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Abstract: We examine the gain saturation effect in non-Hermitian systems of coupled gain–loss
waveguides and whispering-gallery-mode microresonators, through which a continuous-variable
(CV) entanglement of light fields is generated. Here, we consider squeezed vacuum inputs for
coupled waveguide setup and coherent drive for coupled microresonators, and study the influence
from the saturation of the used optical gain. Unlike the ideal situation without gain saturation,
it is possible to generate stabilized entanglement measured by logarithmic negativity under gain
saturation. Both types of setups realize steady CV entanglement, provided that the gain saturation is
sufficiently quick. Particularly, with the coupled microresonators which are pumped by coherent
drive, the created CV entanglement is actually out of the gain noise with a squeezing characteristic,
under the condition of fast saturation of the initial optical gain.
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1. Introduction

Except for the purely linear optical schemes (see, e.g., [1–7]), the systems of quantum
information processing mostly require various types of nonlinearity, but the ubiquitous
existence of quantum noise [8] always reduces and even impairs their effectiveness. Gain
saturation is one of the common types of nonlinearity in photonics, which is an inherent
property of optical gain. If an optical gain is approximated to be constant, one will have
the non-Hermitian optical systems, such as coupled gain–loss waveguides [9–12] and
microcavities [13,14], to be categorized with a so-called parity-time (PT) symmetry [15] by
balancing the involved gain and loss. Such structure can be generalized to those of multiple
components (see, e.g., [16–19]). However, in reality, the optical gain drops at a certain
pace due to its saturation, so that the amplified light intensity does not increase forever
and finally reaches a steady state. Although the saturation effect has been investigated in
several classical non-Hermitian optical systems [20–25], its dynamical features in quantum
regimes for nonclassical light were less studied in the past. Especially, it was shown that
continuous-variable (CV) entanglement is vulnerable to the quantum noise associated
with amplification [26,27], and one thus estimates that the gain saturation can significantly
influence the generation of entanglement by the relevant methods.

So far, there have been many studies about the non-Hermitian optical systems with bal-
anced constant gain and loss, in which the light is treated as a classical electromagnetic field
and all quantum dissipations are modeled in a non-Hermitian effective Hamiltonian [28].
In this paper, however, we adopt a fully quantum mechanical approach to examine the
gain saturation effect on the CV entanglement in a coupled gain–loss systems in terms of
the inevitable quantum noises [8]. To capture the main features, for the setup in Figure 1,
we only consider the saturation of the gain medium and assume that the loss medium has
a constant damping rate. Then, we study the time evolution of entanglement in situations
where the initial (non-saturated) gain is greater/less than the loss rate or equal to it. In
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the presence of the associated quantum noise, a constant gain rate leads to entanglement
sudden death [29], but its saturation can lead to a steady entangled state by reducing the
detrimental quantum noise effect. Moreover, under a coherent drive, the CV entanglement
can be created purely by the amplification noise under the condition of quick saturation of
the optical gain.
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Figure 1. Exemplary setups, as the coupled waveguides and the coupled microresonators driven
by a coherent field, which carry gain–loss media. The inputs |z〉 are squeezed vacuum or squeeze
coherent states. The gain, loss, and coupling are denoted by g, γ, and J, respectively.

2. System

We study two different types of systems of gain–loss media—the first is coupled
waveguides whose inputs are squeezed vacuum states, and the other is coupled whispering-
gallery-mode microresonators driven by a coherent light (see Figure 1). The waveguide
(microresonator) A (B) carries a saturable (non-saturable) gain (loss) medium with a gain
(loss) coefficient g(t) (γ), and the light field with its operator â(b̂) and frequency ω0 prop-
agates (circulates) inside. The waveguides (microresonators) are coupled via evanescent
waves so that the coupling strength J can be adjusted by the gap distance. In the situations
of coupled waveguides, we also neglect the effect of evanescent propagation [30,31] of the
coupled fields.

The system dynamics is mostly described by the non-Hermitian effective Hamiltonian
(h̄ = 1) [28]:

Heff = ig(t)â† â− iγb̂† b̂ + J(âb̂† + â† b̂) + iE0(â†ei∆t − âe−i∆t), (1)

where the first two terms describe the amplification and dissipation of the light fields in the
waveguides A and B, and the third term is from their coupling, and the last term represents
the coherent drive field with amplitude E0 and detuning ∆ from the resonant frequency
ω0 (this term is zero for the waveguide setup). The corresponding Heisenberg equation of
motion determines the time evolution of the fields â and b̂. In this approach the involved
quantum noises are neglected.

