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Abstract: The multi-slice integration (MSI) method is one of the approachs to extend the depth of
view (DOV) of the pulsed laser range-gated imaging (PLRGI) system. When the DOV is large enough
and exceeds the depth of focus of the system, it may make some targets in the image clear and others
blurred. In addition, forward scatter is also considered to have a blurring effect on the image. There is
very little literature to solve the combined effect of forward scatter and defocus. An imaging model is
built based on the model from Jaffe–McGlamery and Fourier optics. According to the imaging model,
backscattered light is independent from reflected light from the target, and forward scatter has a
relationship with the reflected light. Thus, backscattered light should be removed before deblurring.
First, rolling ball and intensity transformation are used to remove the backscattered light and enhance
the image. Then, a deep learning model based on Transformer is used to deblur the image. To enable
the deep learning model to accommodate different degrees of blurred image, 16 different blur kernels
are generated according to the imaging model. Sharp images from a DPDD dataset were chosen
to train the model. Images of varying degrees of blur were collected from a water tank and a boat
tank by the PLRGI system as test sets. Image deblurring results show that the proposed method
can remove different levels of blur and can deal with images which have sharp targets and blurred
targets together.

Keywords: range-gated; forward scatter; defocus; rolling ball; transformer

1. Introduction

Pulsed laser range-gated imaging (PLRGI) is one of the most effective methods to
achieve underwater high-resolution imaging [1–3]. The conventional PLRGI system is
mostly used for in situ observation for the limitation of the depth of view (DOV). To extend
the DOV, many methods can be used. One is multi-channel receivers, which can acquire
images from multi-slice at the same time [4,5]. However, this will make the system too
complex and expensive. Another one is the multi-pulse integration (MPI) method, which
splits the detection area into multi-areas and assigns pulses to detect each area alone and
combines them to a single image [6,7]. Nevertheless, the number of pulses allocated to each
slice is the same in the literature, and this makes it similar to a single slice with a large DOV.
The MPI method introduces the problem that the distant target is much darker than the
near target. Thus, we propose the multi-slice integration (MSI) method in the literature [8].
Different from the MPI method, the number of the pulses assigned to each slice and gate
width (GW) of each slice can be different from each other in the MSI method. In this case,
by adjusting the system parameters, the intensity of targets at different distances can be
approximately equal. When the DOV is extended, the distance between multiple targets
in the field of view may exceed the depth of focus (DOF), resulting in clear imaging of
some targets and blurring of others (same as blur caused by improper focal length setting).
In addition, forward scatter in water also has an effect on the blurring of the image [9].
Similar to other optical systems, the motion of the system or target can also cause image
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blur. Since motion blur is different from the above two blurring effects, it is not considered
in this paper.

Forward scatter changes the direction of the light and blurs the image of the target.
Various solutions have been proposed to address the blurring caused by the forward scatter.
One is to build a model related to the shape and background of the target [10–12], and use
the model to estimate the intensity and distribution of forward scattering light. The key point
of these model-based methods is the accurate estimation of medium transmission [13–15].
However, these methods always are unstable and sensitive for three reasons: (1) image
recovery is an ill-posed problem, (2) the underwater environment is complex and estimating
underwater imaging parameters is difficult, and (3) underwater imaging models may be
inaccurate in some cases. Another one is to deconvolve the blurred image using an iterative
approach [9,16]. However, this approach relies on the initial estimate and has a high
computational cost. There are also methods for underwater image enhancement which
come with the ability to remove forward scatter [15,17]. However, they mainly focus on
color cast, low contrast or backscattered light removal.

