a diffraction grating of 2400 grooves/mm
and detected using a thermoelectrically cooled charge-coupled device (1024 × 256 pixels).
Spectra were recorded with a spectral resolution of 2 cm−1. The instrument is controlled
by Renishaw WiRE 3.2 software running under Grams/32 Spectral Note base Software
(Galactic Industries, Salem, NH, USA), which plays a role in optimizing experimental
parameters and controlling the microscopic stage movement. All the spectra were pre-
processed for cosmic ray removal using WiRE 3.2 software and Origin 8.5 (Origin Lab
Corporation, Northampton, MA, USA) software. For SERS studies, 10 µL of Tryptophan
(10−2/10−3/10−4 M) solution was added to 20 µL of silver colloids and 10 µL of acidic
KCl solution was added as an activating agent to this mixture. The Raman spectra were
recorded instantaneously on Aluminum slides for all samples including pure silver colloids.
Further dilution of 10−4 M Tryptophan solution up to 5 × 10−5 M was performed using
silver colloid solution itself. The spectra were also recorded for Tryptophan solutions which
were activated with 10 µL of acidic/basic KCl solution immediately before reading.

Computational Method: The structure optimization for Tryptophan was performed
using Density functional theory (DFT) by employing 6-311++G (d,p) basis set and Becke’s
three parameters (local, nonlocal, and Hartree−Fock) hybrid exchange functionals with
Lee−Yang−Parr correlational functional (B3LYP) as it is known to be suitable for both
the ground and lower triplet state optimization [24,25,43–45]. Stability for the obtained
optimized structure was confirmed by observing positive values for all the vibrations of
minimum energy L-Tryptophan structure (Appendix A Figure A1) obtained using Gaus-
sian 09package. Ignorance of anharmonicity in DFT level causes deviation in calculated
vibrational frequencies when compared to experimental wavenumbers. Therefore, for
better visualization and comparable results dual scaling factor for the higher wavenumber
region (above 1800 cm−1) and lower wavenumber region (below 1800 cm−1) is used. In the
present case, since we are dealing with the lower wavenumber region—all the calculated
frequencies were scaled down by the factor 0.9927. Gauss View and Gar2ped software were
utilized for graphical representation of the structure and the calculation of potential energy
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distributions, respectively. Further, precise vibrational frequency assignments were made
using the Gauss view. All the calculations for SERS were made using the LANL2DZ basis
set. Potential Energy Distribution (PED) calculations along with internal coordinates using
localized symmetry and normal-mode analysis were performed [24] and compared with
the experimental data. Results are presented in Appendix A Table A1.

3. Results
3.1. Characterization of Nanoparticles

The aggregation effect induced by different electrolytes (activating agents) on the silver
colloids was monitored using electronic absorption spectroscopy. The absorption spectra
were recorded from the diluted solution of Ag1 and Ag2 colloids from the 300 to 800 nm
range (Figure 1). The plasmon absorption maxima for Ag1 and Ag2 colloids were located
at 433 nm and 395 nm, respectively (Figure 1). In SERS, there is a need for oscillation of
valence electrons on the nanoparticle surface (plasmon frequency) to be in resonance with
incident radiation. However, it is not always possible to control the size of nanoparticles
for various frequencies. To overcome this, various aggregating agents can be used to
shift/tune the plasmon frequency of the synthesized nanoparticles. In the present study,
we compared the effect of various aggregating agents for tuning the plasmon frequency
of nanoparticles to the desired wavelength regions. The absorption maxima for both the
colloids, Ag1 and Ag2, shifted towards a higher wavelength with the addition of activating
agents. This redshift can be attributed to the aggregation of the nanoparticles [46–50]. The
shape and size distribution of citrate-reduced nanoparticles (Ag1) is rather heterogenous
as it consists of a small percentage of rod-like nanoparticles along with a broad range of
irregular spherical particles which are negatively charged [51]. Similar changes in the
absorption spectra of Ag1 nanoparticles were observed on varying pH. It indicates that the
repulsive forces between the particles were reduced via neutralization of negative charges
by various cations (K+/Na+/H+) and the process is mostly independent of the nature of
counter anions of the electrolytes. Such a behavior can be attributed to the presence of large
particle size and inherent irregularities in Ag1 which makes it difficult to visualize the small
differences in the aggregation process induced by varying pH. Further, the high variability
in size impacts the aggregation efficiency where smaller particles in Ag1 colloids (~405 nm)
aggregate slowly in comparison with bigger particles (≥435 nm) leaving relatively high
particle density at ~405 nm. On the contrary, NaBH4 reduced nanoparticles are relatively
uniform with narrower full-width half maxima of the plasmon peak and smaller particle
size [51]. Thus, it was easy to visualize changes in spectra upon the addition of different
activating agents (Figure 1B).