Since the concerned CV entanglement is highly sensitive to quantum noises, we will
adopt a different approach that involves the system and environment interaction, and
explicitly considers the quantum noises as the stochastic driving forces. Then, the total
Hermitian Hamiltonian includes the system, reservoir, and the system-reservoir couplings.
In an interaction picture, such a Hamiltonian reads

H = J
(
â† b̂ + âb̂†)+ iE0(â† − â) + i

√
2g(t)

[
f̂ †
a (t)â† − f̂a(t)â

]
+

i
√

2γ
[

f̂b(t)b̂† − f̂ †
b (t)b̂

]
,

(2)
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by using the rotating-wave and Markovian approximations with smooth system-reservoir
coupling (the more detailed derivation of the similar Hamiltonian can be found in, e.g., [8,32]).
Here, we assume the resonant pump drives, and f̂c(t) (c = a, b) is the noise operator

satisfying [ f̂c(t), f̂c
†
(t′)] = δ(t− t′). The associated Heisenberg equations of motion are,

therefore, found as

dâ
dt

= g(t)â− i Jb̂ + iE0 +
√

2g f̂ †
a (t),

db̂
dt

= −i Jâ− γb̂ +
√

2γ f̂b(t).
(3)

by applying the appropriate Ito’s laws for the noise operators [8]. For the coupled waveg-
uides, the drive amplitude is E0 = 0 and the input fields simply evolve under the coupling.

Gain saturation is a nonlinear phenomenon that stabilizes the light intensity after some
quick growth. A frequently used gain medium is an erbium-doped amplifier [33], which we
can model as an ensemble of two-level atoms. For a population inverted medium of erbium
ions, an optical signal exponentially grows due to the stimulated emission of photons from
dopant ions. In addition to the stimulated emission, an excited state can decay to a lower
state by spontaneously emitting photons. In a waveguide, the light eventually reaches
an intensity at a certain specific distance of propagation such that there are not enough
excited states to sustain light field amplification. In other words, when the signal intensity
increases to a certain value Isat (saturation intensity), the population difference between the
upper and lower levels and hence the gain rate decreases, reaching a gain saturation. The
saturation intensity depends on the energy difference between the upper and lower levels,
the stimulated cross-section, and the lifetime of the upper level [34]. The gain rate can be
modeled as a function of time:

g(t) =
g0

1 + Ia(t)/Isat
, (4)

where g0 and Ia(t) are the initial gain and the real-time light intensity inside the gain
medium, respectively.

We investigate the gain saturation effect on the time evolution of CV entanglement by
assuming that the quantum state of the inputs are single-mode squeezed vacuum states,
|z〉 = S(z)|0〉, where S(z) = exp

( 1
2 z(ĉ†)2 − 1

2 z∗ ĉ2) for ĉ = â, b̂ (waveguides), or coherent
state. The squeezing parameter is defined as z = r exp(iθ) where r and θ are its magnitude
and phase, respectively [35]. The time evolution from these input states will lead to an
entanglement through the couplers (waveguides and microresonators).

3. Method

To quantify the degree of entanglement of a field in the Gaussian state, we first define
X ≡ (QA, PA; QB, PB), where

Qm =
1√
2
(ĉ + ĉ†); Pm = − i√

2
(ĉ− ĉ†), (5)

for m = A, B. Then we define a 4× 4 covariance matrix [36] V as(
E F

FT G

)
, (6)

where E, F, and G are 2× 2 matrices and

Vi,j =
1
2
〈XiXj + XjXi〉 − 〈Xi〉〈Xj〉. (7)
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Then, the logarithmic negativity [36]:

EN = max[0,− ln 2η], (8)

quantifies the degree of CV entanglement, where

η =
1√
2

√
σ−

√
σ2 − 4 det V (9)

and
σ = det E + det F− 2 det G. (10)

For the waveguide setups, the covariant matrix elements Vi,j are calculated with
respect to the input state. In the case of coupled microresonators, the entanglement is out
of the coherent drive and Vi,j are found by the evolved system operators with respect to the
initial vacuum state before pumping.

4. Results

In a coupled gain–loss system, a light field goes from one medium to another and,
given a suitable input, an entangled output can be generated [27]. The advantage of
this system is that one can manipulate the light transmission simply by adjusting the
coupling between the resonators or controlling the loss. Depending on the ratio of loss over
gain, the light field intensity will experience oscillations or exponential growth [26] and,
therefore, one might expect to realize high-intensity entangled output fields. However, the
amplification process adds more photons to the propagating light fields, and the dissipation
process subtracts photons. Thus, even if the input is shot-noise-limited, the output will
be noisy [35]. It is also essential to include the noise terms in the dynamical evolution to
preserve the canonical commutation relation. Since quantum noises significantly impact
non-classical light fields, we expect that the noise from optical gain is highly relevant to the
degree of generated entanglement. We will focus on its effects in what follows.

