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Photonic jets (PJs) are important mesoscale optical phenomena arising from electro-
magnetic waves interacting with dielectric particles with sizes around several to several
tens wavelengths (~2–40 λ). It generates a narrow, high-intensity beam at the shadow-side
of the ‘particle lenses’ made from microspheres, cylinders (fibers), cubes, disks and others,
even including biological cells and spider silks. A PJ has the capability to focus light beyond
the classical diffraction limit, thus permitting many possibilities and applications: for exam-
ple, super-resolution imaging, nanosensing, detection, patterning, trapping, manipulation,
waveguiding, signal amplification (e.g., Raman, photoluminescence and second-harmonic
generation) and high-efficiency signal collection, among others.

The earliest studies on PJ effects were reported in 2000 by Luk’yanchuk and co-
workers [1,2]. They theoretically analyzed optical resonance and near-field effects [1], and
verified experimentally [2]. By using 500 nm silica particles and a 248 nm-wavelength laser
source, they obtained 100 nm hillocks (∼ λ/2.5) on a silicon surface [2]. Related works
were carried by several groups between 2000 and 2004 [3,4]. Not knowing these works,
Chen et al. reported in 2004 a theoretical subwavelength focusing effect by microcylinders
and coined the terminology ‘photonic nanojet’ (PNJ) [5], which has since been widely
used. A simplified term, ‘photonic jet’ (PJ), was also used by researchers in the field
since 2005 [6,7]. In 2014, Minin et al. showed that a photonic jet can be formed from a
three-dimensional particle of an arbitrary shape if the mesoscale condition is met [8,9].
In the past two decades, the field of PJ has undergone rapid growth and developments,
driven by new innovations and discoveries. Among them, the most notable developments
include the following: white-light microsphere nanoscope (2011) [10], spider silk superlens
and metamaterial solid immersion lens (2016) [11,12], the discovery of photonic hooks
(2016) [7,13], THz super-resolution imaging (2017) [14], single-cell biomagnifier (2019) [15],
Plano-Convex-Microsphere (PCM) superlens (2020) [16,17], lipid droplets microlenses
(2021) [18], PJ-mediated optogenetics (2022) [19] and others. More information on the past,
present and future of PJ technology can be found in refs. [7,9,20–22].

This Special Issue focuses on the most recent advances and trends in PJ research. A total
of 10 papers were selected and published, including a review of the field (one paper) [23],
photonic hooks (three papers) [24–26], the modulation of PJ beam (three papers) [27–29],
super-resolution imaging (three papers) [25,30,31], and scanning nanopatterning (one
paper) [32]. Photonic hooks, field modulation and super-resolution imaging are the main
topics in this Special Issue, which reflect the current research focus and trends. We highlight
the key contribution and merit of the selected papers below according to the topics.

• Review on PJ-based trapping, sensing, and imaging

Li et al. reviewed the current types of microsphere lenses for PJ applications and
their principles and applications in optical nano trapping, signal enhancement and super-
resolution imaging, with particular emphasis on biological cells and tissues [23]. They
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envisage that in vivo nanomanipulation and biodetection will be the future trends. This
review is an important addition to the existing literature on PJ technology, with refined
focuses on trapping, sensing and imaging.

• Photonic hooks (PHs)

A PH is a new type of self-bending PJ beam, with a curvature that is less than the
wavelength and differs from Airy-family beams [33]. Such structured beams were the-
oretically predicted in 2016 [7] and experimentally demonstrated in 2019 [34] based on
dielectric Janus particles with broken symmetries in its geometry. Other methods for gen-
erating PH include asymmetric beam excitation and two material-composition particles,
among others [22,33,35]. In the current issue, Tang et al. proposed a new method of using
patchy microcylinders (i.e., partially metal-coated) for the generation of PHs [24] having in
mind [35]. By rotating the patchy microcylinders, PHs with different curvatures were suc-
cessfully demonstrated, and a bending angle of 28.4 degree and curved-line width of 0.36 λ
were reported. Based on this work, the authors extended their work to patchy microspheres
and experimentally demonstrated, for the first time, the effect of PHs on super-resolution
imaging [25]. They showed that PHs generated by patchy microspheres provide an effective
oblique illumination of imaging objects, which leads to the considerable improvement of
near-field imaging contrast, thus providing a new mean to optimize microsphere-based
super-resolution techniques. On the other hand, Yue et al. demonstrated a new concept
of using PHs for photonic switching [26,36]. When two-wavelengths beams, 1310 nm and
1550 nm, pass through a right-trapezoid dielectric Janus particle, they were separated and
guided to different routes because of different bending strengths [26], thus permitting
effective photonic switching on microscale through a simple dielectric particle. Potential
applications in photonic integrated circuit are envisaged.

