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Abstract: We investigate the optomechanical effect on a single nano-particle inside an optical cavity,
by deriving the optical forces acting on the nano-particle by the cavity from quantum theory. We
obtain the steady state of the system and found that the force contains three terms associated with
the gradient force, the back-action force resulting from the intra-cavity photon energy change, as well
as the reactive force associated with the coupling between the external field and the cavity. Moreover,
we solve the dynamical system for a dielectric particle in a small mode volume cavity, which is
characterized by a quasi-periodic pattern. These results are important for understanding the control
of various types of levitated nano-particles through optomechanical coupling.

Keywords: optical trapping; optical forces; quantum optomechanics; cavity quantum electrodynamics;
dynamical evolution

1. Introduction

Since the first demonstration that light can trap and manipulate small particles [1,2],
extensive research has been continued in the field [3–9]. The conventional optical tweezer
trapping is, however, bounded by a diffraction limit. To overcome this limitation [10],
different devices have been proposed and experimentally tested to carry out the optical
trapping; see, e.g., optical microcavities [11–13], plasmonic/metallic structures [14–16],
and photonic crystal structures for multiple particle trapping [17,18]. Recently, particular
attention has been paid to levitated particles of optomechanical coupling, because the
mechanical quality can be significantly improved to suppress the decoherence from the
thermal noise effect of the environment [19–22]. In addition to the nano-particles of simple
dielectric materials, current research has been forwarded to those of internal degrees of
freedom such as optically active defects [23–26], to see the novel phenomena related to
their properties. Among various research directions, the biggest progress has been made
in the realization of the ground quantum state of trapped particles [27,28]. However,
except for a few studies about the linearized dynamics [29–32], almost no research has been
undertaken to understand the nonlinear dynamical behaviors of trapped particles. In this
work, we present a complete calculation of the potential for trapping the particle based on
full quantum theory and study the nonlinear dynamics of a trapped nano-particle in terms
of the derived potential. We apply this formalism to a cavity with small mode volume and
a low quality factor and find that, depending on the initial condition of the particle, the
resulting dynamical pattern can be periodic and quasi-periodic. This kind of dynamics can
be explored experimentally by using photonic crystal cavities [33].

2. Optical Force Calculation in the Quantum Regime

Let us assume a cavity with the resonant frequency ωc0 and optical mode Ec(r). When
we introduce a particle at the position x0, it can be seen as a perturbation to the dielectric
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constant of the cavity. This perturbation depends on the particle position and the particle
polarizability Re(α(ω)), which in general is frequency-dependent. Then, the cavity will
have a new cavity resonance ω̃c(x0) depending on the particle position.

The Hamiltonian of the system can be written as a sum of the kinetic energy, the
cavity energy, the coupling with the external source, and the polarization energy of the
particle [34–36]. In a rotating frame at the pump frequency ω, the Hamiltonian of the
system reads as:

H =
p2

2m
+ h̄(ω̃c(x0)−ω)a†a + ih̄

∫
γ(ω, ω̃c)(a†s− as†)dω

−1
2

∫
Vp

P(y)Ec(y)dy, (1)

where a/a† is the operator creating/annihilating a cavity photon, and s/s† represents the
pumping source. Moreover, γ(ω, ω̃c) is a coupling constant, and P is the polarization
of the particles, while the last integral is over the particle occupation space Vp. For a
monochromatic source, the coupling to the external source (third term in Equation (1)) can
be expressed as

ih̄
∫

γ(ω, ω̃c)(a†s− as†)dω = ih̄
√

2γe(x)sin(a† − a) (2)

where γe is the cavity decay rate, so that sin =
√

Pin
h̄ω is the photon flux from the source of the

power Pin. In the last term, we assume that the particle has a polarizability P = Re(α(ω̃c))Ec.
Then, the interaction Hamiltonian is

Hint = −
1
2

∫
Vp(x)

P(y)Ec(y)dy = −Re(α(ω̃c))

2

∫
Vp(x)

|Ec(y)|2dy (3)

= −h̄ω̃cRe(α(ω̃c)) f (x0)a†a

where f (x0) is a function that depends on the position x0 of the particle and is determined
by the integral of the field over the particle volume.

