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Abstract: A refractive lens is one of the simplest, most cost-effective and easily available imaging
elements. Given a spatially incoherent illumination, a refractive lens can faithfully map every object
point to an image point in the sensor plane, when the object and image distances satisfy the imaging
conditions. However, static imaging is limited to the depth of focus, beyond which the point-to-point
mapping can only be obtained by changing either the location of the lens, object or the imaging
sensor. In this study, the depth of focus of a refractive lens in static mode has been expanded using a
recently developed computational reconstruction method, Lucy-Richardson-Rosen algorithm (LRRA).
The imaging process consists of three steps. In the first step, point spread functions (PSFs) were
recorded along different depths and stored in the computer as PSF library. In the next step, the
object intensity distribution was recorded. The LRRA was then applied to deconvolve the object
information from the recorded intensity distributions during the final step. The results of LRRA were
compared with two well-known reconstruction methods, namely the Lucy-Richardson algorithm
and non-linear reconstruction.

Keywords: imaging; incoherent optics; Lucy-Richardson-Rosen algorithm; deblurring; refractive
lens; computational imaging; holography; 3D imaging; deconvolution

1. Introduction

Imaging objects using spatially incoherent light sources has many advantages such
as higher imaging resolution and lower imaging noises such as edge ringing or speckle
noises in comparison to coherent sources [1]. Furthermore, the use of spatially incoherent
light sources is economical and eye-safe. Due to the aforementioned advantages, the devel-
opment of incoherent imaging technologies is essential for imaging applications; in many
cases, which include astronomical imaging and fluorescence microscopy, such technologies
are irreplaceable [1–3]. While realizing a 2D incoherent imaging system is easy with a single
refractive lens, extending the imaging dimensionality to 3D is a challenging task without
introducing dynamic changes to the system. Three-dimensional imaging using spatially
incoherent sources is developed along two directions. The first direction is based on the
principles of holography involving two beam interferences, phase-shifting, generation
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of a complex hologram and image reconstruction by numerical back propagation [3–6].
This direction required extremely complicated optical architectures with numerous optical
components due to the constraints of low coherence lengths. Some notable architectures
developed in this direction are the rotational shearing interferometer [7], conoscopic holog-
raphy [8], Fresnel incoherent correlation holography (FINCH) [9,10], Fourier incoherent
single channel holography [11] and coded aperture correlation holography [12]. FINCH,
which is considered as one of the simplest incoherent digital holography architectures,
requires an active device such as a spatial light modulator and multiple optical and opto-
mechanical components.

The second research direction of 3D imaging using incoherent light was based on
deconvolution, utilizing the linearity conditions of incoherent imaging. This approach,
unlike the holography method, does not require two beam interferences, vibration isolation
and many optical components. The first report of deconvolution-based imaging was
published by Ables and Dicke [13,14]. In these studies, a random pinhole array was used
as the only optical element between the object and the sensor. The scattered intensity
distribution for an object was recorded, which was deconvolved into the object information
using the pre-recorded point spread function (PSF). In comparison to the holography-
based 3D imaging approaches, the deconvolution-based approach is faster, simpler, more
economical and compact.

The above research directions are not free of challenges and involved many decades
of development until the ideas met the technology and vice versa [1,4,15,16]. The inco-
herent holography methods waited for the development of active optical devices such as
SLM and the idea of FINCH. The deconvolution-based methods waited for the develop-
ment of high-performance computational algorithms and the idea to image in 3D. The
deconvolution-based 2D imaging was reported in 1968, while the first 3D spatial imag-
ing was reported in 2017 [17]. Most of the deconvolution-based 3D [18–20], 4D [21] and
5D [22,23] imaging techniques were reported in the last five years. In all the above studies, a
diffuser-type optical modulator was used between the object and the sensor. Consequently,
the signal to noise ratio (SNR) was low in all the above studies. The choice of the optical
modulator originated from the requirements of the computational reconstruction algorithm.
As most, if not all, computational algorithms are correlation-based, the autocorrelation
function is required to be as sharp as possible to sample the object function [24,25]. The
scattered intensity distributions in the far-field generate a sharp autocorrelation function as
the average speckle size is equal to the diffraction limited spot size allowing diffraction
limited imaging.

