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Abstract: The polarization beam splitter is an essential photonic integrated circuit in applications
where a high-performing on-chip polarization diversity scheme is required. The lower refractive
index contrast of the silicon nitride material platform compared to silicon-on-insulator constitutes the
separation of polarized light states a challenging task since for this purpose a large difference between
the effective refractive indices of the fundamental TE and TM modes is highly desirable. In this paper,
we present the design and optimization analysis of an ultra-broadband polarization beam splitter
based on a thick silicon nitride platform through extensive 3D-FDTD simulations. The proposed
device exploits two different Si3N4 thicknesses that enable the discrimination of the two polarizations
at the proximity of an 800 nm thick slot and a 470 nm thick strip waveguide via directional coupling.
The proposed two-stage PBS achieves higher than 30.6 dB polarization extinction ratio (PER) for
both TE and TM polarizations across a 130 nm span at the SCL-band. The dimensions of the PBS are
94 × 14 µm2 and the insertion losses are calculated to be lower than 0.8 dB for both polarizations.
The fabrication tolerance of the device is also discussed.

Keywords: polarization beam splitter; silicon nitride; directional coupling; 3D-FDTD method

1. Introduction

Silicon photonics keeps reporting a remarkable progress on the design and manufactur-
ing of compact and efficient photonic integrated circuits (PICs), paving the way for densely
packaged photonic systems combining high-speed operation, low power consumption and
cost [1,2]. Both silicon-on-insulator (SOI) and silicon nitride (Si3N4) CMOS-compatible
integration platforms address the needs for PICs operating in the near and mid-IR regime
for a wide range of applications such as telecommunications, optical signal processing, lidar
and sensing [3–5]. The functionality of PICs can be significantly enhanced via polarization
management and as such Polarization Beam Splitters (PBSs) are vital components towards
this direction, as they enable applications requiring polarization-division multiplexing [6,7].
The high refractive index contrast of SOI (∆n ≈ 2.0 at 1.55 µm) has led to a maturity and
miniaturization of broadband PBS devices with remarkable performance [8,9]. The Si3N4
platform, on the other hand, exhibiting lower index contrast (∆n ≈ 0.52 at 1.55 µm) de-
mands sophisticated approaches in terms of PIC design for the separation of the TE and
TM modes. So far, a plethora of Si3N4-based PBSs have been demonstrated relying on
different polarization handling mechanisms such as phase-controlled directional couplers
(DC) [10–12], slot-based DCs [13], multimode interference (MMI) and angled MMI cou-
plers [14,15], cascaded asymmetric DCs [16] and 3D DCs [17]. Although these PBSs take
advantage of such well-established polarization splitting techniques, an all-inclusive design
for Si3N4 featuring very high performance in terms of minimum polarization extinction
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ratio (PER) across a large wavelength range (>100 nm), low insertion losses (IL) and small
footprint is yet to be reported. The above performance metrics are even harder to achieve
in Si3N4 waveguides of more than 600 nm thickness, where the effective refractive indices
are almost identical for the TE and TM polarizations. Si3N4 waveguide technology with
thickness between 600 nm and 800 nm offers high mode confinement that facilitates fre-
quency comp generation [18], quantum optics [19], optical phased arrays [20], as well as
coupling with InP lasers [21], and deploying a high-performing Si3N4 PBS on the same
layer thickness would offer remarkable benefits in terms of polarization management.

In this work, we present the design and optimization analysis of an ultra-broadband
and compact Si3N4 PBS design that relies on an 800 nm thick slot waveguide and a 470 nm
strip waveguide, exploiting the directional coupling scheme and operating in the SCL-
band. The structure of the paper is as follows: Section 2 presents the design of a single
vertical-slot-based PBS and explains the principle of operation. At this stage, the PBS
design is optimized at 1550 nm wavelength, featuring a minimum PER of 13.8 dB across the
1500–1630 nm range for both TE and TM polarizations. Section 3 presents the optimization
analysis that is targeting to enhance the minimum PER by maximizing performance at
two different wavelengths and applying then a two-stage cascaded formation. The three-
dimensional finite-difference time-domain (3D-FDTD) analysis shows then a maximum
PER and IL of 30.6 dB and 0.8 dB, respectively, for both TE and TM polarizations with a
footprint of only 94 × 14 µm2 across the same SCL-band. Section 4 discusses the tolerance
to fabrication errors, when two critical parameters; the thickness of the waveguides and
the gap in the DC section deviate independently and simultaneously from their optimized
values by ∆th = ±16 nm and ∆G = ±20 nm, respectively, resulting to a minimum PER of
22.8 dB in the worst-case scenario that confirms the resilience of the proposed PIC layout.
Finally, in Section 5 the proposed PBS design is compared with various state-of-the art
Si3N4 counterparts, and the paper concludes summarizing the key results.

