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Abstract: The optical beam splitter is an essential device used for decoding in quantum key distribu-
tion. The impact of optical beam splitters on the security of quantum key distribution was studied,
and it was found that the realistic device characteristics closely influence the error rate introduced by
the wavelength-dependent attack on optical beam splitters. A countermeasure, combining device
selection and error rate over-threshold alarms, is proposed to protect against such attacks. Beam
splitters made of mirror coatings are recommended, and the variation of splitting ratio should be
restricted to lower than 1 dB at 1260–1700 nm. For the partial attack scenario where the eavesdropper
attacks only a portion of the quantum signal, a modified secure key rate formula is proposed to
eliminate the revealed information of the attacked portion. Numerical results show that the QKD
system adopting this countermeasure exhibits good performance with a secure key rate of over
10 kbps at 100 km and a maximum transmission distance of over 150 km, with only a small differ-
ence from the no-attack scenario. Additionally, a countermeasure to monitor the light intensity of
different wavelengths is proposed to protect against the wavelength-dependent attack on optical
beam splitters.

Keywords: quantum key distribution; optical beam splitter; wavelength-dependent attack;
countermeasure

1. Introduction

With the rapid development of quantum computing technology, the security of clas-
sical encryption systems, which are based on computational complexity, has been chal-
lenged [1,2]. Quantum key distribution (QKD) provides another secure means for confi-
dential communication and is attracting growing interest. QKD enables two separated
communicating parties to establish secure keys, which can be used for confidential commu-
nication [3]. The security of quantum key distribution is guaranteed by the basic principles
of quantum mechanics [4]. Since the BB84 protocol [5] was proposed, QKD has undergone
fast development. Both theoretical descriptions [6–9] and experimental techniques [3,10]
have matured, gradually moving from experimental verification [11–22] to the stage of
large scale application [10,23,24].

Although QKD systems based on bulky optics have shown good performance, pho-
tonic integrated circuit technology holds promise for QKD, aiming at miniaturizing the
device size [25–28]. The performance of various kinds of components on chip has been
verified, such as sources [29], filters [30], beam splitters [31], and modulators [32]. Based
on these advances, chip-based QKD has been developing rapidly. Optical transmitters on
silicon photonics has been proposed for polarization-encoding QKD [33]. Multi-protocol
compatible QKD has been realized using an indium phosphide-based transmitter and a
silicon oxynitride-based receiver [32]. Measurement-device-independent QKD has been
demonstrated on a silicon photonic chip operating at 1.25 GHz [34]. A complete quantum
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secure communication system has been presented with photonic integrated circuits, both
the QKD chip and the quantum random number generator chip, assembled into compact
modules [35]. Field tests of QKD with silicon photonics have been demonstrated in an
intercity metropolitan range [36].

QKD has theoretically been proven to be information-theoretically secure. However,
practical QKD systems do not necessarily reach the security level described in theory.
This is mainly due to imperfect physical properties of the devices, which do not strictly
match the abstraction of the device model in the theoretical proof [6]. Such imperfections
may be used to design attacks against specific systems, which are known as quantum
attacks [37]. For example, time-shift attacks [37,38] and blinding attacks [39] have been
developed by exploiting the imperfections of single-photon detectors. In practical QKD
systems, necessary countermeasures against known quantum attacks should be involved
to ensure security of the system [40].

The basic QKD system can be divided into a transmitter, which is responsible for
quantum state preparation and encoding, and a receiver, which is responsible for quantum
state decoding and measurement. QKD based on polarization encoding is widely used in
quantum communication [11,23]. In the polarization-encoded QKD system, the transmitter
can use multiple lasers to represent different polarization states [11,23], or use a single laser
to encode different quantum states with an additional modulator [23], while the receiver
often uses passive decoding [11,23], where an optical beam splitter (BS) is used to split
the quantum signal into two paths for measurements in two conjugate bases. Therefore,
beam splitters are indispensable components in QKD. Bulky beam splitters made by
fused biconical taper (FBT) or mirror-coating (MC) technology are commercial off-the-shelf
products, and have been widely used in optical applications. Compact beam splitters
can be achieved by integrated photonics. Both directional couplers [25] and multimode
interference (MMI) couplers [32,33] have been used to act as beam splitters on silicon
quantum chips. Beam splitters of other structures have also attracted much attention,
such as non-uniform adiabatic couplers [31], photonic crystals [41], metamaterials [42],
metasurface [43,44], polymers [26,45], and so on. The ideal BS in QKD should have a
constant splitting ratio independent of external conditions. However, a realistic beam
splitter is usually imperfect as the splitting ratio between the two ports is wavelength-
dependent [46]. Adopting this imperfection, wavelength-dependent attacks on beam
splitters were proposed [46], which are able to steal some information about the key and
threaten the security of the actual system.