4.1. Entanglement Evolution without Gain Saturation

As it is known that quantum noise impairs the entanglement, we first take a look how
the quantum noises associated with amplification and dissipation will influence on the
entanglement when the optical gain can be approximated as a constant. For this purpose,
we present the time evolution of the logarithmic negativity versus the normalized time
Jt for squeezed vacuum and squeezed coherent states in Figure 2a,b, respectively, in the
waveguide systems. In Figure 2a, we choose three different ratios of loss and gain. For
all these three cases, entanglement sudden death occurs due to the quantum noise effect.
Obviously, when the ratio of loss over gain is higher, the sudden death occurs later, and a
higher degree of entanglement is also achieved transiently. This phenomenon indicates that
the quantum noise associated with amplification impairs the entanglement significantly in
this ideal situation of constant gain rate. The continued action of the gain noise will always
kill the entanglement in the end. We also observe the same behavior in Figure 2b for the
input as squeezed coherent states.
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Figure 2. Entanglement generation with coupled gain–loss waveguides without the saturation effect.
Panel (a) shows the time evolution of the entanglement when the input states are single-mode
squeezed vacuum with squeezing parameters r1 = r2 = 0.5 and phase factors θ1 = θ2 = 0. We
choose three different ratios of loss over gain: g = 1.3γ (red), g = γ (green), and g = 0.7γ (blue).
In (b), we assumed that the inputs are squeezed coherent states. Here, α = β = 10 exp(iπ/4). The
other parameters are like that of the panel (a).

4.2. Special Role of Gain Saturation

In Figure 3, we consider the gain saturation and discuss how different saturation
intensities affect the entanglement in steady state. Here, the input fields for the waveguide
setups are single-mode squeezed vacuum. In Figure 3a, we set the squeezing parameters to
be r1 = r2 = 0.5 with phase factors θ1 = θ2 = 0. For the given loss, gain, initial gain, and
saturation intensity, we convert them to the dimensionless parameters γ/J, G0 = g0/J, and
G(t) = G0/(1 + Ia(t)/Isat). When we include the saturation effect, the gain rate decreases
quickly with time and eventually reaches a steady value less than the loss rate. Therefore,
unlike the constant gain that definitely leads to an entanglement sudden death, the gain
saturation reduces the associated quantum noise effect. Consequently, it is possible to
preserve the entanglement in the long-time limit, and the oscillation amplitude of EN
decreases with time but finally approaches a constant value. Figure 3 shows that higher
degrees of entanglement are achievable given the lower gain saturation rate Isat. We can
explain this by the fact that, with a lower Isat, the effective gain rate g(t) drops more quickly
with the ratio I(t)/Isat in the denominator of Equation (4). Intuitively, one can say that
a high saturation intensity Isat giving a slower gain saturation allows more photons in a
different quantum state from the input state, so that the input state will be decohered more
rapidly. The relevant noise term in the Hamiltonian has a factor

√
g(t), and the decrease of

this magnitude lowers the noise effect indeed. After increasing the initial gain rate while
keeping all other parameters unchanged as in Figure 3b, we see that EN also becomes
lower due to the stronger quantum noise associated with the amplification. In this case,
even the lower saturation intensities, such as Isat = 0.1 and 0.8, cannot avoid entanglement
sudden death.
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Figure 3. Time evolution of the logarithmic negativity for various saturation intensities in a cou-
pled gain–loss waveguide system. We use the input states as single-mode squeezed vacuum with
squeezing parameters r1 and r2 and phase factors θ1 and θ2. We set the parameters as r1 = r2 = 0.5,
θ1 = θ2 = 0, G0 = g0/J = 0.8, E0/J = 0, G(t) = G0/(1 + Ia(t)/Isat), and Isat = 0.1 (red), 0.07
(green), and 0.04 (blue). The loss rate is set to γ/J = 0.4 in (a,b) and γ/J = 0.8 in (c). In (b,c), we
change the initial gain rate to G0 = 2.



Photonics 2022, 9, 620 6 of 9

In Figure 3c, while keeping the initial value of the gain as in Figure 3b, we increase the
loss rate to γ/J = 0.8. We observe that, for a higher ratio γ/g0, a steady value of EN will be
possible. Here, one can obtain a steady entanglement even with those saturation intensities
that lead to entanglement sudden death in Figure 3b. It shows that the ratio of loss over
gain is more important than their absolute values. In other words, if entanglement is erased
by a particular rate of gain, one can offset it by increasing the loss rate so that there is still a
preserved entanglement. This fact reflects a tricky relation between the noises respectively
associated with the optical gain and loss in the entanglement dynamics.