2. Design and Principle of Operation

The proposed all silicon nitride-based PBS consist of an 800 nm thick and 800 nm
fixed width vertical slot waveguide with a gap g, and a strip waveguide of thickness t and
800 nm width, as illustrated in the schematic of Figure 1. The TE/TM polarized input light
enters the device from the strip waveguide and is split to the two output strip waveguides
with different heights. The two types of waveguides support only the fundamental modes,
and the polarization selectivity is achieved by ensuring the phase-matching condition for
the TM0 mode that is directionally coupled to the slot waveguide and exits the device from
the cross port. The TE mode remains at the strip waveguide and exits the device from the
through port. The light is exchanged between the two types of waveguides in the coupling
section of length Lc, featuring a gap, G. An S-bend is used for the separation of the two
ports, with a radius of 50 µm aiming to avoid the induction of any polarization rotation
of the fundamental modes, or additional propagation losses. The refractive index n of the
Si3N4 waveguides at 1550 nm wavelength is taken as 1.974 and of the surrounding SiO2
cladding as 1.45.

Figure 1b shows the cross-sectional geometry of the two types of waveguides in the
coupling region of the DC-based PBS with all fixed values and the parameters under
investigation. The supported TE and TM modes of the strip and slot waveguides that
eventually propagate to the through and cross ports, respectively, are visualized in Figure 1c.
The gap of the slot waveguide is linearly decreased to 150 nm after the coupling region
in order to ensure almost lossless transition of the propagating TM mode from the slot
to a square 800 × 800 nm2 waveguide, complying simultaneously with the 193 nm DUV
lithography limits.
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Figure 1. (a) Illustration of the proposed DC-based PBS layout consisting of the strip and slot wave-
guides. The blue arrow represents the TE polarization, and the red arrow the TM. (b) Cross sectional 
view of the waveguides in coupling region where polarization discrimination is achieved. (c) Modal 
profiles of the supported TE and TM modes in the strip and waveguide, respectively. 
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challenging to meet for the thick (>600 nm) Si3N4 material platform that exhibits (i) a 
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than six [23]. 
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applying the finite-difference eigenmode calculation (FDE) method on the varying cross-
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According to the results of Figure 2, the mode phase-matching of TM occurs for the 
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TE value of 0.094 is obtained for g 
= 245 nm and t = 360 nm, but in this case the Δneff

TM would be only 0.07. 

Figure 1. (a) Illustration of the proposed DC-based PBS layout consisting of the strip and slot
waveguides. The blue arrow represents the TE polarization, and the red arrow the TM. (b) Cross
sectional view of the waveguides in coupling region where polarization discrimination is achieved.
(c) Modal profiles of the supported TE and TM modes in the strip and waveguide, respectively.

Optimization of the DC-Based PBS for 1550 nm Wavelength

According to the coupled mode theory (CMT) [22], to achieve the phase-matching
condition for efficiently coupling evanescently the TM polarized light to the vertical slot
waveguide in Figure 1a, the following condition ∆nTM

eff = nTMstrip
eff − nTMslot

eff = 0 should be
fulfilled by applying the proper combination of design parameters, i.e., g and t, to the two
waveguides. On the contrary, the phase-mismatch of the TE polarization can be secured
when the highest possible difference between the TE mode effective indices of the strip
and slot waveguide, ∆nTE

eff= nTEstrip
eff −nTEslot

eff , is obtained. In this way, the TM polarized
light will be coupled with maximum efficiency to the through port, while the TE polarized
light will remain uncoupled to the strip waveguide. These conditions are considered quite
challenging to meet for the thick (>600 nm) Si3N4 material platform that exhibits (i) a
medium refractive index contrast of ∆n ≈ 0.5 and ii) close to rectangular waveguide cross
sections in contrast to thin (<150 nm) platforms that usually feature an aspect ratio higher
than six [23].

