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Abstract: An approach is presented to study the controllable nonreciprocal transmission in a spinning
resonator. It has been demonstrated in optomechanics that an optical signal field can only be affected
when it propagates in the same direction as the driving field. We show that such an optomechanically
induced nonreciprocity can be controlled by rotating the resonator, which introduces a frequency
shift with different signs for clockwise and counterclockwise optical fields in the resonator. In our
scheme, the transmission probabilities of the clockwise and counterclockwise input signal fields can
be reversed by tuning the rotation velocity of the resonator. By studying the transmission spectra
of the signal field, we also reveal that the nonreciprocity response can be realized in the spinning
resonators in the absence of optomechanical coupling, which extends its utility.

Keywords: optomechanics; nonreciprocity; spinning resonators

1. Introduction

Nonreciprocity is considered to be the property of a system in which a beam of light
and its reverse light exhibit different optical characteristics in terms of reflection, refraction,
and absorption [1]. In other words, the bidirectional symmetry of electromagnetic wave
propagation is effectively broken, which makes nonreciprocity become a new key element
for signal routing and optical isolation devices in unconventional ways [2,3]. With the
continuous development of quantum technology, there is expected to be more demand for
nonreciprocal components in future optical data processing.

Optical nonreciprocal transmission has attracted a great deal of interest in the recent
past. It has been theoretically investigated and experimentally demonstrated by exploiting
spatiotemporal modulations [4–7], synthetic magnetism [8–10], optomechanical interac-
tions [11–23], parity-time symmetric structures [24–27], nonlinear components [28,29], inter-
acting with atoms [30–33], phonon-mediated methods [34,35], and quantum squeezing [36].
These solutions play an important role in various realizations of quantum technology. It
is worth noting that spinning resonators may open up a new alternative way to achieve
nonreciprocal transmission [37,38] by utilizing the Sagnac effect, which leads to the light cir-
culating in the resonator experiencing an opposite Sagnac–Fizeau shift [39]. Subsequently,
several nonreciprocal phenomena related to the Sagnac effect have been deeply explored in
spinning resonators, including optical nonreciprocity [40–43], nonreciprocal photon block-
ade [38,44–48], nonreciprocal phonon blockade [49], nonreciprocal phonon laser [50–52],
nonreciprocal magnon laser [53], nonreciprocal quantum entanglement [54–56], and nonre-
ciprocal chaos [57].

In this paper, we study the nonreciprocal transmission that can be steered with a
rotating resonator. When the resonator is rotated, the degenerate clockwise and counter-
clockwise whispering gallery modes gain frequency shifts with different signs [39], and the
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symmetry of the two modes is broken. It is known that the optomechanical interaction in a
whispering gallery resonator can be only enhanced in the direction from which the driving
field comes [58]. Thus, a signal field is only affected by the optomechanical coupling
when it propagates in the same direction as the driving field. This also implies that the
system exhibits nonreciprocal behavior [11]. We show that the optomechanically induced
nonreciprocity is adjustable by tuning the rotation velocity of the resonator according to
the frequency shifts of the two modes. The transmission probabilities of the clockwise
and counterclockwise input fields can be reversed if the frequency shift is greater than the
cavity linewidth. Our scheme is feasible with current experimental parameters.

The paper is organized as follows. The considered optomechanical system is described
and its full Hamiltonian is effectively approximated in Section 2. By evaluating the trans-
mission probability in the frequency domain, the controllable nonreciprocity is investigated
with and without optomechanical coupling in Section 3. Finally, a brief discussion and
conclusion are given in Section 4.