To calculate the optomechanical force at the position x0, it is necessary to know the
change in energy for a small displacement x from x0. The interaction Hamiltonian can be
written as

Hint(x) = −h̄ω̃cRe(α(x0)) f (x0)a†a− xh̄ω̃c

[
Re(α(x0))

∂ f (x)
∂x

+ f (x0)
∂Re(α(x))

∂x

]
a†a, (4)

where, by using the complex polarizability α = α0/[1− ik3α0/(6πε0εm)], the time-averaged
total gradient, absorbing and scattering force in the nano-particle can be taken into ac-
count [37]. It represents the average energy on a time-harmonic electromagnetic field by a
small particle.

2.1. Low Polarizability

At low polarizability, the detuning is small, so the Hamiltonian can be written as (see
Appendix A for details):

H(x) = H0 − xh̄ω0
∂[Re(α) f (x)]

∂x
a†a (5)

where H0 is the energy of the system for a particle at x = x0 and ω0 = ω̃c(x0). We have
assumed that, at a fixed frequency, the energy in the cavity is constant around a given x0
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and, therefore, the coupling coefficient is also a constant. Solving the quantum Langevin
equations [38,39] with the Hamiltonian given in Equation (5), we obtain the following:

∂a
∂t

= i
[

ω−ω0 +

(
ω0

∂[Re(α(x)) f (x)]
∂x

)
x
]

a− (γi + γe)a +
√

2γesin (6)

∂p
∂t

= h̄ω0

(
∂[Re(α) f (x)]

∂x

)
a†a, (7)

with γi being the particle intrinsic loss. We have defined ωc = ω0(1− Re(α(x)) f (x)) as
the additional detuning. This extra detuning, ωc, can also be derived from the Hellmann–
Feynman theorem, as presented in the open cavity analysis [10].

The steady state is obtained with da/dt = 0, so that

as(ω, x0) =

√
2γesin

(γe + γi)− i(ω−ω0)
(8)

Fs(x0) = h̄ω0
∂[Re(α(x)) f (x)]

∂x

∣∣∣∣
x=x0

|as|2 (9)

are the steady-state values. In the case of dielectric particles, there are γi = 0, ∂(Re(α))
∂x = 0

and Q = ω0
2γe

. The force expression (Equation (9)) is then reduced to:

Fs(x0) =
2Qω2

0PinRe(α)
ω[ω2

0 + 4Q2(ω−ω0)2]

∂[|E0(x)|2]
∂x

∣∣∣∣
x=x0

(10)

where Pin is the source power. This expression is similar to the one postulated using open
cavity analysis [10], with a coupling coefficient

T(ω) =
ω2

0
ω2

0 + 4Q2(ω−ω0)2
(11)

2.2. High Polarizability

In order to calculate the optomechanical force at the position x0 for particles with high
polarizability or frequency-dependent polarizability, we can again estimate the change in
energy for a small displacement x around x0. If the cavity is at frequency ω0, the additional
cavity detuning and change in the cavity-coupling coefficient will produce a change in the
photon field energy coupled to the cavity, producing the additional force. We can estimate
the change in cavity frequency and coupling by using the following Taylor expansions
around x0:

ωc(x) = ω0 + x
∂ωc

∂x

∣∣∣∣
x=x0

(12)

√
2γe(ωc(x)) =

(√
2γe(ω0) +

x√
2γe(ωc)

∂γe

∂x

)
. (13)