In this paper, by carefully looking into the wavelength-dependent characteristics
of beam splitters and the features of such an attack, we propose two different kinds of
countermeasures against the wavelength-dependent attack on beam splitters. The first
countermeasure is to detect the qubit error rate and alert when it exceeds the pre-set
threshold. The second countermeasure is to monitor the input light intensity of different
wavelengths. These solutions can effectively protect against wavelength-dependent attacks
and enhance the implementation security for QKD systems.

2. Wavelength-Dependent Attack of Beam Splitters

We first review the wavelength-dependent attack on optical beam splitters [46]. The
schematic diagram of this attack is shown in Figure 1. Near the normal wavelength of
the QKD system λ0, the splitting ratio of the beam splitter is very close to 50:50, i.e., the
splitting ratio r(λ0) = Iport1(λ0)/

(
Iport1(λ0) + Iport2(λ0)

)
= 0.5, where Iport1 and Iport2

are the intensity of the different output ports of the beam splitter. However, if deviating
far from the normal wavelength, the splitting ratio may change dramatically. Without
loss of generality, we assume that r1 = r(λ1) ≥ 0.5, r2 = r(λ2) ≤ 0.5. The extreme
case is r(λ1) = 1, r(λ2) = 0, where all incident light of wavelength λ1 exits from port
1 and all incident light of wavelength λ2 exits from port 2. Using this property, the
following intercept-and-resend attack [46] can be designed to steal the key of the QKD
system: (1) intercept the quantum signal emitted by the QKD system and randomly select
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the measurement basis and record the measurement results; and (2) select the attack
wavelength according to the measurement basis, prepare the polarization state according
to the measurement result, and then resend the signal to the QKD receiver. For example, if
an eavesdropper chooses the Z basis and the measurement result is 0, then the horizontal
polarized attacking signal of wavelength λ1 is prepared and sent to the receiver. Due to
the characteristics of the optical beam splitter, all the attacking signals go to port 1 for
measurement in the Z basis, leading to a certain result of 0. In this way, the eavesdropper
can control the QKD receiver to be the same as their measurement result. This kind of
attack is known as the wavelength-dependent attack on optical beam splitter [46].
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Figure 1. Schemes of the wavelength-dependent attack on optical beam splitter. BS indicates optical
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To achieve such an attack, stringent conditions are required. The first requirement
is that the splitting ratio deviates severely from 0.5, and the ideal attack conditions are
r(λ1) = 1, r(λ2) = 0. It also requires that the attacking wavelength deviates far from the
normal wavelength of the QKD system. For these two conditions, we propose two kinds of
countermeasures, one provides protection by error rate alerting, and the other provides
protection by light intensity monitoring.

3. Countermeasure of Error Rate Alerting

In practice, the beam splitter’s splitting ratio rarely equals to 1 or 0. For a BS made by fused
biconical taper (FBT) technology in Ref. [46], r1 = r(1470 nm) = 0.986, r2 = r(1270 nm) = 0.003,
i.e., 98.6% of the 1470 nm light is emitted from port 1 and 99.7% of the 1270 nm light is
emitted from port 2. Thus, the above attack method will introduce an increase in the error
rate detected between the QKD sender and receiver. The additional error rate introduced
due to the wavelength-dependent attack on optical beam splitters can be calculated by the
following equation [46]:

eErr =
1
4

(
1 − r1

2 − r1 − r2
+

r2

r1 + r2

)
, (1)