2. Model

Consider an optomechanical system in a spinning optical resonator, which is side-
coupled to a waveguide as illustrated in Figure 1, with optical resonance frequency ωc and
mechanical oscillation frequency ωm. The Hamiltonian of the system reads (h̄ = 1)

H = (ωc + ∆F)a†
cwacw + (ωc − ∆F)a†

ccwaccw + ωmb†b

− g(b + b†)(a†
cwacw + a†

ccwaccw)

+ αL(accweiωLt + a†
ccwe−iωLt), (1)

where acw/ccw and b refer to the photon and phonon annihilation operators for the cavity
mode and the mechanical oscillator, respectively, g signifies the optomechanical coupling
strength, αL represents the driving field strength with frequency ωL. The rotation of the
resonator introduces a Fizeau shift [37,39,59]

∆F =
nrrΩωc

c

(
1− 1

n2
r
− λ

nr

dnr

dλ

)
. (2)

Here, nr (r) expresses the refractive index (radius) of the resonator and c (λ) denotes
the speed (wavelength) of light in vacuum. Note that the Fizeau shift ∆F has the same
sign as the rotation velocity Ω, which is positive (negative) when the resonator rotates
counterclockwise (clockwise).

resonator

b
r

Ω

waveguide

accwacwaccw,in accw,out

acw,out acw,in

Figure 1. (Color online) Schematic illustration of a spinning optomechanical resonator coupled with
a waveguide, where the mechanical mode b is parametrically coupled to two optical cavity modes,
i.e., clockwise-propagating mode acw and counterclockwise-propagating mode accw.
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In order to make the driving terms time-independent in the Hamiltonian of Equation (1),
the unitary transformation U = exp

[
−iωL(a†

cwacw + a†
ccwaccw)t

]
is applied to generate a

new Hamiltonian Hrot = U† HU − iU†H∂U/∂t of the form

Hrot = (∆ + ∆F)a†
cwacw + (∆− ∆F)a†

ccwaccw + ωmb†b

− g(b + b†)(a†
cwacw + a†

ccwaccw)

+ αL(accw + a†
ccw), (3)

where ∆ = ωc − ωL is the detuning between resonator and laser. According to the
Heisenberg–Langevin approach [60,61], the evolution of the optomechanical system can be
described by the set of quantum Langevin equations

ȧcw = −[i(∆ + ∆F) + (κ0 + κ)/2]acw

+ ig(b + b†)acw +
√

κacw,in, (4a)

ȧccw = −[i(∆− ∆F) + (κ0 + κ)/2]accw

+ ig(b + b†)accw − iαL +
√

κaccw,in, (4b)

ḃ = −(iωm + γ/2)b + ig
(

a†
cwacw + a†

ccwaccw

)
+
√

γbin, (4c)

where κ and κ0 indicate severally the input coupling decay rate and the intrinsic decay
rate of the resonator, γ stands for the dissipation rate of the mechanical mode, aη,in (aη,out)
denotes the input (out) field operator for the mode η, and bin is the thermal noise operator
for the mechanical bath. Then, we split each of the system operators acw/ccw and b into
the steady state value and the fluctuation part, i.e., aη → αη + aη , and b → β + b. From
Equation (4), equations of motions for the expectation value of the operators are

α̇cw = −
[
i(∆̃ + ∆F) + κ̃/2

]
αcw, (5a)

α̇ccw = −
[
i(∆̃− ∆F) + κ̃/2

]
αccw − iαL, (5b)

β̇ = −(iωm + γ/2)β + ig
(
|αcw|2 + |αccw|2

)
, (5c)

where ∆̃ = ∆ − g(β + β∗) and κ̃ = κ + κ0. The steady state solutions of Equation (5)
are obtained

αcw = 0, (6a)

αccw =
−iαL

i(∆̃− ∆F) + κ̃/2
, (6b)

β =
ig
(
|αcw|2 + |αccw|2

)
iωm + γ/2

(6c)

by simply taking α̇cw/ccw = 0, β̇ = 0. When the driving field is strong enough, the high-
order small terms in Equation (4) can be neglected. Then, the fluctuations of the system
operators are given by

ȧcw = −
[
i
(
∆̃ + ∆F

)
+ κ̃/2

]
acw +

√
κacw,in, (7a)