For defocus blur, researchers focus on detection and segmentation of the defocus
blur area [18], defocus map estimation [19] and defocus blur removal. The traditional
approach for defocus blur removal is to estimate the point spread function (PSF) and
then use a deconvolution method to restore a clear image. However, the PSF is hard to
estimate for the same reasons of model-based methods. In recent years, researchers have
preferred to use deep learning methods to remove defocus blur. This approach uses an
end-to-end network architecture that skips complex modeling problems and enables direct
mapping of blurred images to clear images. Abuolaim [20] proposed DPDNet for removing
defocus blur. However, the method is limited by the hardware, and the performance of
the single image deblurring method needs to be improved. Son [21] proposed a kernel-
sharing parallel atrous convolutional (KPAC) block for single image defocus deblurring.
Quan [22] proposed a pixel-wise Gaussian kernel mixture deep neural network (GKMNet)
for single image defocus blur removal. However, their performances on severely blurred
regions is not that satisfactory. All the above networks are designed based on convolutional
neural networks. Convolution is a local operation that usually only models the relationship
between neighboring pixels. Transformer, on the other hand, is a global operation that
models the relationship between all pixels. As a result, image restoration using Transformer
is now at the forefront [23,24].

For underwater range-gated imaging, a blurred image is caused by the combined
effect of forward scatter and defocus. Most of the literature focuses on removing the effects
of forward scatter. There is very little literature to solve the combined effect of forward
scatter and defocus blur due to the small DOV of the PLRGI system. In this paper, a
two-step method is proposed to deblur the image collected by the PLRGI system with an
MSI method. The main contributions of this paper are highlighted as follows.

1. A two-step method is proposed to deblur the blurred image caused by the combined
effect of forward scatter and defocus.

2. An imaging model is built to generate training data for the network, and this can
enable the model to deal with different levels of blurred image. It makes use of merits
of both knowledge of underwater imaging and deep neural networks.

3. Our method outperforms two state-of-the-art methods on several experiments under
different water conditions in terms of both visual quality and quantitative metrics.

The paper is organized as follows: following this introduction section, principles of
the MSI method are described, and an imaging model is built based on the model from
Jaffe–McGlamery and Fourier optics. In Section 3, a two-step method is proposed to deblur
the image according to the imaging model. First, rolling ball and intensity transformation
are used to remove the backscattered light and enhance the image. Then, a deep learning
model based on Transformer is used to deblur the image. In Section 4, in order to validate
the method proposed, experiments were carried out to obtain the blurred image from the
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PLRGI system, and the experimental results are presented and discussed. Conclusions are
drawn in the last section.

2. Theory
2.1. Multi-Slice Integration Method for PLRGI System

The PLRGI system enables a slice imaging approach similar to that of computed
tomography. Position and width of the slice depends on the delay time and gate width.
Intensity of the slice depends on the number of pulses assigned to the slice. To illustrate the
principle of the MSI method, we take three slices, for example, which are shown in Figure 1.
In the system, a laser with a high pulse repetition frequency is in use. The laser pulses in
one video frame can be split into three groups, and each group corresponds to one slice.
Each slice has its own delay time and gate width.
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Figure 1. Description and time sequence of the MSI method with three slices: (a) three targets are in
three adjacent slices respectively; (b) time sequence of the MSI method. The same delay time belongs
to the same slice, the gate width is small, and only one target echo can be passed.

The timing sequence of the MSI method is shown in Figure 1b. The number of pulses
assigned to target 1©, 2© and 3© are n1, n2 and n3, respectively. Delay time of three groups
are t1, t2 and t3, which are different from each other. Every pulse has a range intensity
profile (RIP), and pulses belonging to same group have the same RIP. Finally, three sub-RIPs
are integrated in a frame and generate an image with an integrated RIP.

RIP of a single pulse can be expressed as,

Ei(z) =


( 2z

cw
− ti + τP)Φ, 2z′

cw
∈ [−τp, 0]

τPΦ, 2z′
cw
∈ [0, τi − τp]

(τi + ti − 2z
cw
)Φ, 2z′

cw
∈ [τi − τp, τi]

(1)
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where τP is the pulse width, cw is speed of the laser in water, ti is the delay time of the gate,
τi is gate width, z is the distance of the target, z′ = z-cwti/2, and Φ is the laser pulse radiant
flux that reach the camera. More details about the integrated RIP can be obtained from
the literature [8].