As diffusers are lossy and affect the SNR, it is necessary to find optical fields that can
concentrate light in a small area on the sensor. A recent review from our research group
identified a computational processing pair—non-linear reconstruction (NLR) and raising
the image to the power of p enabled the use of many deterministic fields for deconvolution-
based 2D imaging applications [26]. However, the imaging results varied with the type of
optical field and all of them were generated by highly diffractive masks. The above study
leads to an important question. Is it possible to use a refractive lens for deconvolution-
based 3D imaging? Lucy-Richardson (LRA) is one of the widely used deconvolution
algorithms for deblurring images formed by lenses due to depth or motion blur [27,28].
However, the deconvolution range is limited and so the algorithm cannot be applied to
cases with large aberrations. Recently, a deconvolution algorithm, Lucy-Richardson-Rosen
algorithm (LRRA) was developed by integrating LRA with NLR and applied to infrared
microspectroscopy studies by our group [29]. The performance of the algorithm was
significantly better than LRA and NLR. In this study, we have applied LRRA to imaging
using a refractive lens to computationally extend the depth of focus of imaging.

In the original study on the formulation of LRRA by our group, a condition termed as
SALCAD—Sharp Autocorrelation and Low Cross-correlation Along Depth—was suggested
as the requirement for 3D imaging. This condition, in simpler words, means that the
intensity distributions need to be localized to generate a sharp autocorrelation function
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and should vary with depth such that the cross-correlation is low. This is an essential
condition for 3D imaging as when one plane of the object is computationally refocused, the
information from other planes should appear weak. In our past study, this condition on a
plane was fulfilled as the infrared imaging system consisted of Cassegrain objective lenses
which generated localized intensity distributions in the form of four lobes in the presence of
axial aberrations. Besides, the intensity distribution varied with depth fulfilling the second
part of the condition of SALCAD. However, fulfilling SALCAD also means that the optical
modulator is required to distribute light to a larger area, which decreases the signal to
noise ratio. In this study, LRRA has been applied to blurred intensity distributions for the
first time. Secondly, in the previous study and in correlation-based incoherent holography
systems, a low spatial coherence and a high temporal coherence (∆λ ~ 1 nm) is desirable.
In this study, we investigate LRRA in a case with a broader spectral width ∆λ > 20 nm.
Finally, the expected impact is significant as the focal depth of the refractive lens is low and
the proposed method can extend it computationally better than LRA and NLR. This opens
the possibility for 3D imaging. Finally, the proposed system consists of only one optical
element—a refractive lens—which makes the system compact, lightweight, and low-cost
(~20 Euros), which are significant advantages in comparison to existing self-interference
incoherent holography systems. In comparison to existing single-element systems [22,23],
the proposed method is expected to have a better signal to noise ratio as the energy is
concentrated in a small area of the sensor.

The manuscript consists of six sections. The methodology is discussed in the next
section. In the Section 3, the simulation studies are presented. The experimental studies
are presented in the Section 4. The discussion of 3D imaging with incoherent light is
presented in the Section 5. In the Section 6, conclusion and future perspectives of the study
are discussed.

2. Materials and Methods

The optical configuration of the imaging system is shown in Figure 1. A quasi-
monochromatic light source—no spatial coherence and high temporal coherence—is con-
sidered for illumination. A point object at ro = (xo, yo) with an amplitude of

√
Io is located

at a distance of zs from a refractive lens with a complex amplitude of exp
[
−jπR2/(λ f )

]
,

where f is the focal length of the lens given as 1
f = 1

u + 1
zh

, u is the ideal object distance,
zh is the distance between the refractive lens and the sensor and ideal image distance, λ
is the wavelength and R is the radial coordinate given as R =

√
x2 + y2. The complex

amplitude of light reaching the refractive lens is given as ψ1 = C1
√

IoQ
(

1
zs

)
L
(

ro
zs

)
, where

Q(1/zs) = exp
[
jπR2/(λzs)

]
and L(o/zs) = exp

[
j2π
(
oxx + oyy

)
/(λzs)

]
are the quadratic

and linear phases, zs is the actual object distance and the axial aberration is quantified as
zs-u and C1 is a complex constant. The complex amplitude after the optical modulator is
given as ψ2 = C1