Near the wavelength λ0, r1 = r2 = 0.5, the attack will cause an error rate of eErr = 25%,
which is too high to generate secure keys. In the extreme case, r(λ1) = 1, r(λ2) = 0, the
introduced error rate eErr = 0, and the eavesdropper obtains the same information as the
receiver. The attacker will get 100% of the key’s information. We numerically simulated the
additional error rate with different beam splitting ratios and present the results in Figure 2
below. Different colors in Figure 2 indicate different error rate ranges. The gray region in
the upper left corner indicates that the additional error rate introduced by the attack has
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exceeded 11%, which will cause the QKD system to fail to generate secure keys. Thus, the
attack will fail as it is impossible to steal information about the final keys, which means
that the QKD system is secure. The colored area indicates that the attack introduces an
error rate of less than 11%. Adjacent color blocks between them indicate a 1% increase in
the error rate range. For example, the yellow area indicates an error rate of 7–8% and the
orange range indicates an error rate of 8–9%. The objective of the attacker is to steal the
key’s information, so the error rate introduced by the attack needs to be reduced as much
as possible to hide the traces of the attack and maximize the information obtained. If the
introduced error rate caused is limited to be less than 1%, the splitting ratio should meet
r1 ≥ 0.95 and r2 ≤ 0.05.
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Since a severe deviation of the splitting ratio from 0.5 is necessary for the success of
this attack, we propose a countermeasure by combining device selection and error rate
over-threshold alarms to protect against this attack. Firstly, by selecting device types and
device characteristics, we ensure that the beam splitters used feature a small variation
of splitting ratio in a wide range of wavelength. The splitting ratios of the filtered BS
are noted as r1 ≤ rmax and r2 ≥ rmin. Combining the single-mode cut-off wavelength
of standard communication fibers [47] and the operating wavelength range of single-
photon detectors [48], the spectral range for inspecting the splitting ratio of the BS can
be determined as 1260–1700 nm. The two most commonly used beam splitters in optical
communication are BS made by fused biconical taper (FBT) technology and BS made of
mirror coatings (MC). The most commonly used integrated beam splitters are the MMI-type
beam splitters on QKD chips. The FBT BS is generally wavelength dependent [46,49]. The
splitting ratio of FBT BS exhibits an approximately periodic variation from nearly 0 to
nearly 1 [46]. The splitting ratio of MMI-type BS features a similar variation pattern to that
of FBT BS [50,51]. The variations in the splitting ratio of these two types of beam splitters
are too large to ensure the safety of QKD systems. The MC BS can achieve a small change
in splitting ratio over a wide wavelength range, as shown in Figure 3. Therefore, the MC
BS is more suitable for the practical QKD system. Within current technology, we suggest
selecting devices featuring wavelength dependence lower than 1 dB at 1260–1700 nm,
i.e., 0.5 ≤ r1 ≤ 0.63 and 0.5 ≥ r2 ≥ 0.38. eth denotes the minimum error rate that can be
introduced by performing the wavelength-dependent attack under this spectral splitting
ratio condition. According to Equation (1) and Figure 2, it is easy to conclude that the attack
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introduces the smallest error rate when r1 = 0.63 and r2 = 0.38, and this minimum value
can be easily calculated to be eth ≈ 18%.
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Secondly, we monitor the error rate of the QKD system in real-time and alert when
a preset threshold emonitor is exceeded. As an alarm implies a likely attack, the system
should stop QKD and discard relevant data to prevent information leakage. Consider-
ing the performance of commercial QKD devices, the monitoring threshold can be set
to emonitor ≤ 3% [23,52], which can effectively detect wavelength-dependent attacks of
beam splitters.