For the photon number in the cavity, assuming the electromagnetic field profile is
unperturbed, we can calculate the change by using the canonical quantization of the field
in the form [40–42]:

a(ω) =
1√
2h̄ω

(ωXc + iPc). (14)
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for canonical operators Xc and Pc. Thus, the expansion of the operator around x0 is

a(x) = a(x0) + x
∂a

∂ωc

∂ωc

∂x
= a(x0) +

x
2ωc

a† ∂ωc

∂x

∣∣∣∣
x=x0

. (15)

After incorporating all the terms into the Hamiltonian, together with applying the
rotation wave approximation and neglecting terms involving two photon processes (see
Appendix A), we obtain the Hamiltonian and the quantum Langevin equation:

H(x) = H0 + x
[

h̄
∂ωc

∂x
a†a− ih̄

√
2γe

2ωc
(a† − a)sin

∂ωc

∂x
+

ih̄√
2γe

(a† − a)sin
∂γe

∂x

]
+x
[
−h̄ωcRe(α)

∂ f (x)
∂x

a†a− h̄ωc f (x0)
∂Re(α(x))

∂x
a†a− h̄ωc f (x0)Re(α(x0))

∂ωc

∂x
a†a
]

, (16)

∂p
∂t

= h̄ωc

[
∂[Re(α) f (x)]

∂x
+

f (x0)Re(α(x0))

ωc

∂ωc

∂x

]
a†a− h̄

∂ωc

∂x
a†a

+ih̄
√

2γe

2ωc
(a† − a)sin

∂ωc

∂x
− ih̄√

2γe
(a† − a)sin

∂γe

∂x
. (17)

Similarly to the low polarizability case, we obtain the steady-state solutions:

as(ω, x0) =

√
2γesin

(γe + γi)− i(ω−ωc)
, (18)

Fs(x0) = h̄ωc

(
∂[Re(α(x)) f (x)]

∂x

)
|as|2

+h̄
[

f (x0)Re(α(x0))|as|2 + i
√

2γe

2ωc
(a† − a)sin − |as|2

]
∂ωc

∂x

− ih̄√
2γe

(a†
s − as)sin

∂γe

∂x
. (19)

The first term in Equation (19) is associated with the gradient force, and the second is
the back-action resulting from the intra-cavity photon energy change, and the last term is
the reactive force from the coupling between the external field and the cavity. Finally, the
force at the position x0 can be expressed as

Fs(x0) = −
2γePin

ω[(γe + γi)2 + (ω−ωc)2]

∂ωc

∂x

∣∣∣∣
x=x0

+
γePinRe(α(x0))|E0(x)|2

ω[(γe + γi)2 + (ω−ωc)2]

∂ωc

∂x

∣∣∣∣
x=x0

− 2(ω−ωc)Pin
ω[(γe + γi)2 + (ω−ωc)2]

∂γe

∂x

∣∣∣∣
x=x0

+
ωcγePin

ω[(γe + γi)2 + (ω−ωc)2]

∂[Re(α(x))|E0(x)|2]
∂x

∣∣∣∣
x=x0

. (20)

3. Dynamics of a Dielectric Particle in the Optical Cavity

To study the dynamics of the particle, we look at the simplest case of a dielectric
particle, γi = 0 and Q = ω0

2γe
, to simplify the force expression Equation (20) to Equation (10).

In addition, we consider a simple cavity of length L = λ/2, with λ being the pumping
wavelength, to have a Gaussian distribution of the field in the lateral directions, with
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wc = λ/2NA for NA = 0.7 and a quality factor Q = 2000. This exemplary cavity
demonstrates how the model works for a generic category of the cavities with small mode
volume and a low quality factor. Since the radius r of a spherical particle can be much
smaller than the parameter (wc), one can approximate the electromagnetic field profile as

|E0(x, y)|2 =
1

EV
exp

(
−2y2

w2
c

)
cos2

(πx
L

)
(21)

where EV represents the total energy in the cavity. It should be noted that the cavity
detuning, as a function of particle position inside the cavity, is given in [10] (see Appendix B
for details):

ωc(x)−ω = −ωc(x)|E(x)|2Re(α)∫
Vc εc|E(x)|2dV

(22)

We also consider a pumping source with a wavelength λ = 1.55µm and a power
Pin = 5 mW. The particle has r = 20 nm, dielectric permittivity εp = 12 and density
2.33 g/cm3.