√
IoQ
(

1
z1

)
L
(

ro
zs

)
, where z1 = zs f

f−zs
. The intensity distribution obtained in

the sensor plane located at a distance of zh is the PSF given as

IPSF =

∣∣∣∣C2
√

IoL
(

ro

zs

)
Q
(

1
z1

)
⊗Q

(
1
zh

)∣∣∣∣2 (1)

where ‘⊗’ is a 2D convolutional operator. When zs = u, the imaging condition is satisfied, z1
becomes zh and a point image is obtained on the sensor. The lateral resolution in the object
plane is given as 1.22λzs/D, where D is the diameter of the lens. The axial resolution of the
system is given as 8λ(zs/D)2 and the magnification of the system is given as M = zh/zs.
By the linearity condition of incoherent imaging, the intensity distribution obtained for an
object with a function O is given as

IO = |IPSF ⊗O| (2)
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Figure 1. Concept figure of imaging using a refractive lens and computational reconstruction.

In the direct imaging mode, IO is obtained by sampling of O by IPSF and therefore
when the imaging condition is satisfied, the object information gets sampled by the lateral
resolution of the system. When the imaging condition is not satisfied, the IPSF is blurred and
so is the object information. In indirect imaging mode, the task is to extract O from IO and
IPSF. A direct method to extract O is to cross-correlate IO and IPSF as IR = IO ∗ IPSF which
is given as IR = IPSF ⊗O ∗ IPSF. Rearranging the terms, we obtain IR = O⊗ IPSF ∗ IPSF.
So, the reconstructed information is the object information sampled by the autocorrelation
function of IPSF. The width of the autocorrelation function cannot be smaller than the
diffraction limited spot size under normal conditions. When the imaging condition is
satisfied or when a diffuser is used, the autocorrelation function is sharp. When the
imaging condition is not satisfied, then the autocorrelation function is blurred, making the
correlation-based reconstruction not effective. The advanced version of correlation given as
a non-linear reconstruction is effective in reducing the background noise arising due to the
positive nature of the IPSF during correlation but is affected by the nature of the intensity
distribution [24,26]. The non-linear reconstruction is given as

IR = F−1
{∣∣∣ ĨPSF

∣∣∣α exp
[

j·arg
(

ĨPSF

)]∣∣∣ ĨO

∣∣∣β exp
[
−j·arg

(
ĨO

)]}
(3)

where α and β were varied until a minimum background noise is obtained, F−1 is inverse
Fourier transform operator and Ĩa is the Fourier transform of Ia. While this is one of the
robust correlation-based reconstruction methods, LRA uses a different approach involving
the calculation of the maximum likelihood solution but once again from IPSF and IO. The
(n+1)th reconstructed image in LRA is given as In+1

R = In
R

{
IO

In
R⊗IPSF

⊗ IPSF
′
}

, where IPSF
′

refers to the flipped version of IPSF and the loop is iterated until the maximum likelihood
reconstruction is obtained. In the above equation, the denominator has a convolution
between two positive functions which results in non-zero values. The initial guess of the
LRA is often the recorded image itself and the final solution is a maximum-likelihood
solution. As seen in the above equation, there is a forward convolution In

R ⊗ IPSF and
the ratio between this and IO is correlated with IPSF which is replaced by the NLR. This
yields a better estimation with reduced background noise and rapid convergence. In this
study, the performances of LRA, NLR and LRRA are compared. The schematic of the
Lucy-Richardson-Rosen algorithm is shown in Figure 2.
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3. Simulation Studies

A simulation study was carried out in MATLAB using Fresnel diffraction formulation.
A mesh grid was created with a pixel size ∆ = 10 µm, λ = 650 nm and 500 × 500 pixels
matrix. The values of zh and f were selected as 0.8 m and 0.4 m, respectively, and zs was
varied from 0.4 m to 1.2 m in steps of 0.1 m. The recorded PSFs for zs = 0.4 to 1.2 m in
steps of 0.1 m is shown in Figure 3. A test object ‘CIPHR’ was used, and the object intensity
distributions were calculated by a convolution between the test object and the PSF. The
images of the test object for different cases of axial aberrations are shown in Figure 3. The
reconstruction results using LRA, NLR and LRRA are shown in Figure 3. It can be seen
that the performance of LRRA is significantly better than LRA and better than NLR. The
LRA and NLR had consistent reconstruction conditions such as 20 iterations and α = 0 and
β = 0.6. In the case of LRRA, the conditions were changed for every case. The values of (α, β,
n) for zs = 0.4 to 1.2 are (0, 0.5, 5), (0, 0.5, 5), (0, 0.5, 5), (0, 0.5, 5), (0, 0.5, 1), (0, 0.5, 8), (0, 0.5, 8),
(0, 0.5, 8) and (0, 0.6, 5), respectively. In the case of NLR, the reconstruction improves when
the PSF pattern is larger as expected due to improvement in sharpness of autocorrelation
function with larger patterns. A 3D simulation was carried out by accumulating the 2D
intensity distributions into cube data. The images of the PSF, object variation from 0.6 to
1 m and the cross-sectional images of reconstructions of NLR, LRA and LRRA are shown in
Figure 4a–e, respectively. Comparing, Figure 4c–e, it is seen that NLR and LRRA performed
better than LRA, while LRRA exhibited the best performance.