ȧccw = −
[
i
(
∆̃− ∆F

)
+ κ̃/2

]
accw + iGccw(b + b†)

+
√

κaccw,in, (7b)

ḃ = −(iωm + γ/2)b + iGccw

(
a†

ccw + accw

)
+
√

γbin. (7c)
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Here, the combination Gccw = gαccw is referred to the effective optomechanical coupling
strength. Without loss of generality, we now assume αccw is a real value. Thus, the linearized
Hamiltonian obtained by the standard linearization procedure [62] reads

Hlin = (∆̃ + ∆F)a†
cwacw +

(
∆̃− ∆F

)
a†

ccwaccw

+ ωmb†b− Gccw

(
a†

ccw + accw

)
(b + b†). (8)

The Hamiltonian, in the interaction picture, is rewritten as

Hint = −Gccw

{[
a†

ccwbei(∆̃−∆F−ωm)t + H.c.
]

+
[

a†
ccwb†ei(∆̃−∆F+ωm)t + H.c.

]}
. (9)

Thereby, in the case of ∆̃− ∆F ≈ ωm and rotating-wave approximation, the Hamiltonian of
Equation (8) reduces to

Heff
lin = (∆̃ + ∆F)a†

cwacw +
(
∆̃− ∆F

)
a†

ccwaccw

+ ωmb†b− Gccw

(
a†

ccwb + accwb†
)

. (10)

Correspondingly, Equation (7) is simplified to

ȧcw = −
[
i
(
∆̃ + ∆F

)
+ κ̃/2

]
acw +

√
κacw,in, (11a)

ȧccw = −
[
i
(
∆̃− ∆F

)
+ κ̃/2

]
accw + iGccwb

+
√

κaccw,in, (11b)

ḃ = −(iωm + γ/2)b + iGccwaccw +
√

γbin. (11c)

3. Implementation of Steering Nonreciprocity

Following the approach of [11] where the resonator is static, we extend it to solve the
spinning resonator system.

3.1. Fourier Space

Define the Fourier components of the operator by

o(t) =
1√
2π

∞∫
−∞

e−iωto(ω)dω. (12)

The equations of motion for the fluctuations in the Fourier space are given by

−iωacw = −
[
i
(
∆̃ + ∆F

)
+ κ̃/2

]
acw +

√
κacw,in, (13a)

−iωaccw = −
[
i
(
∆̃− ∆F

)
+ κ̃/2

]
accw + iGccwb

+
√

κaccw,in, (13b)

−iωb = −(iωm + γ/2)b + iGccwaccw +
√

γbin. (13c)

The solutions of Equation (13) in the frequency space can be expressed as

acw(ω) =

√
κacw,in(ω)

κ̃
2 − i[ω− (∆̃ + ∆F)]

, (14a)

accw(ω) =

√
κaccw,in(ω) + iGccwb(ω)

κ̃
2 − i[ω− (∆̃− ∆F)]

, (14b)

b(ω) =
iGccwaccw(ω) +

√
γbin(ω)

γ
2 − i(ω−ωm)

. (14c)
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In the case that the vacuum noise operator bin(ω) of the mechanical mode is ignored, by
inserting Equations (14c) into (14b), the following expression is gained

accw(ω) =

√
κaccw,in(ω)

κ̃
2 − i[ω− (∆̃− ∆F)] +

G2
ccw

γ
2−i(ω−ωm)

. (15)

Based on the input–output theory [61,63,64]

acw/ccw,out(ω) + acw/ccw,in(ω) =
√

κacw/ccw(ω), (16)

the output fields are acquired

acw,out(ω) = Tcw(ω)acw,in(ω), (17a)

accw,out(ω) = Tccw(ω)accw,in(ω) (17b)

with the transmission amplitudes

Tcw(ω) = −1 +
κ

κ̃
2 − i[ω− (∆̃ + ∆F)]

, (18a)

Tccw(ω) = −1 +
κ

κ̃
2 − i[ω− (∆̃− ∆F)] +

G2
ccw

γ
2−i(ω−ωm)