Integrated RIP in a frame is,

Eintegrated =
3

∑
k=1

nkEk (2)

where k means kth slice, and Ek can be obtained from Equation (1).

2.2. Imaging Model Based on Jaffe-McGlamery

The commonly used underwater imaging model was developed by Jaffe [25] after
improving on the model proposed by McGlamery [26]. According to the model, the total
irradiance Etotal that reaches the sensor consists of three components: light reflected from
the target, forward scattering light from the reflected light and backscattered light from
water. Etotal can be expressed as,

Etotal = Etarget + E f s + Ebs (3)

Here Etarget equals Eintegrated for the MSI method. Efs and Ebs denote energy of forward
scattering light and energy of backscattered light, respectively.

According to the Fourier optics, light energy output from CCD equals the convolution
of Etotal and the modulation transfer function (MTF) of the receiver MTFsys and can be
expressed as,

Eout = Etotal ∗ F−1(MTF sys) (4)

where F−1 is the inverse Fourier Transform.
From Equations (3) and (4), we can acquire,

Eout = Etarget ∗ F−1(MTF sys) + E f s ∗ F−1(MTF sys) + Ebs ∗ F−1(MTF sys) (5)

For forward scattering light, Efs can be calculated by the convolution operation of
reflected light and the PSF of water. There are many models for the PSF of water. Here we
take the form of the PSF of water from Hou [27],

PSFwater = K(θ0)
bre−τ

2πθm = K(θ0)
ω0τe−τ

2πθm (6)

where θ is the scattering angle, K(θ0) is a constant, and m = 1/ω0 − 2τθ0. Note that τ is the
optical length and defined as τ = cr. Here c is the total attenuation coefficient, and r is the
distance from the system.

Thus, energy of the forward scattering light can be expressed as,

E f s = Etarget ∗ PSFwater (7)

Substituting Equation (7) into Equation (5), we obtain,

Eout = Etarget ∗ (F−1(MTF sys) + PSFwater ∗ F−1(MTF sys)) + Ebs ∗ F−1(MTF sys) (8)

The composition of the receiver is shown in Figure 2. It consists mainly of an optical
lens, a photocathode, a micro-channel plate (MCP), a fluorescent screen and a CCD.
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According to the literature [28,29], MTF of the receiver can be acquired by,

MTFsys = MTFlen ×MTFMCP ×MTFCCD (9)

For a circular aperture without considering aberration, MTFlen can be expressed [30] as,
MTFlen

(
fx, fy

)
= 2

π (ϕ− cos ϕ · sin ϕ)

ϕ = cos−1

(√
f 2
x+ f 2

y

fc

)
fc =

D0
λ× fl

(10)

where fx, fy denote the spatial frequencies in the x and y directions, respectively. D0 is the
diameter of the optical system, λ is the wavelength, and fl is the focal length.

The MTF of the MCP [31] is expressed as,

MTFMCP = 2
|J1(2π fNd)|
|2π fNd| (11)

where d is the size of the fine tubes in the MCP, and fN is the spatial resolution.
The MTF of the CCD [30] can be expressed as,

MTFCCD
(

fx, fy
)
=

sin(πα fx)

πα fx
·

sin
(
πβ fy

)
πβ fy

(12)

where {
α = µx/ fl
β = µy/ fl

(13)

Here, µx and µy are the pixel size.
From Equations (8)–(13), we can calculate energy of all the light reaching the CCD.

It can be seen from Equation (9) that MTFsys will change as the focal length changes, and
PSFwater will change as attenuation coefficient changes according to Equation (6). Thus,
traditional model-based image restoration methods are very difficult to apply, for the model
will change as the condition changes.

3. Method

We present the flowchart of our method in Figure 3. From Equation (8), we can
see that energy of the light received by the CCD contains two parts: light from the tar-
get and backscattered light, and there is no correlation between these two terms. Thus,
backscattered light can be removed before deblurring.
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After backscattered light removing, Equation (8) can be changed to,

Eout = Etarget ∗ (F−1(MTF sys) + PSFwater ∗ F−1(MTF sys)) (14)

The right-hand side of the equation can be seen as a convolution of the reflected light
with a blur kernel. Thus, Equation (14) can be used to generate training data for deep
learning. Here, a Transformer model is used to deblur the image.

