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Abstract: High-efficiency multijunction laser power converters are demonstrated for low temperature
applications with an optical input at 808 nm. The photovoltaic power converting III-V semiconductor
devices are designed with GaAs absorbing layers, here with 5 thin subcells (PT5), connected by
transparent tunnel junctions. Unprecedented conversion efficiencies of up to 74.7% are measured at
temperatures around 150 K. At temperatures around 77 K, a remarkably low bandgap offset value
of Woc = 71 mV is obtained at an optical input intensity of ~7 W/cm2. At 77 K, the PT5 retains an
efficiency of 65% with up to 0.3 W of converted output power.

Keywords: optical power converters; laser power converters; power-over-fiber; power beaming;
photovoltaic; galvanic isolation; GaAs; multijunctions semiconductor heterostructures; cryogenic
temperatures; bandgap offset (Woc)

1. Introduction

Impressive laser Optical Power Converters (OPCs) results have been obtained for vari-
ous wavelength ranges and output power capabilities [1–47]. Our recent Power Converter
Performance Chart [41,47] clearly highlights that multijunction OPCs are most advanta-
geous to obtain high device performance. The research related to photovoltaic devices also
suggests other potential future device improvements [48–67], as well as new optical wireless
power transmission (OWPT) applications and design strategies for future systems [68–78].

In typical cases, the OPC devices are expected to operate near room temperature, or
more generally to function efficiently in a range between −40 ◦C and 85 ◦C. However,
space applications or scientific experiments requiring cryogenic temperatures [79] could
benefit from OPC devices capable of high-performance at temperatures as low as 77 K.

From the laser diode perspective, many of the OPC developments have historically
been achieved at wavelengths around 808 nm due to the ubiquity and the maturity of
GaAs-based lasers at this wavelength. An input wavelength at 808 nm will actually be
close to optimal for OPCs designed with GaAs absorbing layers as the band-edge shifts to a
wavelength of 822 nm at 77 K. Indeed, having the optical input wavelength only at ~14 nm
(~26 meV) above the edge of the semiconductor bandgap is advantageous for minimizing
the photocarrier thermalization losses and for optimizing the OPC’s efficiency.

In this study, we therefore measure the characteristics of vertical multijunction OPCs
with 5 thin GaAs subcells (PT5) at cryogenic temperatures, with an input wavelength at
808 nm. The temperature dependence of the key OPC parameters is measured for a PT5
based on the Vertical Epitaxial Heterostructure Architecture (VEHSA) design [57]. This
study focuses on a PT5 design which was originally intended for operating near room
temperature at a input wavelength of near 850 nm. This design is also expected to be near
ideal at low temperatures due to the GaAs bandgap shift combined with the swap of the
optical input from 850 nm to 808 nm.
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2. Materials and Methods

The schematic of the PT5 heterostructure is depicted in Figure 1a. It is based on the
previously described VEHSA design [57,58]. The Beer-Lambert law was used to calculate
the individual subcell’s absorber thicknesses, here with each subcell absorbing ~ 1/5 of the
incident light. Specifically, the thicknesses for the GaAs absorber subcells used here were
192, 246, 346, 581, and 2636 nm, from top to bottom, respectively. It should be noted that
methods have now also been put forward based on machine learning and genetic algorithm
for improving the optimization of the individual thicknesses [80]. Such a model suggests
for example that the evaluation using the Beer-Lambert model might be underestimating
the required thickness of the first subcell.
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Figure 1. Schematic of the PT5 Vertical Epitaxial HeteroStructure Architecture (VEHSA design)
devices prepared with 5 GaAs subcells in (a), and average current density vs voltage characteristic of
a tunnel junction (TJ) measured from the PT5 structure when the incident optical intensity was high
enough to trigger the first TJ negative differential resistance (NDR) behavior in (b).