• Modulation of PJ beams

The ability to control and modulate PJ beams is essential for developing next-generation
PJ devices and technologies. In principle, modulations can be achieved by various means,
including tuning the particle’s size, refractive index, surrounding medium, incident beam
pupil and beam structure [37], the composition of particles (e.g., liquid crystals [38] and
metamaterials [14,39]) and more. Here, Sergeeva et al. presented a new method for modu-
lating PJs by using standing waves, which were achieved by positioning aluminum oxide
hemispheres on top of a silicon substrate with a separation distance. The gap distance
was chosen to match the phase conditions for constructive interference between incident
and reflected beams [27] for effective modulation. The work offers a new pathway to
design PJ-based integrated photonic devices. On the other hand, Lin et al. designed and
manufactured a spider-silk-based metal-dielectric dome microlenses, which showed great
performance in PJ modulations by using different metal casings [28]. When gold casing
was used, the focusing intensity was maximized and increased by a factor of three due
to the surface’s plasmon resonance. This microlens could be used to scan a biological
target for large-area imaging with a conventional microscope. In addition, Bouaziz et al.
demonstrated another PJ modulation method based on fiber tip parameter tunning [29].
They showed that PJs were obtained when light is coupled in the guide’s fundamental
mode and when the base diameter of the microlens is close to the core’s diameter and
modulated by the sharpness of the tip. When the base diameter of the microlens is larger
than the fiber core, the focus point tends to move away from the external surface of the
fiber and has a larger width. The results of this study can be used as guidelines for the
tailored fabrication of shaped optical-fiber tips according to the targeted application.

• Super-resolution imaging

Since the first demonstration of microsphere-assisted super-resolution imaging in
2011, the technology received wide attention and constant development by researchers
across the world [21]. The field of development and roadmap has been systematically
reviewed and summarized in refs. [20–22,40]. Note there are two types of particles super-
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lenses used for super-resolution imaging in the literature: microsphere superlens [10] and
metamaterial solid-immersion superlens [12], and both have different super-resolution
imaging mechanisms. For microsphere superlens, the super-resolution mechanism is a com-
bined contribution of several effects, including PJ focus, the excitation of super-resonance
and whisper gallery modes, as well as substrate and partial and inclined illumination
effects [21]. They lead to the conversion of high-frequency evanescent waves that contain
near-field nanoscale information into propagating waves, which then reach the far-field and
contribute to the formation of a magnified virtual image. Herein, by conducting rigorous
electromagnetic simulations, Boudokha et al. provided new insight and evidence that mi-
crospheres are a natural collector and converter of evanescent waves to propagating waves
using whisper gallery modes [30]. However, the evanescent-to-propagation-conversion
(ETPC) efficiency can vary significantly (10−7 to 10−1) depending on used microspheres.
On the other hand, Dhama et al. designed and fabricated TiO2 metamaterial superlens
in full-sphere shape for the first time and compared its imaging performance with com-
monly used BaTiO3 (BTG) microspheres under the same imaging settings [31]. Their results
showed that the meta-superlens performs consistently better over the widely used BTG
superlens in terms of imaging contrast, clarity, the field of view and resolution, which was
further supported by theoretical simulation. In addition, as mentioned above, photonic
hook (PH)-induced super contrast imaging was for the first time demonstrated by using a
patchy microsphere [25] and asymmetric Janus particles [41]. These works will contribute
to developments of more powerful, robust, and reliable super-resolution imaging systems,
which have potential in revolutionizing the optical microscopy.

• Scanning nanopatterning

Alongside laser cleaning, surface nanopatterning are among the earliest applications
of PJ effects. To fabricate arbitrary nanopatterns, various approaches such as angular beam
scanning [42] and scanning Plano-convex-microsphere superlens [17] have been developed.
Herein, Luo et. al. demonstrated a new laser-direct nanowriting system based on a
combination of microsphere lens with an AFM cantilever and scanned over the sample’s
surface [31]. Using femtosecond laser sources, arbitrary silicon oxide nanopatterns with
a feature size of 310 nm and height of 120 were directly fabricated in a single step. The
proposed method shows the potential for the fabrication of multifunctional surfaces and
silicon photonics and integrated chips.

We hope that this Special Issue will provide readers with a useful and timely update
on the status and future trends of PJ research and mesotronics [7,20–22,33,43–47]. We thank
all authors, reviewers and the photonics editorial team for their valuable contributions that
brought this Special Issue to life.
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