Generally, there are two main regimes of aggregation: (i) where the aggregation rate
is controlled by the diffusion of the nanoparticles and, (ii) where the aggregation rate is
controlled by the contact between the nanoparticles. The former happens when the low
electric charge density on the nanoparticles leads to less repulsive forces between them
and hence the aggregation process is faster, giving rise to globular structures. In the latter
case due to high repulsive forces, aggregation is slow and produces linear chains. The use
of appropriate concentrations of activating agents facilitates the formation of aggregates
with the web-like structure which is a mixture of linear and globular structures [46,47,49].
We also observed web-like structures for both Ag1 and Ag2 colloids upon aggregation
(Appendix A Figure A2). These web-like structures are more favorable for amplification of
Raman signals and therefore we utilized these aggregated colloids as SERS substrates for
optical detection of trapped Tryptophan as discussed in the subsequent sections.

3.2. SERS Study of L-Tryptophan

Tryptophan is an essential amino acid and serves as a precursor for various important
biomolecules such as serotonin, tryptamine, niacin, and melatonin. Tryptophan regulates
neuronal behavior and has been used to treat insomnia or depression. Changes in serum
Tryptophan levels are correlated with many disease conditions [52,53]. In this study, surface-
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enhanced Raman spectra of Tryptophan were recorded in the concentration range of 10−3

to 10−6 M, and two different colloids, Ag1 and Ag2 were employed as SERS substrates.
Raman spectra for silver colloids, Ag1 and Ag2, are shown in (Appendix A Figure A3).
Upon the addition of activating agents to the mixture of Ag nanoparticles and analyte, the
Ag colloidal particles tend to aggregate, and the analyte gets trapped within the cluster
thus leading to a hot spot resulting in better enhancement of Raman signals. The proposed
enhancement mechanism for Raman signals using Ag colloids and activating agents is
pictorially depicted in Figure 2. We employed 0.1 M KCl, NaNO3, and Na2SO4 solutions
for aggregation and observed similar behavior, however, KCl was preferred over other
electrolytes as there are no interfering signals from the associated anion (Cl−) whereas
NO3

− and SO4
2− anions contain covalent bonds with characteristic Raman signals. The

spectra were also recorded for Tryptophan solutions which were activated with 10 µL
of acidic/basic KCl solution immediately before reading. Interestingly, we observed a
significant improvement in the signal-to-noise ratio of the spectra on the addition of
acid (HCl) to the solution in comparison to the base. Electronic absorption spectra of
colloids under both acidic and basic conditions were very similar (Figure 1), however,
improved enhancement was observed under acidic conditions (Figure 3). This selective
enhancement under acidic conditions could be attributed to changes in the electrostatic
status of Tryptophan under acidic conditions. The pH values below the isoelectronic
point (pI = 5.89) of Tryptophan result in positively charged Tryptophan enhancing its
interaction with negatively charged nanoparticles [54]. The pH of silver colloids on adding
acidified KCl was fairly lower than the pI of Tryptophan. This increases the interaction
of Tryptophan with nanoparticles and in turn, boosts the chances of trapping Tryptophan
within the aggregates leading to improved SERS signals [54].

Concentration-dependent SERS spectra of L-tryptophan using both Ag1 and Ag2
colloids were compared with solid and pure solution (0.1 M) spectra of Tryptophan as
shown in Figure 3A,B, respectively. In the case of Ag1, Raman bands can be clearly seen in
2.5 µM concentration of Tryptophan, however, Ag2 colloids could detect Tryptophan only
up to 25 µM. Citrate-reduced Ag1 colloids have high efficiency of aggregation upon the
addition of activating agent (Figure 1A). Thus, the enhancement for Tryptophan bands is
higher in Ag1 compared to Ag2. Further, for a deeper understanding of enhanced Raman
signal and associated molecular interactions, a computational approach has been applied
which is explained in the following section.
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citrate (Ag1) and (B) sodium borohydride (Ag2) reduced silver nanoparticles activated with acidic KCl
solution and compared with the spectrum of pure Trp powder and 0.1 M aqueous solution.