The photovoltaic vertical multijunction structure was built for operation at T ~ 20 ◦C
with the optical input from a laser source emitting in a spectral range peaking around
850 nm. The predominant change in the GaAs absorption coefficient between 20 ◦C and
77 K is a shift towards shorter wavelengths. Therefore, we expect the same design will
be near-optimal for an optical input wavelength of 808 nm at cryogenic temperatures.
The PT5 is designed with 5 optically transparent photovoltaic semiconductor subcells
interconnected with tunnel junctions, labelled TJi in Figure 1a. Each individual subcell
comprises an n-type emitter and a p-type base. The TJs are made to be transparent to the
input beam, utilizing AlGaAs-AlInGaP alloys lattice-matched to GaAs.

The underlying TJ’s current-voltage (I-V) characteristics can be deduced from PT5 I-V
characteristics taken under optical input intensities that are exceeding the TJ’s peak current
capability. For example, Figure 1b shows the PT5 I-V curve rescaled to distinguish the TJ
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characteristic more clearly. The horizontal axis plots Voc—V, whereas the vertical axis is
inverted compared to the plot of a typical p/n junction I-V curve. This approach reveals
the negative differential resistance (NRD) region of one of the TJs (NDR observed for
0.3 V < V < 0.9 V), thus confirming the tunnel current characteristics at 77 K. As previously
observed when the NDR arises, the illuminated I-V is discontinuous for that region. This
particular PT5 structure had a peak tunneling current capabilities of the order of A/cm2,
but we are confident that designs with significantly higher peak current capability are
readily achievable [57].

The epitaxial layers are grown using commercial production Aixtron Metal Organic
Chemical Vapor Deposition (MOCVD) reactors. The total thickness of all the emitter
and base layers from the different subcells is such that the impinging optical beam is
almost completely absorbed for the condition of 850 nm at 20 ◦C, or similarly for 808 nm
at 77 K. As described previously [41,58], to realize the required photocurrent matching
condition, the structure usually has increasing subcell thicknesses from the top subcell
(thinnest) toward the bottom subcell (thickest). Furthermore, the vertical multijunction
devices can also benefit from strong photon coupling and recycling within, and between,
the constituent subcells [81–84]. Potentially the photon coupling and recycling effects could
be even more significant at low temperatures, in which case the radiative recombination is
typically prominent.

The PT5 wafers were fabricated into chips with an area of 0.03 cm2. The device fabrica-
tion included standard blanket back-metallization, front ohmic contacts, and antireflection
coatings (ARC) constructed from layers of Al2O3 and TiO2. The ARC typically reduces the
reflectivity (R) of the incident beam to R < 4% for the spectral range of interest.

A 808 nm fiber-coupled laser diode manufactured by BWT was used [85]. It had a
numerical aperture of NA ~0.22, using a multi-mode fiber core diameter of 400 µm and
cladding of 440 µm. The PT5 devices were packaged in Broadcom’s regular power housing
equipped with an FC optical connector [37]. The I-V characteristics were acquired using a
Keithley 2601B source-meter. For most of the I-V measurements, the fiber-coupled laser
was connected to the packaged PT5 using an FC connector. The FC connection was further
sealed using a Kapton tape and the device was immersed in liquid nitrogen for the 77 K
measurements. For variable temperature measurements, either the device was let to warm
up after the liquid nitrogen was all evaporated, or a liquid nitrogen cryostat was used
equipped with a standard 1 kOhms resistive temperature device (RTD) to directly measure
the device temperature. Quick I-V scans were used to avoid significant chip heating or
temperature drifts between the measurements.

3. Results

The PT5 characteristics at 77 K are shown in Figure 2. The measured I-V curves
are shown in Figure 2a for various optical input powers between Pin = 96 mW and
Pin = 372 mW. The dashed (pink) curve of Figure 2a is an ideal diode model fitted to
the 96 mW data. A good fit is obtained, here using 5 diodes all with the same ideality
factor of n = 1.6 and a quantum efficiency of EQE = 79%. The fitted photocurrent ratios
for the 5 subcells (from bottom to top) are respectively 100%, 99%, 98%, 97%, and 96%.
The fit reproduces well the data when the overall series resistance is set to be smaller than
~0.1 Ohm.