4.3. Entanglement Generation with Coherent Drive

A more interesting scenario is the one of coupled microresonators, which is driven
by a coherent driving field (a pump laser). The light fields evolve from a vacuum before
pumping the system. If the system dynamics is described by the non-Hermitian Hamil-
tonian in Equation (1), the coherent drive term in Equation (3) makes no contribution
to the covariant matrix elements, leading to no entanglement. However, with the full
quantum version of Hamiltonian including the noise drive terms in Equation (2), we find
that considerable amounts of CV entanglement can be created as in Figure 4. In this setup
the entanglement generation is due to the noise terms in Equation (2). The noise term
associated with the optical gain takes a form of two-mode squeezing between the field
mode and noise mode [37], so that the commutation relation in quantum mechanics should
be preserved under optical gain. Through a coupling between two field modes, these two
field modes can be correlated indirectly by such a squeezing-type action, thus having a
certain amount of CV entanglement.
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0.0

0.2

0.4

0.6

0.8

Jt

E
N

(b)

Figure 4. Time evolution of the logarithmic negativity for the coupled microresonators driven by a
coherent field. In (a), the system parameters are γ/J = 0.8, G0 = 0.8, Isat = 0.05, and E0/J = 0.9
(blue), 0.7 (green), and 0.1 (red). In (b), the saturation intensity is changed to Isat = 0.05 (blue),
Isat = 0.3 (green), Isat = 0.7 (red), while the ratio E0/J = 0.9 is kept.

By the illustrated numerical calculations in Figure 4a, we observe a transient increase
in EN for stronger drive fields, but the finally stabilized degrees of entanglement have
insignificant difference. It indicates that the interplay between the coherent drive and noise
drive through the evolving optical gain has an almost identical tendency. In Figure 4b, we
choose different saturation intensities and observe the similar behavior of the evolving
entanglement to those in the coupled waveguide systems. A higher saturation intensity will
nonetheless result in entanglement sudden death, implying that a prolonged noise action is
harmful to the concerned entanglement. Entanglement sudden death exists when there is a
high gain rate or a slower gain saturation process. However, if the optical gain quickly drops
to very low level due to a small saturation intensity Is, a considerable CV entanglement can
be generated out of the noise action. The overall dynamics of the entanglement under the
noise effect is rather complicated, and the entanglement generation under coherent drive
should be within a proper range of optical gain g0 and, especially, the gain saturation rate
Isat. This interesting property of quantum noise was not discussed before.
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5. Discussion

The concerned CV entanglement start from the input states of single-mode squeezed
vacuum or from driving of coherent field. On the one hand, stronger quantum noise kills
the nonclassicality and results in entanglement sudden death when the gain saturation is
less significant. Then, with a faster gain saturation, this tendency can be reversed if the gain
rate quickly decreases and approaches a steady value smaller than the loss rate (while the
intensity of the propagating light also stabilizes). As the ratio of loss over gain increases,
one can obtain a steady entanglement in the end. On the other hand, more obviously in
the coupled microresonators driven by a coherent field, the quantum noise can realize an
amount of entanglement under the condition of a sufficiently quick gain saturation. This
second role of amplification noise in complicated entanglement dynamics is rather against
the intuition.

A crucial element for the CV entanglement generation is the saturated optical gain.
The choice of the gain materials can be flexible, but the gain saturation rate Isat should be
properly designed so that the amplification of the light field can be well controlled. If the
waveguide setup is realized with an erbium doped fiber amplifier (EDFA), for example, the
theoretical working range of the coupled system will be between 1300 nm and 1560 nm,
corresponding to a bandwidth about 394 THz. For the semiconductor materials the gain
recovery time in operation [38–40] should be considered. Moreover, the system coupling
can lead to more complicated dynamics involving optical gain (see, e.g., [41,42]). All these
factors should be taken into account in a setup to perform the CV entanglement preparation.

6. Conclusions

We have investigated the effect of gain saturation on the entanglement dynamics in
non-Hermitian systems of coupled waveguides and coupled microresonators. By analyz-
ing with various gain saturation intensities, we conclude that a quick gain saturation is
beneficial to entanglement generation in any kind of such coupled systems. If the satu-
ration intensity of the used material is sufficiently high, the CV entanglement vanishes
immediately and the evolving entanglement displays no difference from the unsaturated
situation of constant gain rate. However, once the gain saturation intensity is lower, the
entanglement dynamics in these coupled systems will become rather richer to realize con-
siderable amount of stable entanglement. Furthermore, we find that the entanglement in
coupled-microresonator setups driven by a coherent field is due to the noise of optical gain.
A quickly saturated optical gain rate g(t) in such coupled microresonators can lead to an
entanglement induced by the noise with a small magnitude

√
g(t), which acts in a way such

that its squeezing effect can properly balance its decoherence effect. These understandings
could be useful to quantum engineering with various systems of coupled components.
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