. (18b)

3.2. Optomechanically Induced Nonreciprocity

The square |Tcw/ccw|2 of the amplitude gives the probability of transmission for the
considered optomechanical system. Note that κ̃ = κ + κ0. Depending on the decay rate,
three main different regimes can be distinguished [62]. For the overcoupled situation
κ0 � κ, |Tcw/ccw|2 ≈ 1, the transmissions behave almost the same in both directions. For
the undercoupled condition κ0 � κ, it is related to cavity losses dominated by intrinsic
losses, which are generally considered unfavorable due to an effective loss of information.
For the critical coupling case κ0 = κ, the transmission amplitudes are

Tcw =
i(δ− ∆F)

κ − i(δ− ∆F)
, (19a)

Tccw =
(δ + ∆F)

2 − G2
ccw

G2
ccw − (δ + ∆F)2 − iκ(δ + ∆F)

, (19b)

where δ = ω− ∆̃, and it has been assumed that the mechanical decay rate γ is small enough
to be ignored with insignificant impact on the system.

Figure 2 shows the transmission probability |Tcw,ccw|2 of the optical input field as a
function of detuning δ for various values of the Fizeau shift ∆F. When ∆F = 0, the curves
exhibit the nonreciprocal transmissions at δ = 0, where the cw input is almost absorbed by
the cavity and the ccw input transmits with the probability close to unity (see Figure 2b).
However, the transmission probabilities are reversed at δ = 0 for cw and ccw input fields
when the cavity acquires a frequency shift ∆F for the spinning resonator (see Figure 2a,c).
Similarly, the system also exhibits nonreciprocity at other detuning values, as illustrated
in Figure 2: (a) δ = −∆F − Gccw and δ = ∆F when ∆F = Gccw, (b) δ = ±Gccw when
∆F = 0, (c) δ = −Gccw and δ = −∆F + Gccw when ∆F = −Gccw . In order to observe
a clear reversion of the transmission amplitudes for cw and ccw modes, the frequency
shift ∆F should be greater than the cavity decay rate κ. To show this clearly, transmission
probabilities for |∆F| = 0.5κ are plotted in the right panel of Figure 2. At δ = 0, Figure 2d,f
display that the transmission probabilities for ccw and cw modes are zero and well below
one, respectively, which imply the breakdown of nonreciprocity.
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Figure 2. (Color online) Transmission probability |Tcw,ccw|2 of the optical input field versus the
detuning δ for various values of the Fizeau shift ∆F. The dashed (red) curve is the transmission
probability for the cw input, while the solid (blue) line is the transmission probability for the ccw
input. Parameter in (a–c): Gccw = 2κ; (d–f): Gccw = 0.5κ. Other parameters are taken as κ0 = κ, γ = 0.

In addition, Figure 3 plots |Tcw,ccw|2 as a function of the Fizeau shift ∆F for detuning
δ = 0. Clearly, the system performs a function similar to a controllable optical diode at
δ = 0. When the resonator is static, i.e., ∆F = 0, counterclockwise-incident light passes
unalterably, but clockwise-incident light is completely absorbed. When the resonator is
rotated to introduce the Fizeau shift ∆F = ±Gccw = ±2κ, light passes almost unaltered
in the clockwise direction, but is almost completely absorbed in the counterclockwise
direction. Thus, this rotation system implements a controllable optical diode.

−10 −5 0 5 10

0

0.5

1

Fizeau shift ∆F/κ

Tr
an

sm
iss

io
n
|T

c
w
/
c
c
w
|2

cw input
ccw input

Figure 3. (Color online) Transmission probability |Tcw,ccw|2 of the optical input field versus the
Fizeau shift ∆F for detuning δ = 0. The dashed (red) curve denotes the transmission probability for
the cw input, while the solid (blue) line denotes the transmission probability for the ccw input. Here,
δ = 0, other parameters are the same as those in Figure 2.