Figure 2b shows that the output power Pmpp has a measured slope efficiency of
Eff ∼65% at 77 K, with negligible deviations from a linear regression for optical input
powers up to ~0.5 W. Here, for this particular PT5, the input power was limited by the
tunnel junction peak current capability. Based on our other manufacturing data and from
alternative TJ designs tested at low temperatures, we expect future PT5 runs will have
input power capabilities about an order of magnitude higher.

Remarkably, for example for the 372 mW curve of Figure 2a, the open-circuit voltage
(Voc) reaches a value of Voc = 7.184 V, while the maximum power point voltage (Vmpp) is
then 6.875 V. It corresponds to an average voltage of 1.437 V per subcell, yielding a bandgap
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voltage offset value of Woc = 0.071 V, where Woc = (Eg/q) − Voc with Eg being the bandgap
energy (here, 1.508 eV for GaAs at 77 K) and q is the electronic charge. The Woc values
obtained with the PT5 at low temperatures are therefore significantly better than the best
values obtained at room temperature for GaAs with Woc (20 ◦C) = 0.181 V [41], and also for
the long wavelength PT10-InGaAs/InP OPCs with Woc (20 ◦C) = 0.187 V [47].
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Figure 2. I-V characteristic measured at 77 K for a PT5 OPC illuminated at 808 nm with different
input powers (Pin) in (a), and the resulting output power vs input power relationship in (b). The
96 mW data (black curve) in (a) is also fitted with a 5J ideal diode model (pink dashed line).
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The ideal diode model of Figure 2a can also be used to further explore better optimized,
but realistic, conditions: a conversion efficiency of Eff ~ 75% would require improving the
EQE to ~87%, while keeping Woc and the diode ideality factors the same. An EQE of 93%
would yield an Eff ~80% at 77 K. Such EQE improvements will most likely be achieved by
further reducing the mismatch in the subcell’s photocurrents. Increasing the optical input
intensities in the tens of W/cm2 could also help to increase the efficiency if the Woc value
can be further reduced under higher optical intensities.

The temperature dependence of the PT5 properties are analyzed in more details in
Figure 3. The output voltage is shown in Figure 3a for a 1 cm2 chip mounted into a cryostat
equipped with a 1 kOhm RTD and used to directly assess the OPC’s temperature while
the device is warming up from liquid nitrogen temperature to room temperature. The
open-circuit voltage (Voc) is decreased only by few millivolts between liquid nitrogen
temperature and about 145 K. The Voc of this larger chip is lower than the Voc obtained for
the smaller chip of Figure 2, predominantly because of the relatively low optical intensity
used for Figure 3a. More importantly, for the range between 175 K and up to above room
temperature, the Voc varies linearly with temperature with a slope of −7 mV/K, as shown
from the linear regression in Figure 3a. This temperature coefficient can then be used to
calibrate the device temperatures from the measured Voc. For example, Figure 3b shows
the measured efficiency as a function of the measured Voc for the PT5 of Figure 2 with an
optical input of 100 mW at 808 nm (blue curve). The PT5 parameters are extracted from the
full I-V curves taken while the PT5 is warming up from 77 K to room temperature. The
PT5 efficiency clearly increases as the device warms up from 77 K and reaches a maximum
value of Eff ~72.4% when the Voc reaches 6.7 V. Similar temperature dependence data, as
in Figure 3b, were measured for other optical input powers. Input-power-adjusted Voc
temperature coefficients (e.g., Figure 3a) are then used to plot the temperature dependence
of the conversion efficiency, as shown in Figure 4 for an optical input power of 100 mW and
193 mW (black curve). A maximum conversion efficiency of Eff = 74.7% is here measured
for this PT5 at a temperature of about 150 K at Pin = 193 mW.
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input at 808 nm at 100 mW and 193 mW of input power.