Prior to the experiment, a simulation study was carried out on a test object similar to
the object that was used for optical experiments later. An object similar to a double slit was
designed. The simulation conditions were made to match the experimental conditions. The
location of the pinhole from the refractive lens was kept at 7 cm, 7.1 cm and 7.2 cm and
the PSFs were simulated. The object intensity distribution was estimated by a convolution
between the simulated PSF and the test object. The object image was reconstructed using
LRA, NLR and LRRA. The simulation results of PSF, direct imaging (DI) and optimal
reconstructions of LRA, NLR and LRRA are shown in Figure 5. The simulation results
indicate that LRRA performs better than LRA and NLR.
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4. Experiments

The experimental setup used in this study is shown in Figure 6. This setup consists of
a spatially incoherent light source—a high-power LED (Thorlabs, 170 mW, λ = 650 nm and
∆λ = 20 nm). An iris and a refractive lens (L1) of the focal length of 50 mm were used to
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focus the light from the LED to critically illuminate the object. A pinhole with a diameter of
50 µm was used for recording the PSF library. A refractive lens (L2) with a focal length of f
= 35 mm is placed at 2f position between the test object and the image sensor (Quantum
QHM495LM 6 Light Webcam) with 480 × 640 pixels and pixel size of ~1.5 µm. The lateral
and axial resolutions of the system are 2.2 µm and 40 µm, respectively. A neutral-density
filter (ND 1.5) was placed between the image sensor and the L2 to reduce the light intensity.

Photonics 2022, 9, x FOR PEER REVIEW 7 of 12 
 

 

were considered for imaging experiments. The first test object is a double slit-like object 
with a size 1.5 × 0.28 mm (L × B). The images of the PSFs recorded at zs = 7 cm, 7.1 cm and 
7. 2 cm, the corresponding direct imaging (DI) results of object and reconstruction results 
using LRA (n = 20), NLR (α = 0.2, β = 0.7) and LRRA (α = 0.6, β = 0.9) with n = 2, 12 and 12 
for the above three cases are shown in Figure 7. The differences between the simulation 
and experimental results are due to the cumulative effect of the following conditions. The 
point object used in the simulation was a single pixel object with a size of 10 μm, while 
the one used in the experiment was 100 μm. The image sensor used in the experiment was 
a low-cost web camera in which it is not possible to control exposure conditions as it is 
done in scientific cameras. Most web cameras have their own autocorrection algorithms 
to enhance images. There were stray lights entering the camera. The above three might 
have contributed to the increase in background noises. The objects used in simulation only 
transmit or block light but in experiments, in addition to the above the objects also scatter 
light. Finally, experimental errors in the form of differences in the locations of the pinhole 
and objects. We believe that the cumulative effect of all the above caused the discrepancy 
between simulation and experimental results. 

The second test object is a cross-like object with a size 3.06 × 3.4 mm (L × B). The 
images of the PSFs recorded at zs = 7 cm, 7.2 cm and 7. 4 cm, the corresponding direct 
imaging (DI) results of object and reconstruction results using LRA (n = 20), NLR (α = 0.2, 
β = 0.7) and LRRA (α = 0.8, β = 0.9, n = 10), (α = 0.8, β = 1, n = 10) and (α = 0.8, β = 0.9, n = 
15) for the above three cases are shown in Figure 8. The third test object consists of two 
circular objects each with a radius of 360 μm. The images of the PSFs recorded at zs = 7 cm, 
7.2 cm and 7. 4 cm; the corresponding direct imaging (DI) results of object and reconstruc-
tion results using LRA (n = 20), NLR (α = 0.2, β = 0.7) and LRRA (α = 0.6, β = 0.9, n = 12), 
(α = 0.8, β = 1, n = 15) and (α = 0.8, β = 1, n = 15) for the above three cases are shown in 
Figure 9.  