The design optimization of the PBS device starts with the calculations of the fundamen-
tal TE and TM modes in the slot and strip waveguides for 1550 nm wavelength, by applying
the finite-difference eigenmode calculation (FDE) method on the varying cross-sectional
geometry. Figure 2a,b shows the calculated effective refractive indices of the TE (blue line)
and TM (red line) modes for the slot waveguide with G = 300 nm and varying g, and for
the strip waveguide with varying t, along with the respective effective refractive index
difference of the modes, ∆neff (TM-TE) (purple dashed line), in each case.

According to the results of Figure 2, the mode phase-matching of TM occurs for the
combination of g = 250 nm and t = 470 nm, and the effective refractive index of the TM
polarization in each waveguide is 1.579, as noted by the horizontal red dotted lines. In
addition, the ∆nTE

eff value is estimated to 0.086 for these optimum design parameters and
can ensure the TE polarized light will propagate to a large degree in the strip waveguide.
The ∆neff(TM − TE) curves indicate that the highest ∆nTE

eff value of 0.094 is obtained for
g = 245 nm and t = 360 nm, but in this case the ∆nTM

eff would be only 0.07.
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1550 nm for the (a) slot waveguide with varying g and the (b) strip waveguide with varying t. 
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Figure 2. Calculated effective refractive indices of the TE and TM modes and the respective ∆neff at
1550 nm for the (a) slot waveguide with varying g and the (b) strip waveguide with varying t.

Having specified the proper waveguide geometries, for maximum coupling of the TM
mode to the cross port, the design methodology now focuses on calculating the optimum
length of the coupling section of the PBS at the coupled waveguide system. The length of
parallel waveguides that is required for completely transferring the TM polarization from
one waveguide to another is expressed by the beat length Lπ [24]:

Lπ =
λ

2
(
nTM

eff0 − nTM
eff1

) (1)

where λ = 1550 nm the central wavelength of operation, and nTM
eff0 and nTM

eff1 the effective
indices of the fundamental (even) and first order (odd) TM modes of the coupled waveguide
system in the coupling section, respectively. By applying g = 250 nm and t = 470 nm, where
∆nTM

eff = 0 and ∆nTE
eff= 0.086 as noted, a beating length of Lπ = 15.15 µm is calculated.

However, by taking into account the contribution of the S-bend to the light coupling,
the actual length Lc will have a lower value than Lπ, that is calculated by a series of 3D-
FDTD simulations across the entire structure under investigation. Figure 3a shows the
transmission of the TM mode to the cross and through port with varying Lc at 1550 nm
wavelength. As expected, the coupling efficiency of the TM mode to the slot waveguide
presents a maximum at −0.18 dB around an Lc value of 10.3 µm, while the transmission to
the through port has a minimum value of −27.3 dB for this wavelength. The next step is the
calculation of the wideband transmission of the TE and TM modes for Lc = 10.3 µm across
the 1500–1630 nm wavelength range with corresponding results depicted in Figure 3b.
For the TE polarization, the transmission loss to the through port remains above −0.2 dB
and to the cross port ranges between −14.2 dB to −18.7 dB. For the TM polarization, the
transmission loss to the through port ranges between −15.8 dB and −27.4 dB, while the
cross port is above −0.23 dB for the entire span under investigation.

The performance metric of the PBS is evaluated by calculating the polarization extinc-
tion ratio (PER) of both polarizations at the corresponding output ports. The PER value is
extracted from the equations:

PERTE= Tthrough
TE − Tthrough

TM , (2)

PERTM= Tcross
TE − Tcross

TM (3)

where, Tthrough
TE , Tthrough

TM , Tcross
TE and Tcross

TM are the transmitted power of the TE and TM modes
expressed in dB at the through and cross ports, respectively, as illustrated in Figure 3b.
The PERTE corresponds to the purity of the dominant TE polarization at the through port,
while the PERTM to the purity of the dominant TM polarization at the cross port. Figure 3c
presents the calculated broadband PER of both polarizations across the investigated 130 nm
wavelength span, revealing a minimum value of 15.6 dB for PERTE and 13.8 dB for PERTM.