3.3. Computational Analysis

To obtain the most probable adsorption geometry of Tryptophan on the silver surface,
the molecular electrostatic surface potential (ESP) was mapped. The molecular ESP at a
point r in the space around a molecule is (in atomic units) given by the equation below [55].

V(r) = ∑
A
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→
r |
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→
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ZA = charge on nucleus A which is located at
→
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→
r ′) = electronic density function for the molecule.

The effect of the nuclei has been represented by the first term given in the above equation
whereas the second term represents the effect of electrons. Both the terms have opposite signs
and show opposite effects. V(r) gives the resultant potential at each point r indicating the
net electrostatic effect produced by the total charge distribution (electrons + nuclei) of the
molecule at point r. The attraction of the positive charge by the concentrated electron density
in the molecule is known as the negative ESP and is represented with the shades of red color
in the ESP plot while the repulsion of positive charge by atomic nuclei in the molecule where
low electron density exists is known as positive electrostatic potential and is shown in the
shades of blue color in ESP plot. The different values of the electrostatic potential at the surface
are represented by different colors; the color varies from red to blue representing the regions
of most negative electrostatic potential to the most positive electrostatic potential, respectively,
and the green represents regions of zero potential. The electrostatic potential map shows that
the negative charge is concentrated towards the carboxylic group and the positive charge
is concentrated towards the pyrrole ring of the Tryptophan (Figure 4A). This ESP provides
information about the interacting sites of Tryptophan towards silver substrate according to
the charge on the silver substrate. By obtaining the site information through the ESP plot,
the calculation has been performed in all possible orientations to find the most favorable
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interaction site of Tryptophan with Ag-atom and Ag-cluster. The best-optimized geometry of
the Tryptophan and Ag system (Ag-atom or Ag-cluster) which complement the experimental
results well is shown in Figure 4B,C.
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Figure 4. (A) Molecular electrostatic potential mapped on the isodensity surface for L-tryptophan
calculated at the B3LYP/6-311++G (d,p) level of theory. Optimized structure for (B) Tryptophan with
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The comparison of solid Tryptophan Raman experimental spectrum with calculated
Tryptophan spectrum is shown in Figure 5. The solid Tryptophan spectrum (experimental)
matched quite well with the computed spectrum. Further, computed SERS spectra with
one Ag-atom and Ag-cluster were compared with the experimental spectra of 2.5 × 10−5

M Tryptophan for both Ag1 and Ag2 colloids (Figure 5). We have chosen this particular
concentration (2.5 × 10−5 M) of Tryptophan for better visualization of the enhanced bands.
Some of the Tryptophan bands were greatly enhanced with both Ag1 and Ag2 colloids
which correspond to the preferential geometry of the Tryptophan-Ag system under present
experimental conditions. These enhanced bands are marked in Figure 5. With the help of
theoretical calculations, the band assignments were made and are tabulated in Appendix A
Table A1. The bands at 760 cm−1, 878 cm−1, and 1012 cm−1 showed prominent enhance-
ment which corresponds to 763 cm−1, 881 cm−1, and 1024 cm−1 in the calculated SERS
spectrum. The band at 760 cm−1 is assigned as the puckering and deformation mode of
the benzene ring, the indole ring deformation, stretching, and NH2 out of plane vibra-
tion are observed at 878 cm−1 and the band at 1012 cm−1 is assigned to the benzene ring
stretching and deformation [25,56–58]. As discussed earlier, vibrational modes with their
z-component of polarizability tensor perpendicular to the metal surface are enhanced more
suggesting that the indole ring of the Tryptophan molecule reclines with the z-component
of the polarizability tensor perpendicular to the metal surface in the present experimental
conditions [23]. This is also supported by the theoretical calculations.
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We also observed enhancement in the region above 1200 cm−1 as discussed below,
however, it is quite intricate to confirm as this region (1200–1700 cm−1) also has a con-
tribution from colloids. Peak present at 1578 cm−1 in Ag1 and 1580 cm−1 in Ag2 which
is mostly benzene ring vibration and deformation are showing prominent enhancement
which is observed at 1580 cm−1 in computed SERS spectra (Figure 5). Raman band present
at 1432 cm−1 in experimental SERS for both the colloids has been assigned to pyrrole
ring stretching and deformation. This band is observed at 1437 cm−1 and 1444 cm−1 for
computed SERS spectra with silver-cluster and with silver-atom, respectively. Benzene ring
stretch and CCH deformation which is observed at 1355 cm−1 for Ag1 and at 1365 cm−1 for
Ag2 are enhanced and observed at 1373 cm−1 in the calculated spectrum. Similarly, mixed-
mode having a contribution from CH2 wag, NH2 rock, and CHO deformation present at
1340 cm−1 in both experimental and calculated spectra is enhanced [25,56–58].