Figure 1 shows the optical force and associated potential as a function of the particle
position. The force with a nonlinear characteristic shows a symmetric landscape, making
us to go beyond the linear regime.
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Figure 1. (a) Force x-component (Fx). (b) Force y-component (Fy). (c) Potential energy of the particle
in the cavity. Black color lines represent equipotential lines. Horizontal axis in units of L/2. Vertical
axis in units of wc. Force in pN. Particle potential energy in units of aJ.

For simplicity, we can reduce the phase space of the system to the section (x, px, y, py) by
fixing (z, pz) = (0, 0); the extension to the whole space of six dimensions (x, px, y, py, z, pz) is
straightforward. Let us consider the particle with small drag and gravitation force; otherwise,
in a damped system, the rich dynamics will be lost as the particle stabilizes only in a terminal
velocity. In general, the dynamics of the system manifests by the solution (x, px, y, py) to the
following differential equations:

~̇x =
~p
m

(23)

~̇p = h̄ωc|as(x)|2∇[Re(α(x)) f (x)]. (24)

The initial condition (x0, px,0, y0, py,0) = (xini, 0, 0, 0) or (x0, px,0, y0, py,0) = (0, 0, yini, 0),
where 0 < xini < L/2 and 0 < yini < wc given the force/potential’s symmetry (see Figure 1),
will lead to different trajectories of the particle. From a given initial conditions (x0, px0, y0, py0),
the dynamical system is solved numerically to obtain the behavior of the levitated particle.
For the initial conditions (x0, 0, y0, 0) with x0 << L/2 and y0 << wc, the particle shows
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periodic trajectories as expected from the approximate linear potential at a short displacement.
Given the small mode volume of the cavity, the particle will experience the full potential, and
then, we should go beyond the regime of periodic motion.

The particle will display the periodic oscillations of complicated patterns if the particle
is confined in one dimension such as along the X-axis, Y-axis. However, when its initial
is more general with the position (x0, 0, y0, 0) in the cavity, the realized trajectories will
much more complicated as the quasi-periodic ones as shown with the Poincare section
(x0, px,0, y0, py,0) = (xini, 0, wc, 0) in Figure 2a. The displayed Poincare sections are totally
symmetric with respect to both position and momentum of the particle motion. Moreover,
the change of the initial condition modifies its profile while maintaining its symmetry,
indicating that the quasi-periodic characteristic is typical to this system. In order to get
the further information about the motion, we calculate the power spectral density (PSD)
of the moving particle along each direction. This efficient technique allows one to explore
the different regimes such as periodic, quasi-periodic, and chaotic in complex systems [43].
In a special situation of pure periodic motion, the PSD will have the form of a single
peak. However, in Figure 2b, the PSD displays a spectrum of multiple peaks even for
one particular case of (xini, 0, wc, 0). The demonstrated multi-peak pattern indicates the
multiple frequency components in oscillation, which are typical for a quasi-periodic motion.
Such PSD from the projection of a two dimensional motion implies rather complex quasi-
periodic trajectories by nature. These trajectories can be well adjusted by tuning the system
parameters.

(a) (b)
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(
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6

)
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4. Discussion

The concerned optomechanical system, consisting of a levitating nano-particle in an
optical cavity with a small mode volume, displays periodic and quasi-periodic motions
depending on its initial conditions. In the system we present as an example, the small
detuning is driven by the particle position but, for the systems where the detuning is
higher [13,44], we need to consider all the terms in Equation (20) rather than the last term
only, i.e., including the back-action and reactive forces. The complete dynamical picture
was not considered before.