Photonics 2022, 9, 552 5 of 14

The same figure shows a strong dependency of the PERTE that was expected since the
polarization discrimination relies on the wavelength dependent DC mechanism. Regarding
the maximum values, the phase-matching and mismatching conditions allow the proposed
layout to reach PERTE and PERTM values up to 27.3 dB and 18.5 dB, respectively. In addition,
Figure 3d,e illustrate for the proposed optimum conditions the electric field distributions of
TE and TM at 1550 nm where the dominant field components are the Ey and Ez, respectively.
The IL for this part of the device ranges between 0.04 dB and 0.07 dB for the TE polarization
across the whole band and between 0.16 dB and 0.18 dB for the TM polarization, with
the extra ~0.1 dB mainly associated to the transition via the slot taper. The total length of
the PBS design is 36.5 µm, the total width is 6 µm and the gap between the output ports
is 4.4 µm.
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Figure 3. (a) Calculated transmission of the TM mode versus Lc. (b) TE and TM mode wideband
transmission for Lc = 10.3 µm. (c) Device PER for TE and TM polarization. Electric field distribution
along the PBS for (d) TE and (e) TM input polarizations.

3. Cascaded Formation for Enhanced Performance at Wide Wavelength Range
3.1. Variation of Lc and G

The ultra-small size of the proposed PBS grants the oportunity for the investigation
of a cascaded layout, aiming towards an ultrahigh broadband performance in terms of
PERTE and PERTM, while still maintaining a very low total device footprint. This tailor
made performance can be obtained by varying the parameter Lc from 9 to 11.5 µm that
adjusts the minimum PERTE and PERTM at the edges of the targeted wavelength span.
The combination thus of cascaded PBSs with different Lc provides a device with enhanced
performance across the targeted 1500–1630 nm range.

Figure 4 shows the calculated PER over the 1500–1630 nm wavelength range for both
polarizations versus the Lc. The TE polarization according to Figure 4a, exhibits PERTE
more than 18.8 dB at 1500 nm for Lc > 11 µm, and more than 22.9 dB at 1630 nm for Lc
< 9.5 µm. The very high values of PERTE observed around 1580 nm indicate that strong
phase-matching in the proposed DC-based PBS also occurs for this wavelength region. The
performance for the TM polarization is illustrated in Figure 4b and the PERTM exhibits
more than 15.3 dB across the whole wavelength span for Lc = 11.5 µm, while the minimum
value is 10.5 dB for Lc = 9 µm at 1630 nm. Overall, the variation of Lc leads to a change
in the spectral position of the PERTE peak, while for PERTM the preference is for larger Lc
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where the minimum value increases. A proper combination thus of these two layouts could
deliver the desired broadband performance in terms of PER for both polarizations. The next
optimization stage is the investigation of the spectral response for these two Lc, by varying
the design parameter G. Figure 5 shows the calculated PERTE and PERTM for Lc1 and Lc2
when G varies between 280 nm–320 nm. According to what is expected, the variation of
G leads in a change of the position of the peak of PERTE and of the minimum values of
PERTM. Figure 5a reveals that for Lc1 = 9 µm, PERTE is calculated to be everywhere higher
than 15 dB with maximum values reached at 1580 nm for G ~ 285 nm. Also, according to
Figure 5b, PERTM is higher than 11 dB for G < 285 nm. On the other hand, from Figure 5c
for Lc2 = 11.5 µm, PERTE is everywhere higher than 14 dB for G > 315 nm, with maximum
values obtained at 1545 nm. Finally, from Figure 5d the minimum PERTM is higher than
15.5 dB for G > 315 nm. Therefore, choosing a PBS with Lc1 and G < 285 nm can increase
the minimum values for both PERTE and PERTM and move the peak of PERTE closer to
1580 nm, while choosing Lc2 with G > 315 nm can further boost minimum PERTM and move
PERTE closer to 1545 nm. The 3D-FDTD simulations reveal also that the IL remain below
0.23 dB for all Lc and G combinations.
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3.2. Cascaded Formation