 
Figure 6. Photograph of the experimental setup: (1) LED source, (2) Iris, (3) LED power source, (4) 
Lens L1 (f = 50 mm), (5) Test object, (6) Lens L2 (f = 35 mm), (7) ND filter (ND 1.5), (8) Image sensor 
and (9) XY stage movement controller. 

 

Figure 6. Photograph of the experimental setup: (1) LED source, (2) Iris, (3) LED power source,
(4) Lens L1 (f = 50 mm), (5) Test object, (6) Lens L2 (f = 35 mm), (7) ND filter (ND 1.5), (8) Image
sensor and (9) XY stage movement controller.

As a first step in the experiment, the PSF library was recorded by shifting the location
of the pinhole along the +z and −z directions in steps of 0.25 mm. Then, the pinhole was
replaced by the test object, and the corresponding images were recorded in identical planes
to that of the PSF. The PSF library and the object intensity distributions were then fed into
the reconstruction algorithm and the images were deconvolved. The experimental set up
is highly economical and can be constructed with as low as <20 €. Three test objects were
considered for imaging experiments. The first test object is a double slit-like object with
a size 1.5 × 0.28 mm (L × B). The images of the PSFs recorded at zs = 7 cm, 7.1 cm and 7.
2 cm, the corresponding direct imaging (DI) results of object and reconstruction results
using LRA (n = 20), NLR (α = 0.2, β = 0.7) and LRRA (α = 0.6, β = 0.9) with n = 2, 12 and 12
for the above three cases are shown in Figure 7. The differences between the simulation
and experimental results are due to the cumulative effect of the following conditions. The
point object used in the simulation was a single pixel object with a size of 10 µm, while the
one used in the experiment was 100 µm. The image sensor used in the experiment was
a low-cost web camera in which it is not possible to control exposure conditions as it is
done in scientific cameras. Most web cameras have their own autocorrection algorithms
to enhance images. There were stray lights entering the camera. The above three might
have contributed to the increase in background noises. The objects used in simulation only
transmit or block light but in experiments, in addition to the above the objects also scatter
light. Finally, experimental errors in the form of differences in the locations of the pinhole
and objects. We believe that the cumulative effect of all the above caused the discrepancy
between simulation and experimental results.
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The second test object is a cross-like object with a size 3.06 × 3.4 mm (L × B). The
images of the PSFs recorded at zs = 7 cm, 7.2 cm and 7. 4 cm, the corresponding direct
imaging (DI) results of object and reconstruction results using LRA (n = 20), NLR (α = 0.2,
β = 0.7) and LRRA (α = 0.8, β = 0.9, n = 10), (α = 0.8, β = 1, n = 10) and (α = 0.8, β = 0.9,
n = 15) for the above three cases are shown in Figure 8. The third test object consists of
two circular objects each with a radius of 360 µm. The images of the PSFs recorded at
zs = 7 cm, 7.2 cm and 7. 4 cm; the corresponding direct imaging (DI) results of object and
reconstruction results using LRA (n = 20), NLR (α = 0.2, β = 0.7) and LRRA (α = 0.6, β = 0.9,
n = 12), (α = 0.8, β = 1, n = 15) and (α = 0.8, β = 1, n = 15) for the above three cases are
shown in Figure 9.
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The structural similarity index (SSIM) of the reconstructed images was calculated with
respect to the reference image recorded without aberration for direct imaging, LRA, NLR,

and LRRA [30]. The SSIM is given as SSIM(I1, I2) =
(2µI1 µI2+D1)(2σI1 I2+D2)