3.4. SERS Study Using Lab-on-a-Chip

To utilize the effectiveness of SERS for Tryptophan sensing at low concentration in
an automated mode, LOC studies were performed. The schematic of the LOC setup used
for the SERS studies is shown in Figure 6A. In this case, HCl solution was used for the
activation of silver colloids. The effective concentration of Tryptophan is determined
according to the flow rates used. The colloids (Ag1) solution was introduced at the flow
rate of 300 µL/h while HCl and Tryptophan (10−4 M) were introduced at 100 µL/h to
the LOC. However, mineral oil was introduced at the rate of 0.5 mL/h and was used to
create segmented flow for better mixing [29]. Mineral oil also prevented direct contact
between the aqueous phase and the microchannel walls. This segmented flow generated
using mineral oil also allows trapping of the analyte in droplet form for sensitive optical
detection. The spectra were recorded at indicated focus point on the LOC (Figure 6A)
and were acquired for two seconds. The spectra from ten different drops of Tryptophan
are shown in (Figure 6B). The similarities in the spectra from 10 different drops validate
the reproducibility in the automated flow system. Enhancement from SERS substrate in
colloidal form varies with the interaction (orientation) of the analyte with the substrate,
these interactions are highly influenced by the sample handling including the time delays
between adding different components and mixing speed. Here we have demonstrated
sensitive and reproducible detection of one of the important amino acids present in body
fluids using an automated LOC system. However, this method can be applied for the
detection of other biomolecules and/or multiple biomolecules in a single measurement. The
present work discusses the non-specific detection of Tryptophan. To identify the Tryptophan
in biological samples such as serum specific peaks assigned can be utilized. However, these
colloidal metal particles can be labeled for the identification of specific molecules such as
amino acids, antigens, drugs, and DNA fragments which are important to medicine and
forensic investigations. The spectra from heterogeneous biofluids such as serum, consisting
of multiple biomolecules, will be complex. Therefore, to obtain meaningful information and
deeper insight preprocessing is required. This helps in eliminating the effects of unwanted
signals such as cosmic rays, fluorescence, Mie scattering, and other noise enhancing the
subtle concentration differences between the samples. Various background corrections
such as polynomial fitting, first and second order differentiation, and noise filtering such as
Savitzky Golay (SG filter), Locally Weighted Scatterplot Smoothing (LOWESS) methods
have been used for this purpose [59]. Normalization is a critical part of preprocessing to
remove disparity in intensity levels by making sure that the intensity of a given Raman
band of the same material is as similar as possible across the spectra recorded under
the same experimental parameters but over a period of time. Numerous normalization
techniques such as peak/area normalization, vector normalization, and Standard Normal
Variate transformation are known to Raman spectral analysis [59].
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Figure 6. (A) schematic of the lab-on-a-chip (LOC) setup. (B) SERS spectra for Tryptophan using Ag1
colloids obtained with LOC system from ten different drops.

4. Conclusions

In this study, we have shown SERS of Tryptophan using two different approaches.
Standard SERS is useful as the plasmon frequency of the nanoparticles can be optimized
using suitable activating agents for sensitive optical detection of a particular analyte. By
combining both computation and experimental data, we have successfully identified the
most preferable Tryptophan orientation for molecular interaction with the metal surface.
The computational analysis also assisted in the assignment of the Raman bands. LOC setup
offers a convenient automated method for obtaining reproducible spectra with a minimal
sample. This non-destructive approach applies to all the analytes present in body fluids
and has great potential in point-of-care diagnostics and forensic science. Although flow
systems offer greater SERS reproducibility, it is noteworthy that the flow system needs to
be optimized according to a particular analytical application.
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Appendix A

Table A1. Vibrational assignments for experimental and calculated wavenumber of L-tryptophan.

Calculated SERS
Freq.