3.3. Nonreciprocity without Optomechanical Coupling

It is natural to ask whether it is possible to regulate the nonreciprocal transmission if
there does not exist optomechanical coupling, i.e., g = 0. Now, the Hamiltonian is simply

H = (ωc + ∆F)a†
cwacw + (ωc − ∆F)a†

ccwaccw. (20)
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In a similar manner as above, the following form of the transmission amplitudes
is obtained

Tcw =
i(δc − ∆F)

κ − i(δc − ∆F)
, (21a)

Tccw =
i(δc + ∆F)

κ − i(δc + ∆F)
(21b)

in the critical coupling case of κ0 = κ, where δc = ω−ωc.
According to Equation (21), the transmission probability |Tcw,ccw|2 as a function of

detuning δc for various values of the Fizeau shift ∆F is displayed in Figure 4. Notice that
the curves overlap at ∆F = 0 since the system is symmetrical, as shown in Figure 4b,e,
which means no nonreciprocity. When the resonator is rotated, the frequencies of cw and
ccw fields will separately gain a Fizeau shift ∆F but with different signs. For a sufficiently
large ∆F, if the cw (ccw) input field is tuned to resonance with the cavity, the light from
the opposite direction will be strongly detuned, which makes only one of the input lights
pass through the system. Hence, even if there is no optomechanical coupling, the system
presents nonreciprocal characteristics at δc = ±∆F as seen from Figure 4a,c. Obviously,
unlike the optomechanically induced case, the system without optomechanical coupling
does not exhibit nonreciprocal transmission at δc = 0. However, if the detuning δc is
tuned to ±∆F, the system still behaves as an optical diode. We also plot the transmission
probabilities with ∆F = 0.5κ in Figure 4d,f, where it can be seen that the nonreciprocal
characteristics vanish. To observe the nonreciprocal characteristics for cw and ccw modes,
the frequency shift ∆F must be larger than the cavity linewidth κ. This is similar to the case
with optomechanical coupling.
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Figure 4. (Color online) Transmission probability |Tcw,ccw|2 of the optical input field versus the
detuning δc for various values of the Fizeau shift ∆F. The dashed (red) curve denotes the transmission
probability for the cw input, while the solid (blue) line denotes the transmission probability for the
ccw input. Parameter in (a–c): Gccw = 2κ; (d–f): Gccw = 0.5κ. Other parameters are the same as those
in Figure 2.

4. Discussion and Conclusions

Finally, we analyze the feasibility of the scheme according to the recent experimen-
tal parameters realized in [14,15,65]. Based on these systems, the frequency of a me-
chanical mode can reach ωm/(2π) = 78 MHz, the effective optomechanical coupling
strength has been enhanced up to Gccw/(2π) = 11.4 MHz, and the resonator decay rate
is κ/(2π) = 7.1 MHz. So far, the Fizeau shift about 24 MHz has been achieved for the
angular velocity Ω = 6.6 kHz in the spinning resonator [37]. It is worth noting that the
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key parameter |∆F| > κ meets the requirement of our scheme, which provides a large
dynamic adjustment range for the transmission probability. If the experimental parameters
of a stationary resonator can be obtained in a rotating cavity under critical coupling, it is
possible to regulate nonreciprocity with a spinning resonator under currently available
experimental conditions.

In summary, we have presented an approach to steer nonreciprocity by exploiting a
spinning resonator. The spinning resonator acting as a controller can revise the transmission
probabilities of incident lights in two opposite directions of the waveguide. Our scheme is
an extension of the previous proposal [11], where the nonreciprocity of the light is proposed
by using only the optomechanical coupling. We show here that such a nonreciprocity
can be steered by exploiting the Sagnac–Fizeau effect. We also show that the regulable
nonreciprocity exists even without the optomechanical coupling. This is different from
recent work [40], which focused on tuning the properties of optomechanically induced
transparency in a spinning resonator. The present scheme may be useful for realizing
controllable nonreciprocal devices.
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