(µI1
2+µI2

2+D1)(σI1
2+σI2

2+D2)
, where

I1 and I2 are the two compared images; µI1 and µI2 are the local mean values of I1 and
I2, respectively; σI1 and σI2 are the variances of I1 and I2 with means µI1 and µI2 ; σI1 I2 is
the covariance; D1 and D2 are constants used to maintain the values of components in
denominator as non-zeros. The maps of the SSIM for the above cases are shown in Figure 10.
It should be noted that the presence of stray light in the recorded images could significantly
affect the SSIM index. This could be attributed to the slight variations observed in Figure 10.
The SSIM values are plotted as shown in Figure 11. It can be seen that LRRA performed
better than both LRA and NLR techniques.
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5. Discussion

Are 3D imaging and deconvolution the same or different? In incoherent imaging,
the above two terminologies can be used interchangeably. In incoherent imaging, unlike
coherent imaging systems where the phase information is recorded, only 3D intensity
information is recorded [1]. Let us ask this important question. What is 3D imaging? In
a direct imaging system using a lens, only one plane of the object is imaged at a time.
In order to image the other planes of the object, the location of one of the components:
object, lens or sensor has to be physically modified to satisfy the imaging condition for
that plane. This physical process needs to be repeated for every plane of the object until
all the information is recorded. This is 3D imaging, but the process consumes more time
and requires physical efforts. In indirect imaging, one or a few recordings are done and
this process records only one plane of the object in focus, while the other planes of the
objects are recorded with different degrees of blur. The blur increases with the increase
in difference between the current distance and the required distance to achieve imaging
condition. With the prerecorded PSFs, it is possible to digitally refocus to different planes
of the object. So, 3D imaging in indirect imaging is only digital refocusing. In the previous
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sections, digital refocusing has been carried out for an object consisting of only one plane
using LRRA, LRA and NLR and it was found that LRRA performs better than both LRA
and NLR. This approach can be applied to objects consisting of two or more planes. As
a proof of concept, an object consisting of two planes has been constructed using test
objects 2 and 3 separated by a distance of 4 mm. The image of the recorded intensity
distribution is shown in Figure 12a. As it is seen, test object 3 is in focus, but test object 2
is not. Now applying LRRA as it was done for objects with single plane, test object 2 is
digitally refocused during which test object 3 becomes defocused, as shown in Figure 12b.
In summary, 3D imaging with incoherent light is only a digital refocusing process of the
physically recorded intensity distribution. In other words, 3D imaging with direct imaging
methods involve only physical refocusing, whereas 3D imaging with indirect imaging
methods involves substantial digital refocusing and one or a few physical recordings.
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Figure 12. (a) Image of the recorded intensity distribution for a 4 mm thick object consisting of two
thin objects—test object 2 and 3. (b) Reconstructed image using LRRA at the plane of the test object 2.

6. Conclusions

A refractive lens is one of the simplest optical elements that can be used for 2D
imaging with spatially incoherent light. However, the depth of focus of imaging is limited
to ~λ/NA2, beyond which the object information becomes blurred. There are many
computational techniques that can be used to deblur the object information but are often
limited to a smaller range of axial aberrations [31–33]. In this study, a recently developed
computational technique called the LRRA has been implemented for deep deconvolution of
images formed by a refractive lens and compared against NLR and LRA. The performance
of LRRA seems significantly better than LRA and better than NLR in both simulation as
well as experimental studies. Since the simulation and experimental studies confirm the
possibility of a higher range of deconvolution, we believe that this study will benefit 3D
imaging using spatially incoherent light. In this study, proof-of-concept 3D imaging has
been demonstrated. Recalling the novelty conditions described in the introduction, in our
original article [29], the intensity distributions were localized and so the autocorrelation
function was sharp, and consequently NLR performed better than LRA. In this study, the
PSF is blurred and so the autocorrelation function has a width which is twice that of the
width of the PSF and so a correlation-based reconstruction system is expected to perform
poorly with a low resolution. This is exactly seen in this case when NLR did not reconstruct
the object information satisfactorily. The optimal case of LRRA seems to shift between NLR
and LRA depending upon the type of intensity distributions and offers a better performance
than both methods. In summary, LRRA enables converting a refractive lens-based direct
imaging system into a 3D imaging system where direct and indirect imaging methods can
co-exist. When the imaging condition is satisfied, it acts as a direct imaging system. When
the imaging condition is not satisfied, LRRA is applied to reconstruct the information at
that plane using the pre-recorded PSF. To the best of our knowledge, such an incoherent
holography system does not exist. We believe that this study will improve the current
state-of-the-art incoherent 3D imaging technology.
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