Exp. SERS Freq.
(Liquid)

Exp. Freq.
(Solid) Calculated Freq. PED%

Tryp-
1Ag

Tryp-
4 Ag (Ag1) (Ag2) Scaled

Freq.
Unscaled

Freq.

1612 1612 1621 1621 1620 1645 1657 ν[R2(CC)](46) + δ(R2)(20) + ν(N1C8)(6) + δ(NH2)(4)

1580 1580 1584 1591 1576 1601 1613 ν[R2](55)+ R2(δCCH)(17)+ ν(R1)(6)

1552 1552 1558 1567 1578 ν(R1)(44) + δ(N1C2H14)(13)-ν(C3C10)(9) + ν[R2](9) + δ(R1)(6)

1477 1477 1459 1459 1459 1468 1479 R2(δCCH)(33) + ν[R2](22) + δ(CH2)(20) + ν(R1)(4)

1444 1437 1432 1432 1424 1437 1448 ν(R1)(31) + R1[δ(CN1H13)(27)] + δ(CC6H17)(12) + ν[R2](12)

1373 1373 1355 1365 1358 1356 1366 ν[R2](66) + R2[δ(CCH)(11)] +ω(CH2)(5)

- 1342 1342 1342 1339 1326 1336 ω(CH2)(20) + ρ(NH2)(16) + δ(CHO)(10) + ν(C11C24)(6) + ρ(CC = O)(6) +
ν(CO)(6) + ν(C10C11)(5) + δ(C10N12C11)(4)

- 1302 1306 1306 1302 1308 1318 R1[ν(CC)(35) + δ(NCH)(16)] + R2[δ(CCH)(15)] + ν(C3C10)(5) +ω(CH2)(5) +
R2[ν(CC)(10)] + δ(R1)(4)

1255 1246 1235 1235 1233 1233 1242 (δ + ρ)(C11H)(23) +ϕ(CH2)(13) + ν(C11N12)(10) +ω(CH2)(9)+ ν(C10
C11)(7)-R1

1166 1175 1154 1154 1161 1178 1186 ϕ(CH2)(15) + R2[δ(CCH)(20)] + ρ(N12H2)(10) + ν(C11N12)(9) + δ(C11H)(5) +
ν(C10C11)(5) + δ(C24N12C11)(4)+ν(C4C5)(4)

1024 1025 1010 1010 1008 1026 1034 R2[ν(CC)(75)]+R2[δ(CCH)(18)]

881 881 878 878 873 880 886 δ(R2)(35)+[R1(δ+ν)](26)+δ(R2)(8)+oop(NH2)(5)+ρ(CH2)(4)+ν(C11N12)(4)

826 833 823 841 843 849 R2[oop(CH)](59)+ι(R1)(7)+puck(R2)(6)+oop(N1H13)(5)

795 793 784 784 805 803 809 oop(N1H13)(59) + ι(R1)(17) + ν(C11C24)(5)

763 763 760 760 756 765 770 δ(R2)(18) + puck(R2)(12) + δ(R1)(11) + R2[ν(22)] + R1[ν(9)] + ι(R1)(5) +
ν+δ(R1)(4)

730 730 736 - 741 738 744 R2[oop(CH)(29) + ν(C11C24)(13) + oop(C = O)(10) ν(C10C11)(8) + ρ(CC = O)(7)
+ ν(CO)(5) + puck(R2)(4) + δ(COH)(7)

- - 723 723 721 709 714 ν(C3C10)(15) + δ(R2)(14) + δ(R1)(13) + oop(C = O)(10) + δ (C3C11C10) (7) +
puck(R2)(5) + ι(CO)(4)

627 627 - 618 627 625 630 ρ(CC = O)(18) + ι(CO)(18) + ιasym(R1)(16) + δ(C24N12C11)(9) + ι(R1)(9) +
oop(C3C10)(8) + puck (R2)(4)

571 571 576 576 576 569 573 δ(R1)(24) + δ(R2)(23) + ν(R2)(7) + ι(CO)(7) + ι(R2)(5) + ι(R1)(5) + ν(C3C10)(4) +
puck(R2)(4)

468 468 461 466 466 469 δ(R2)(31) + δ(CC3C10)(26) + ρ(CH2)(7) + δ(R1)(5) + ν(R1)(5)

Note: All frequencies are in cm−1. ν: stretch, ι: torsion, oop: out of plane motion, δ: deformation, ϕ:twisting,
ω: wagging, puck: puckering. Refer to Figure A2 for numbering.
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