Having calculated the broadband performance of a single PBS by varying the two
major design parameters Lc and G, we proceed to the design and analysis of the two-stage
cascaded formation targeting to maximize the PER values across the entire 1500–1630 nm
band, at the expense of total dimensions and insertion losses. Figure 6 illustrates the
proposed layout where three DCs with different combinations of selected Lc and G are
employed. The input light is injected into the PBS from the 470 nm thick strip waveguide
to DC1, where the cross/through ports are connected to DC2/DC3, respectively. The
transition from DC1 to DC2, as shown in the left inset of Figure 6, is carried out via a
10 µm long rib-type taper with a tip of 150 nm that adiabatically transfers the light from the
800 nm to the 470 nm thick waveguide. The TM polarized light is monitored from the cross
port of DC2 referred as port 1, while the TE lightwave is recorded from the through port of
DC3, marked as port 4. The through port of DC2 and the cross port of DC3, labeled as port 3
and port 4, respectively, collect the residual unwanted TE and TM light for subsequent
suppression of any unwanted back reflections via taper tips. The right inset of Figure 6
shows details about this part of the PBS layout.
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The optimum PBS design is coming from a combination featuring identical DC1 and
DC2 with Lc2 = 11.5 µm and G = 320 nm, while for DC3 the corresponding key parameters
are Lc1 = 9 µm and G = 280 nm. Figure 7a shows the DC1 & DC2 transmission curves
for TE/TM polarization and Figure 7b for DC3, both extracted by 3D-FDTD simulations.
The two graphs reveal that the IL are below 0.22 dB for DC1 & DC2 and less than 0.23 dB
for DC3 with a flat response. Also, from the same graphs it is shown that the minimum
PERTE for DC3 is located at 1500 nm with a value of 16.4 dB, while the minimum PERTM
is of 10.9 dB at 1630 nm. On the other hand, DC1 & DC2 presents a symmetric perfor-
mance with a minimum PERTE, PERTM of 15 dB and 15.5 dB respectively, both at 1630 nm.
Figure 7c illustrates the calculated aggregated transmission curves of the cascaded DC
scheme, extracted from transfer matrix simulations, taking into account the S-parameters
of DC1/DC2 and of DC3 from Figure 7a,b. The transfer matrix method was selected at this
point, eliminating the need to simulate the entire device with 3D-FDTD that would require
enormous computational resources. It should be pointed out that the model also considers
in the transfer matrix the IL of the rib taper for the transition between the two different
thicknesses that is less than 0.06 dB. This advanced PBS scheme now induces IL in the range
of 0.23–0.57 dB for TE light and between 0.48 dB and 0.8 dB for TM polarization in the entire
130 nm window. Figure 7d displays the performance in terms of PER, revealing minimum
values of 34.3 dB and 30.6 dB for PERTE and PERTM respectively, granting the ultra-high
polarization selectivity in combination with ultra-broadband performance targeted at the
start of this work. It should be noted that these high PER values allow high margin for
error during fabrication as it will be shown in the next Section.
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The total dimensions of the proposed formation are estimated at 94 × 14 µm2 by 2D-
layouting and the gap between the output ports 1 and 4 is 12.4 µm. It is worth noting that
when deploying the specific DCs of Figure 7, the minimum PER of the device is improved
by 3.3 dB and 3 dB for TE and TM polarization, respectively, compared to the layout that
employs three identical PBSs of Figure 3c optimized for 1550 nm. In addition, the IL for
the TM port can be further reduced by narrowing the tip of the slot tapers down to 50 nm,
reaching overall values lower than 0.4 dB. On the other hand, when the width of the slot tip
is 250 nm instead of 150 nm, the IL is raised up to 1.4 dB for TM polarization. For the TE
light the corresponding values are 0.5 dB for 50 nm and 0.9 dB for 250 nm slot gap. Table 1
summarizes the design parameters of the PBSs in the proposed cascaded scheme and their
performance across the 1500–1630 nm wavelength range.
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Table 1. Design parameters of the two DCs.

PBS Lc (µm) G (nm) PERTE (dB) PERTM (dB) IL (dB)

Single DC1/DC2 11.5 320 >15 >15.3 <0.23
Single DC3 9 280 >16.3 >10.7 <0.22
Cascaded >34.3 >30.6 <0.80

4. Fabrication Tolerance Analysis

Taking into consideration that DCs are very sensitive to fabrication variations, it is
important to evaluate numerically the impact of deviations from the optimum geometry to
the overall performance of the device. The fabrication tolerance is initially investigated by
simultaneously varying the thickness of both types of waveguides, ∆th, for DC1/DC2 and
DC3 by ±16 nm with a step of ±2 nm. The next step is to change the gap G by ±20 nm for
∆th = ±16 nm, so as to identify which parameters affects mostly the PER of the proposed
PBS. The other crucial parameter for the DC mechanism that is the form (gap, sidewalls) of
the slot waveguide is not considered a variable for this tolerance analysis, as for a complete
investigation three different parameters should be varied: the gap g and the width of two
side walls, where their interplay affects the total width and form of the slot waveguide,
rendering this task extremely complex.