For backscattered light removal, several methods have been proposed. These ap-
proaches include lower-upper-threshold correlation [32], dark channel prior [33] and un-
sharp filtering [17]. The lower-upper-threshold correlation method does not remove the
noise well. The dark channel prior method removes the noise while filtering out part
of the target details. The unsharp filtering method maintains the target details, while
the noise near the target is not effectively removed. In medical image processing, the
rolling ball method is often used to remove background noise [34,35], which is both simple
and effective. Thus, the rolling ball method is used to remove the backscattered light in
this paper.

3.1. Backscattered Light Removal

The rolling ball method was first proposed by Sternberg [36]. This method draws
the grayscale image as a 3D surface with the intensity as the third dimensional coordinate
values. Then a 3D ball of a certain radius is used to roll over the 3D surface to form a series
of tangent points, and these tangent points are interpolated and used as the background
map. After that, background noise can be subtracted from the original image. Figure 4
shows an example of the rolling ball with line A–B.

Let the original image be represented by f (x,y), the rolling ball by b(x’,y’). Then
background noise g(xb,yb) can be obtained from

g = ( f 	 b)⊕ b (15)

Here
f 	 b = min

{
f
(
x + x′, y + y′

)
− b
(
x′, y′

)∣∣(x′, y′
)
∈ Db

}
and

f ⊕ b = max
{

f
(
x− x′, y− y′

)
+ b
(

x′, y′
)∣∣(x′, y′

)
∈ Db

}
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The corrected image t(xt,yt) can be obtained from

t = f − g (16)

After removing the backscattered light, the brightness of the image is low. Thus, an
intensity transformation should be used to adjust the brightness.

The histogram of the image is

p(ri) = ni, i = 0, 1, 2 · · · , L− 1 (17)

where ni is the number of pixels in the image whose gray value is ri, and L is the gray level
of the image.

Let

T(ri) =
i

∑
j=0

p(rj), i = 0, 1, 2 · · · , L− 1 (18)

then the histogram cumulative distribution function is

D(i) =

i
∑

k=0
T(rk)

L−1
∑

k=0
T(rk)

, i = 0, 1, 2 · · · , L− 1 (19)

Considering the interference of bright spot and dark spot, the gray value in the range
of 0.1–99.9% is selected as the valid range. Then the threshold value of transformation is{

Dmin = D(k) D(k− 1) ≤ 0.1% ≤ D(k)
Dmax = D(k) D(k− 1) ≤ 99.9% ≤ D(k)

(20)

Let the transformed image be U(x,y), then the intensity transformation is

U(x, y) =


0 f (x, y) ∈ [0, Dmin)
t(xt ,yt)−Dmin
Dmax−Dmin

f (x, y) ∈ [Dmin, Dmax]

255× 0.9 f (x, y) ∈ (Dmax, 255]
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3.2. Image Deblurring Using Transformer

There are many deep learning model architectures for defocus deblurring. A popular
approach for image processing is the U-Net architecture [37], which is characterized by its
encoder–decoder structure as well as skip connections.
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In recent years, Transformer has been quite competitive compared to convolutional
neural networks. After evaluating several model architectures, we have chosen the model
by Wang [23], which employs U-Net architecture and Transformer block. The model
architecture is shown in Figure 5. The model consists of three main modules: input (output)
projection, Transformer block and down (up) sampling. The main purpose of the input
projection is to convert the data into a format that can be processed by the Transformer
block, and the output projection converts the processed data into images. Down sampling
is used to compress the size of the feature map and reduce the computational cost, while up
sampling is used to restore the compressed feature map to its original size. Skip connections
in the model can preserve previously learned features across network layers.
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Figure 5. Model architectures for image deblurring.