Applying again the ideal diode model to the 150 K I-V curves, we evaluate that for an
optical input intensity of ~62 W/cm2, such PT5 would be expected to have a Woc value
of 57 mV and an efficiency of Eff ~ 77.7% (from the diode model, not shown). The latter
evaluation is therefore based on the experimental results at lower optical input combined
with the diode model projected at higher optical intensities. We expect future runs will
achieve these conditions.
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4. Discussion

The highest output voltage values are measured at the lowest temperatures. This
is expected from the temperature dependence of the bandgap. However, as shown in in
Figure 4, the conversion efficiency of the PT5 peaks at intermediate temperatures. Record
efficiencies of Eff > 70% are obtained for temperatures between about 130 K and 180 K. This
optimum in performance is obtained because the best current matching conditions, for this
specific layer design, are realized for that temperature range. For example, Figure 5 shows
the temperature dependence of the output voltage in Figure 5a, of the external quantum
efficiency measured at the maximum power point (EQE at mpp) in Figure 5b, and of the
measured bandgap offset (Woc) in Figure 5c.
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Figure 5. Temperature dependence of the output voltage in (a), the external quantum efficiency (EQE
at mpp) in (b), and the bandgap offset (Woc) in (c).

As can be observed in Figure 5b, at an input wavelength of 808 nm, a good current
matching condition is indeed obtained in the range of 150 K < T < 180 K, with EQE
values of about 90% at the maximum power point. Further incremental improvements
could be obtained by insuring a better current matching in all the subcells simultaneously,
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minimizing the device reflectivity, and minimizing the gridline shadowing. At lower
temperatures the EQE decreases to ~79%, as was also deduced from the ideal diode model
of Figure 2a. The EQE also decreases at higher temperatures, reaching about 70% at
room temperature, because this particular PT5 was design for an optical input around
850 nm at 20 ◦C. It can therefore be deduced that at 808 nm at the warmer temperatures,
the upper subcells are somewhat overdriven and the bottom subcells are current-starved.
Conversely, near 77 K, the upper subcells would be generating less photocurrent relative to
the lower subcells.

The Voc data of Figure 5a is used, with the GaAs energy gap calculated using the
Varshni equation [86], to extract Woc in Figure 5c. Woc increases linearly above 130 K
with a slope of 1.2 mV/K for each individual subcells. This can be explained by the shift
of the Fermi levels in the n-type and p-type side of each p/n junction with temperature.
An estimate suggests this change should be ~0.3 mV/K for each GaAs junction. For
temperatures below 130 K, record Woc values in the range of 75 mV are obtained with
negligible temperature dependence. The flatter temperature dependence of Woc below
130K may be caused by changes in the density of states of GaAs affecting the Fermi levels
and also from current mismatch in the individual cells affecting slightly the measured Voc.
In previous temperature studies of GaAs solar cells [87–91], Philipps et al. have attributed
the decrease of the open-circuit voltage with increasing temperature to the temperature
dependence of the effective density of states, the charge carrier densities and the band
parameter of GaAs [87].

5. Conclusions

In conclusion, record efficiencies have been demonstrated at cryogenic temperatures
with the vertical multijunction VEHSA optical power converter. Conversion efficiencies of
Eff ~75% have been measured for an input wavelength of 808 nm with the PT5 OPCs. For
the specific PT5 design studied, the maximum power point EQE values are reaching ~90%
for an optimal temperature range of 150 K < T < 180 K. Record bandgap offset values (Woc)
have been obtained, with Woc as low as 71 mV for temperatures below 130 K. The measured
data and the corresponding ideal diode multijunction model suggest that multijunction
GaAs OPCs for cryogenic operation with conversion efficiencies in the range of 75% to
80% are expected to be realistic with further optimization. The study confirms that OPC
devices designed for high performance at cryogenic temperature with an optical input at
808nm should be expected to also operate at high conversion efficiencies at, or near, room
temperature using an optical input at 850 nm. These results are expected to be of benefit
for a number of experiments requiring electrical isolation under cryogenic conditions, for
example conducted in liquid argon [79,92].
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