The eavesdropper can further optimize the attack, to reduce the error rate caused, by
only attacking part of the quantum signals. If the percentage of attacked signals is pattack,
the error rate caused by the attack is approximately pattacketh. The eavesdropper may attack
only a few signals to make pattacketh < emonitor, where the system cannot trigger an alarm.
Fortunately, the amount of information that the attacker can obtain is also limited in this
case. We can remove this amount of information to obtain the security key by modifying
the secure key rate formula as follows:

R ≥ 0.5pµ f f req[(1 − pattack)Q1(1 − H2(e1))− leakEC]
≥ 0.5pµ f f req[(1 − emonitor/eth)Q1(1 − H2(e1))− leakEC]

(2)

where Q1 is the detection gain of a single photon state, e1 is the error rate of a single
photon state, H2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary Shannon function, and
leakEC = fECQµH2

(
Eµ

)
is the amount of information leaked in the error correction stage,

fEC is the efficiency of error correction, Eµ is the quantum bit error rate of the signal state
under the decoy-state scheme.

We numerically simulated the performance of the QKD system after partial-attack
modification, as shown in Figure 4. For simplicity, we calculated the secure key rate at
infinite key size and ignored the detector’s dead time and the after-pulse effect. Low
after-pulse or a key size more than 1 Mbit have little effect on the secure key rate [53,54].
The dead time effect significantly reduces the secure key rate at short-distance transmission,
but has little impact for long-distance transmission. In our simulation, the model of signal
state + decoy state + vacuum state was used [55]. The average photon number of the signal
state, the decoy state, and the vacuum state was set to 0.4, 0.1, and 0, respectively. The
probabilities of the signal state, the decoy state, and the vacuum state were set to 80%, 10%,
and 10%, respectively. We assumed a balanced basis choice, i.e., 50% for choosing any basis
for both the transmitter and the receiver. The repetition frequency at the transmitter was
set to 625 MHz, and the insertion loss at the receiver side was set to 3 dB. The detection
efficiency was set to 20%, and the dark count was set to 1000 cps. The error rate caused
by the basis mismatch was set to 1%. The equations used in our simulation are presented
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in the Appendix A. The results showed that after partial-attack modification, the QKD
system exhibited good performance, with a secure key rate of over 10 kbps at 100 km
and a maximum transmission distance of over 150 km, which is of small difference from
the no-attack scenario. Experimental demonstration is important to rate the simulated
performance, which we would like to leave for future work.
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Figure 4. Simulated key rate after partial-attack modification. The solid blue line indicates the
secure key rate after partial-attack modification, and the red dashed line indicates the key rate in the
no-attack scenario.

4. Countermeasure of Monitoring

As previously analyzed, to perform a successful wavelength-dependent attack on
the optical beam splitter, it is necessary to select two attack wavelengths that are far from
the normal operating wavelength of the QKD system, where the splitting ratio deviates
severely from 0.5. We propose a countermeasure by monitoring the light intensity of
different wavelengths to protect the optical beam splitter from wavelength-dependent
attack. The principle of this protection scheme is shown in Figure 5. A filtering module
is added at the QKD receiver before the quantum state decoding. The light of operating
wavelength is used for the quantum state decoding. The light of non-operating wavelength
is separated and measured by a monitoring detector. If the monitoring detector receives a
strong light, an alarm is triggered as there is likely a wavelength-dependent attack from the
channel. The system should stop QKD and discard relevant data to prevent information
leakage. Commonly used fiber optic system filters are available for Wavelength Division
Multiplexer (WDM) or Dense Wavelength Division Multiplexer (DWDM), the combination
of which can effectively improve the filtering bandwidth and isolation of the filter. Filters
also increase the isolation of the system in the non-operating wavelength region, making it
necessary for an eavesdropper to increase the light intensity to conduct the attack, thus also
increasing the probability of detecting the attack and reducing the sensitivity requirements
for monitoring detectors.
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5. Discussions

In addition to our proposed countermeasures, measurement-device-independent
(MDI) QKD [56,57] or even device-independent (DI) QKD [58,59] can also be adopted to
eliminate this vulnerability and avoid wavelength-dependent attacks on beam splitters.
Our approach is easy to implement, cost-effective, compatible with commercial QKD
systems, and has a relatively high secure key rate. The MDI scheme requires high stability
to perform the single-photon interference during the measurement, and the secure key
rate is relatively lower than our proposal. The DI approach, with better security, is a huge
challenge for current technology, and the secure key rate is too low for practical usage. The
recently proposed twin-field quantum key [60,61] is an improvement of the MDI scheme,
which is expected to promote the transmission distance and the secure rate, thus being the
key breakthrough route in MDI QKD research.