The effect of the simultaneous variation of thickness, ∆th, at both types of waveguides
on PERTE and PERTM for a single DC is depicted in Figure 8. According to Figure 8a,b
for DC1/DC2, minimum PERTE ranges between 12.3 dB and 12.7 dB at the edges of the
wavelength range, while minimum PERTM is between 13.4 dB and 14.9 dB. Also Figure 8c,d
shows that for DC3 the minimum PERTE ranges between 12.8 dB and 16.5 dB at the edges of
the wavelength range, while the minimum PERTM is between 9.5 dB and 12.4 dB. Overall,
it is clear and in agreement from what was expected that deviations in thicknesses will
result to a decline in efficiency of the DCs for TE or TM polarization, or both, therefore
affecting the performance of the overall device.

Having calculated the performance degradation of the two DCs versus the variation
of ∆th, the next step is to proceed to the extraction of the worst-case scenario when G
also deviates from its optimal value by ±20 nm with corresponding results presented in
Figure 9. Figure 9a reveals that the deviation of the thicknesses by −16 nm or +16 nm
leads to a minimum PERTE of 32.4 dB or 26.8 dB, respectively, while according to Figure 9b
the PERTM minimum value is 23 dB for ∆th of −16 nm and 28.9 dB for ∆th +16 nm at the
upper end of 1630 nm. Going now to the worst-case scenario where the gap G deviates
also from its optimum value for ∆th= ±16 nm, Figure 9c shows that minimum PERTE
lies between 28.9 dB and 22 dB for all combinations with the worst one emerging for ∆th
= +16 nm and ∆G = +20 nm. From Figure 9d it is also evident that for TM polarization,
minimum PERTM is 22.6 dB for the combination of ∆th = −16 nm and ∆G = +20 nm with
a clear trend for lower values as the operation wavelength increases. The comparison
between Figure 9a,c and Figure 9b,d reveals that precise control of ∆th is crucial in order
to maintain very good wideband PER performance, especially for TM polarization. On
the other hand, ∆G seems to have minor effect in the overall performance of the cascaded
layout. Regarding the degradation of the IL from fabrication errors, according to Figure 9e,f
TE light features a maximum value of ~ 1.2 dB for the worst case of ∆th = −16 nm and
∆G = +20 nm, while TM does not exceed 1.1 dB, when ∆th = −16 nm and ∆G = −20 nm,
respectively. Comparing these results with the optimum design presented in Section 3,
the minimum PERTE declines up to 12.3 dB and the PERTM up to 8 dB for these assumed
worst-case scenarios, where both ∆th are ∆G values are missed by the widest accepted
margin in lithography, deposition and etching of the Si3N4 core layer. It should be noted
that if a PER of 20 dB is considered acceptable, the proposed design has a 2 dB margin for
even higher tolerance to fabrication errors. Also, if a maximum 1.5 dB theoretical value is
considered acceptable for the IL, there is still space for relaxing even further the fabrication
tightness coming with the DC sensitivity.
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5. Discussion