Beyond the scenario of the steady state, the dynamical behaviour of the levitated parti-
cle could be rather complicated due to the nonlinearity in the interaction potential.Through
the stronger interplay between the cavity field and mechanical motion, the adjusted laser-
cavity detuning and optical coupling can lead to a chaotic motion [45,46]. In general, the
equations of motion in Equation (6) are nonlinear, and the variables of the equations of
motion are greater than three if we put them in a standard form of an autonomous system.
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In the extreme situation, chaos would manifest for certain detuning and laser power, as
seen in other optomechanical systems [46–48].

5. Conclusions

We have investigated mechanical forces acting on a single nano-particle inside an
optical cavity. We derive the optical forces acting on the nano-particle from a full quantum
theory. The force contains three terms associated with the gradient force, the back-action
force resulting from the intra-cavity photon energy change, as well as the reactive force
related to the coupling between the external field and the cavity. The dynamical system
of the dielectric particle is solved by considering these forces in a small mode volume
cavity. Particularly, a quasi-periodic behavior of the particle displays a symmetric Poincare
map and a multi-peak power density spectrum of the displacement. Such rich dynamical
behaviors could be further explored in the systems where the back-action force and reactive
force are larger compared to the gradient force, which can be realized for different types of
levitated resonant particles, high-Q cavities, and more complex cavity field profiles.
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Appendix A

In this section, all the derivatives are evaluated at x = x0 (so, they are numbers, no
operators). Omitting second-order terms (x2, aa and a†a†), we Taylor expand each term
of the Hamiltonian (Equation (1)) using Equations (12)–(14) to take into account the extra
cavity detuning:

h̄(ωc(x)−ω)a†(x)a(x) = h̄
(

ωc(x0)−ω + x
∂ωc

∂x

)
a†a (A1)

similarly, √
2γe(x)sin(a†(x)− a(x)) =

(√
2γe(a† − a) +

x√
2γe

∂γe

∂x
(a† − a)

− x
√

2γe

2ωc

∂ωc

∂x
(a† − a)

)
sin (A2)

and the last term:

−h̄ωc(x)Re(α(x)) f (x)a†a = −h̄[ωcRe(α) f (x0)

+xωc
∂Re(α) f (x0)

∂x
+ xRe(α) f (x0)

∂ωc

∂x

]
(A3)
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Therefore, the Hamiltonian can be written as Equation (16):

H(x) = H0 + x
[

h̄
∂ωc

∂x
a†a− ih̄

√
2γe

2ωc
(a† − a)sin

∂ωc

∂x
+

ih̄√
2γe

(a† − a)sin
∂γe

∂x

]
+x
[
−h̄ωcRe(α)

∂ f (x)
∂x

a†a− h̄ωc f (x0)
∂Re(α(x))

∂x
a†a− h̄ωc f (x0)Re(α(x0))

∂ωc

∂x
a†a
]

(A4)

Appendix B

The cavity detuning can be computed using the Bethe–Schwinger cavity perturbation
theory as:

δω = −ωc|E(x)|2Re(α)∫
Vc εc|E(x)|2dV

(A5)

For a particle with electric permittivity εp in a cavity medium εm, the normalization
integral over the cavity volume Vc becomes∫

Vc
εc|E(x)|2dV = εm

∫
Vc
|E(x)|2dV + δε

∫
Vp
|E(x)|2dV (A6)

where δε = εp − εm. Therefore, if we use
∫

Vc |E(x)|2dV = 1, for a small particle of volume
Vp, we get

δω = −ωc|E(x)|2Re(α)∫
Vc εc|E(x)|2dV

= − ωc|E(x)|2Re(α)
[εm + δεVp|E(x)|2] (A7)

and, then

ωc(x) =
ω[εm + δεVp|E(x)|2]

|E(x)|2Re(α) + [εm + δεVp|E(x)|2] (A8)

where, in the case of a small spherical dielectric particle

Re(α) = 3
εmVp(εp − εm)

(εp + 2εm)
. (A9)
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