It is worth noting that the integrated beam splitters, such as the MMI-type BS com-
monly used in current QKD chips, show similar wavelength-dependent characteristics
of splitting ratios with the FBT BS. Due to the large variation of the splitting ratio, QKD
systems using integrated optical beam splitters alone are also affected by wavelength-
dependent attacks and cannot guarantee safety. Thus, Figure 3 does not show the simula-
tion results on the secure rate of the integrated BS. The security of the integrated chip-based
QKD requires further study. QKD systems using integrated optical beams splitters require
additional means to ensure their safety. The countermeasure of error rate alerting is not suit-
able for chip-based QKD system. Fortunately, the proposed countermeasure of monitoring
is more applicable.

Although previous discussions focus on the security of optical beam splitters with
unbiased basis choice, both proposed countermeasures apply to QKD systems using the
biased basis choice [62]. It is natural for the splitting ratio to be unbalanced, as shown in
Figure 2. In the biased scenario, the QKD system is required to monitor the error rates
of the Z and X basis separately, rather than only focusing on the overall error rate [62].
Although the overall additional error rate caused by the attack can be lower, there will be a
significant increase in the error rate of one of the two bases, which can be used to protect
against the attack by the countermeasure of error rate alerting. Perhaps different thresholds
should be set for the two bases respectively, and the secure key rate equation would need
to be modified according to the biased basis choice.

6. Conclusions

First, we studied the necessary conditions for wavelength-dependent attacks of beam
splitters, and numerically calculated the additional error rate introduced by the attack
under different beam splitting ratios. Then, we proposed a countermeasure of error rate
alerting to protect against this kind of attack. The MC BS was recommended, and devices
with a splitting ratio variation of no more than 1 dB in the range of 1260–1700 nm were
selected. Combined with an alerting threshold of 3% error rate, the system can effectively
be protected against wavelength-dependent attacks of beam splitters. In the case of partial
attack, a modified formula is given for estimating secure key rate. We also proposed
a light intensity monitoring countermeasure to protect against wavelength-dependent
attacks by measuring the incident light intensity at non-operating wavelengths. This work
would help guide the design of QKD systems and improve the implementation security for
practical systems.
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Appendix A

This appendix presents the equations used in the numerical simulation. The total
efficiency can be expressed as η = 10−0.2L/10 × ηBobηd, where ηBob denotes the transmission
efficiency at the receiver, ηd is the detection efficiency, L is the transmission distance, and
the fiber attenuation factor is set to 0.2 dB/km. µ and ν denotes the intensity of the signal
state and the decoy state, respectively. pµ is the probability of the signal state. Y0 is the dark
count rate.

The percentage of the attacked photons can be estimated as

pattack = emonitor/eth, (A1)

The gain of the signal state is

Qµ = Y0 + 1 − e−ηµ, (A2)

The gain of the decoy state can be calculated similarly.
The QBER of the signal state can be estimated as

Eµ =
[
e0Y0 + ed

(
1 − e−ηµ

)
+ µe−µ pattack(eth − ed)η

]
/Qµ, (A3)

The QBER of the decoy state can be calculated similarly.
The yield of the single-photon state can be expressed as

Y1 ≥ µ

µν − ν2

(
Qνeν − Qµeµ ν2

µ2 − µ2 − ν2

µ2 Y0

)
, (A4)

The gain of the single-photon state can be expressed as

Q1 ≥ µ2e−µ

µν − ν2

(
Qνeν − Qµeµ ν2

µ2 − µ2 − ν2

µ2 Y0

)
, (A5)

The error rate of the single-photon state can be bounded as

e1 ≤ Max
[

EνQνeν − e0Y0

νY1
,

EµQµeµ

µY1

]
, (A6)

Then the secure key rate can be expressed as

R ≥ 0.5pµ f f req[(1 − emonitor/eth)Q1(1 − H2(e1))− leakEC], (A7)

where f f req is the repetition frequency of the QKD system.
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