In this section, the proposed design of this work is compared from every aspect with
existing state-of-the-art Si3N4 PBSs reported in the literature. Table 2 summarizes the key
performance metrics of seven Si3N4 PBS designs based on different techniques for direct
performance comparison, where “S” refers to the simulated and “E” to the experimental
values. The table also includes the number of etching steps required for the fabrication
of each design, in order to take into account also the parameter of fabrication complexity.
Even though the angled MMI-based PBS of [15] exhibits a slightly lower footprint, it has a
minimum PER at least 12.6 dB lower than the one achieved in this work in combination
with a 30 nm reduced bandwidth. In addition, the design of [16] exploiting a 2×2 MMI and
anodized gratings features a very high PER of >30 dB and low IL, however this comes at
the expense of bandwidth that is now only 22 nm, while the footprint is also six times larger.
In [10] the operation bandwidth is 95 nm wide at the O-band by cascading phase-controlled
DCs, while the minimum PER is 20 dB, but the IL and the footprint are quite higher. In [16]
the layout is quite complex, as it is based on handling the first order TM mode from
cascaded asymmetric DCs and achieves 80 nm wide operation at the expense of minimum
PER, that is only 10 dB. The PBS in [25] is based on cascaded multimode interferometers
with very good performance in terms of overall footprint, losses and operational range, but
again the minimum PER is only 10 dB for 100 nm range. In [13] the polarization splitting is
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relying on a horizontal multi-slot waveguide demonstrating 100 nm bandwidth with more
than 20 dB PER within a length of 286 µm. The downside of this design is that the specific
cross section of the waveguide must be applied across the whole PIC, if only one etching
step is used. Otherwise, two etching steps should be applied for the slot formation. Finally,
the design of [17] requires two etching steps for the formation of the three-dimensional
vertical directional coupler and achieves more than 16 dB PER over a 30 nm range with very
low IL, but the overall footprint is quite large. The last row presents for comparison the
key performance metrics of the proposed PBS design that is based on cascaded directional
couplers with vertical slots, where superior performance in terms of PER, IL and footprint
is exhibited across a very wide 130 nm wavelength span that covers the SCL-band. The
separation of the two polarization states follows a similar design strategy exploited on SOI
platform in [9], but here significant analysis and optimization in the layout is required,
as the basic polarization discrimination mechanism is highly wavelength sensitive and
also due to the fact that the effective refractive index of thick Si3N4 waveguides is almost
identical for the TE and TM polarization. This exceptional performance is coming though
at the expense of the higher fabrication complexity required by the two etching depths.

Table 2. Comparison with other PBS designs.

Ref. Wavelength
Range (nm)

Bandwidth
(nm) PER (dB) IL (dB) Footprint Etching

Steps Technique

[14] 1539–1561 22 >30 (S&E) <1.1 (S&E) 820 × 10 µm2 1 2×2 MMI and apodized
grating

[10] 1260–1355 95 >20 (S&E) <1.3 (S&E) 240 × 24 µm2 1 phase-controlled
cascaded DCs

[16] 1520–1600 80 >10 (S&E) <2.1 (S&E) 113 µm long 1 cascaded asymmetric
DCs

[25] 1500–1600 100 >10 (S) <1 (S) 400 × 10 µm2 1 cascaded MMI

[13] 1500–1600 100 <20 (S) - 281 µm long 1 or 2 horizontal multi-slot
waveguides

[17] 1535–1565 30 >16 (E) <1 (E) 800 × 20 µm2 2 3D vertical directional
coupler

this
work 1500–1630 130 >30.6 (S) <0.8 (S) 94 × 14 µm2 2 cascaded DCs with

vertical slots

6. Conclusions

In this work, we propose a silicon nitride-based PBS layout that exploits a strip and a
vertical slot waveguide, with different thicknesses to discriminate the fundamental modes
of the TE and TM polarizations via directional coupling. The device is optimized through
extensive FDE and 3D-FDTD electromagnetic simulations, so that the input TM polarized
light is directionally coupled from the 470 nm thick strip to the 800 nm thick vertical slot
waveguide, while the TE polarized light continues to propagate in the strip waveguide.
The proposed PBS design manages to expand the operational window with a high PER
for both polarizations, overcoming the inherent wavelength dependence of the directional
coupling polarization discrimination mechanism. In the first stage of this analysis, the PBS
is optimized for 1550 nm wavelength with maximum IL of 0.18 dB and a minimum PER of
15.4 dB for both polarizations across a 130 nm span at SCL-band. For further optimization of
the broadband performance two PBS layouts were identified with variations in the critical
parameters of gap G between the slot and strip waveguides and the coupling length Lc in
the DC section, aiming for the highest attainable PER at the edges of the targeted window.
In this way a cascaded network of two PBSs per polarization port, attains minimum values
of 34.3 dB and 30.6 dB for PERTE and PERTM, respectively, a total footprint of 94 × 14 µm2

and IL lower than 0.8 dB for both polarizations. Finally, a fabrication tolerance analysis was
performed taking as worst-case scenarios simultaneous deviations of ∆th = ±16 nm from
optimum thicknesses and ∆G = ±20 nm from optimum gap in the DCs. Under these non-
optimum conditions, the minimum PERTE and PERTM are calculated above 22 dB, while
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the are IL below 1.2 dB in the entire 1500–1630 nm range. These results verify the resilience
of the proposed design to provide PER values above the 20 dB benchmark without strict
limitations in the fabrication process.
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