The Transformer block is a key component of the network. It uses a window-based
multi-headed self-attention (W-MSA) mechanism to map feature maps to different spaces
and improve feature extraction. A locally enhanced feed-forward (LeFF) network is also
used in the Transformer block to enhance the ability to capture local contextual information.
The structure of the Transformer block is shown in Figure 6. Each Transformer block is
composed of LayerNorm (LN) layer, W-MSA block, LeFF block and skip connections. The
architecture of how W-MSA block works is shown in Figure 6b. It is able to improve the
feature extraction by mapping to different spaces through QKV. All the cropped feature
maps are compressed by a full connection (FC) layer and sent to the W-MSA block to
calculate the attention value. The structure of the LeFF block is shown in Figure 6c. It is a
new structure formed by adding a depthwise convolution to the Feed-Forward Network
(FFN) of the standard Transformer block. FFN has limitations in capturing local contextual
information and adding depthwise convolution to an FFN can enhance the ability to capture
local contextual information.
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The loss function used to train the model is

L(I′, Igt) =

√∥∥I′ − Igt
∥∥2

+ ε2 (22)

where I′ is the output image, Igt is the ground-truth image, and ε (10−3) is a constant.
To train the model, sharp images are chosen from the DPDD dataset [20] and cropped

to non-overlapping images of size 256 × 256 pixels. According to Equation (14), each
cropped image is convolved with the system transfer function to generate the blur image.
From Section 2.2, we know that MTFsys will be changed when the system parameters
change, and PSFwater will be changed when the condition of the water is changed. Thus, to
enable the model to deal with different levels of blurred image, 16 different blur kernels
are generated according to Equation (14) by changing the parameters of focal length and
attenuation coefficient of the water.

4. Results and Discussion
4.1. Experimental Setup

To verify the methods in this paper, two experiments are carried out in a laboratory
water tank and a boat tank at Huazhong University of Science and Technology. The imaging
system used in the experiments and the experimental scenario are shown in Figure 7.
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Figure 7. The PLRGI system and experimental scenario: (a) the PLRGI system used in the experiments;
(b) water tank in lab; (c) boat tank.

The PLRGI system used in the experiments is shown in Figure 7a. The laser works at a
repetition rate of 10 kHz with a pulse length of 5 ns. The minimum gate width is 5 ns, and
the maximum frame rate is 30 Hz. Some characteristics of the system are listed in Table 1,
and more information about the system can be acquired from the literature [8].

Table 1. Characteristics of the PLRGI system.

Specifications Characteristics

Dimensions Φ150 mm × L280 mm
Weight in water ≤1 kg

Depth range Up to 200 m
Camera Lens 8–48 mm focal length
Field Of View 50◦

Frame rate 1–30 Hz
Visual range Up to 5 attenuation lengths
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The water tank is 7 m long, 0.5 m high and 1 m wide. The size of the towing boat tank
is 175 m × 6 m × 4 m (length × width × depth). The attenuation coefficient of the water
was estimated [38] to 0.15 m−1 and 0.25 m−1, respectively.

4.2. Experiments in the Water Tank

Many images of varying degrees of blur were collected in a water tank as a test set,
five of which are shown in Figure 8.
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Figure 8. Image deblurring result of the test set. The first row is the original data (denoted by ORI),
the second row is the data with the removal of backscattered light (denoted by SUB), the third row is
the result of the deblurring of the first row images (denoted by ORI-deblur), and the fourth row is the
blur removal result for the second row images (denoted by SUB-deblur).

As can be seen in Figure 8, the contrast of the image is improved after the backscattered
light is removed, but the blurring remains. To facilitate the description, the first row (the
original data) of Figure 8 is denoted as ORI, the second row (data after the removal of
backscattered light) as SUB, the third row (result of the deblurring of the first row) as
ORI-deblur, and the fourth row (result of the deblurring of the second row) as SUB-deblur.
Images of both ORI-deblur and SUB-deblur are sharper than those of ORI or SUB, and due
to the influence of backscattered light, images of ORI-deblur are more blurred than those
of SUB-deblur. Compared to ORI, the sharpness of the images of SUB-deblur increases
significantly. In addition, we can see that the trained model can deblur images of different
degrees of blur.
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The Brenner gradient is often used to evaluate the sharpness of an image. It is
expressed as,

f (I) = ∑
x

∑
y
[I(x + 2, y)− I(x, y)]2

where I(x,y) is the gray value.
A comparison of images from Figure 8 by Brenner gradient is shown in Figure 9.
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Figure 9. Comparison of images from Figure 8 by the Brenner gradient.

From Figure 9, we can see that the Brenner gradient of images from SUB-deblur are
much larger than those from others, and this means that images from SUB-deblur are much
sharper than those from others.

4.3. Experiments in the Boat Tank

Many images were collected in a boat tank by the PLRGI system with the MSI method,
four of which are shown in Figure 10.

As can be seen in Figure 10, images of the first row were collected by the PLRGI system
with large DOV, and some targets are out of focus. In addition, due to the large attenuation
coefficient, backscattered light is obvious.

We can see from the second row that most of the backscattered light is removed, and
the contrast of the images is improved. Images of both ORI-deblur and SUB-deblur are
sharper than that of ORI or SUB, and due to the influence of backscattered light, images of
ORI-deblur are not that clear. Compared to ORI, the sharpness of the images of SUB-deblur
increases significantly. In addition, the trained model can deblur images of different levels
of blur and can deal with images which have sharp targets and blurred targets.

A comparison of images from Figure 10 by Brenner gradient is shown in Figure 11.
From Figure 11, we can see that the Brenner gradient of images from SUB-deblur are

much larger than those from others, and this means that images from SUB-deblur are much
sharper than those from others. This is consistent with the subjective feelings.
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Figure 10. Image deblurring results. The first row is the original data (denoted by ORI), the second
row is the data with the removal of backscattered light (denoted by SUB), the third row is the result
of the deblurring of the first row images (denoted by ORI-deblur), and the fourth row is the blur
removal result for the second row images (denoted by SUB-deblur).
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4.4. Compare with Other Methods

We compare our method with the recent end-to-end deep-learning-based approach for
defocus deblurring [21,22]. The result images are produced by using the pre-trained model
provided by the authors. KPAC provides two versions of models, one is 2-level KPAC and
the other is 3-level KPAC. We choose 2-level KPAC to deblur the images. For evaluation,
we measure the Brenner gradient of the images.

Figure 12 shows a qualitative comparison. As the figure shows, our method produces
sharper results with more details. KPAC is affected by noise severely and has a small effect
on large-scale blur. GKMNet has little effect with large-scale blur.
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Figure 12. Visual comparison of three methods. The first row, the second row and the third row
denoted as Test 1, Test 2 and Test 3: (a) images captured by PLRGI system; (b) results of KPAC
(2-level); (c) results of GKMNet; (d) results of our proposed method.

Table 2 reports the quantitative comparison. As shown in the table, our method
performs better than KPAC and GKMNet, which is consistent with the subjective feelings.

Table 2. Brenner gradient of the images in Figure 12.

Image Original-Img KPAC (2-Level) GKMNet Proposed

Test 1 6,332,717 11,105,332 16,595,901 60,484,160
Test 2 1,859,769 2,309,726 4,788,044 12,987,654
Test 3 1,711,670 3,133,317 4,259,167 22,433,318
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5. Conclusions

We have introduced an underwater image deblurring method for the PLRGI system
with an MSI method. Our method considers the blur caused by the combined effect
of forward scattering and defocus. According to the imaging model, we introduce the
rolling ball and intensity transformation to remove backscattered light before deblurring,
and we introduce a deep learning model based on Transformer to deblur images with
different levels of blur. Extensive experiments on various water conditions were carried
out, and the results show that the proposed method is effective and robust. The imaging
model and the backscattered light removal method in this paper is also beneficial for other
underwater vision tasks. Although the deep learning model based on Transformer has
good performance in deblurring, it takes too much time and cannot handle this in real time.
In order to be applied to the compact system, this issue will be studied in our future work.
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