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Abstract: Hermite–Gaussian (HG) beams have significant potential to improve the capacity of
free-space optical communication (FSOC). The influence of pointing error on the propagation charac-
teristics of an HG beam cannot be ignored in the FSOC system. Although the average irradiance of
the HG beam under a small pointing error from the FSOC tracking mechanism has been investigated
through Taylor series approximation, here, we propose that the average irradiance of the HG beam
under an arbitrary magnitude pointing error can be deduced through a statistical averaging method.
We firstly found that the average irradiance profile of an HG beam finally changes into an approx-
imately Gaussian shape with the increase in pointing error and propagation distance and a larger
beam waist at the transmitter could mitigate the profile change. The correlation coefficient between
deduced theoretical expression and Monte Carlo simulation reaches 0.999. Additionally, the effective
spot size, location of the local extreme value, average received power and signal-to-noise ratio (SNR)
loss for an HG beam under pointing error were theoretically deduced and analyzed for the first time.
We found that the effective spot size of the higher-order HG beam experiences less broadening under
the pointing error than that of the lower-order HG beam. The fundamental theoretical expressions
of average irradiance for an HG beam under pointing error have provided effective guidance for
analyzing the propagation characteristics and link performance.

Keywords: free-space optical communication; Hermite–Gaussian beam; pointing error; average
received power

1. Introduction

Free-space optical communication (FSOC) has the advantages of high bandwidth, high
data rate, low energy consumption and high confidentiality and is considered a promising
technology for next-generation communication [1–4].

A Hermite–Gaussian (HG) beam, as a type of higher-order TEMmn mode Gaussian
beam, can be generated using higher-order solutions of the paraxial equation with Hermite
polynomials (CO2 laser) in rectangular coordinates [5]. A higher-order HG beam can
form a multiple-spot pattern for the irradiance rather than a single spot as generated by
lowest-order Gaussian beam, and furthermore, the HG beam has unique orthogonal spatial
modes and well-preserved irradiance distribution in free-space propagation [5–10]. The
definition of the HG beam’s spot size is different from that of the Gaussian beam which
was proposed by Carter [11]. For FSOC system application, the HG beam has garnered
attention due to its potential to improve the capacity using mode-division multiplexing
(MDM) [12–15]. Meanwhile, the HG beam can be also used in FSOC with a single-input
multiple-output (SIMO) system owing to its propagation characteristics. Therefore, research
on the propagation characteristics and expressions of HG beams, which include average
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irradiance, spot size and location of the local extreme value in the average irradiance for
the HG beam, is critical for HG beam applications in FSOC.

Notably, the mobile FSOC link must be maintained by the beam-tracking mechanism,
and the pointing error comes from its photoelectric detector noise and platform vibration
residual noise which cause the propagation characteristics and irradiance distribution to be
different from previous research [16–18]. Hence, the pointing error of the beam-tracking
mechanism inevitably influences the irradiance distribution, which is one of the most
critical characteristics of an HG beam. Kiasaleh first studied the influence of small pointing
error (approximately 2.5 µrad with 3000 m) on the average irradiance distribution in free
space through a Taylor series approximation [8]. However, the expression of the average
irradiance under a small pointing error might become inaccurate as the pointing error
increases. Due to the different application requirements of FSOC link systems, different
pieces of equipment are selected as the coarse pointing and fine pointing systems. The
magnitudes of pointing error are equal to several microradians (µrad) to several tens of
microradians (µrad) [4], and a general expression for arbitrary magnitude pointing error
is needed.

In this paper, we adopted the statistical averaging method instead of Taylor series
approximation to deduce the expression of average irradiance for an HG beam under arbi-
trary pointing error. Based on average irradiance, the propagation characteristics, average
received power and signal-to-noise ratio (SNR) loss of an HG beam have been investigated.

The paper is organized as follows: In Section 2, the statistical averaging method
is adopted to establish the modeling of the average irradiance for the HG beam under
pointing error. In Section 3, Monte Carlo simulation is used to verify the results of the
deduced theoretical expression and prove its accuracy. In Section 4, based on average
irradiance, the effective spot size, location of local extreme values in the average irradiance,
average received power and signal-to-noise ratio (SNR) loss are discussed. Finally, the
conclusions are presented in Section 5.

2. Modeling of the Average Irradiance under Pointing Error

The irradiance of a higher-order TEMmn HG beam can be treated as a generalized
eigenfunction of the optical field equation in free space, which is obtained as follows [5,8]:

Imn(x, y, L) = Im(x, L)× In(y, L)

=
W2

0
W2 H2

m

(√
2x

W

)
H2

n

(√
2y

W

)
exp

[
− 2(x2+y2)

W2

]
,

(1)

where (x, y) denotes the Cartesian coordinates at distance L; x and y represent the hor-
izontal and vertical directions, respectively; and Hm(x) is a Hermite polynomial of the
order m. In particular, for m = n = 0, the HG beam is reduced to the lowest-order TEM00
Gaussian beam. Additionally, W0 denotes the TEM00 beam waist at the transmitter,

and W denotes the TEM00 spot size at the receiver, which is W = W0

√
1 + Λ2

0, where
Λ0 = 2L/(kW2

0 ), k = 2π/λ denotes the optical wave number and λ is the wavelength.
Owing to the orthogonal spatial modes of the HG beam, its irradiance in Equation (1)
allows for splitting into the horizontal (x-coordinate) and vertical (y-coordinate) direction
components [5–10], and we observe the following: Im(x, L) = W0
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As shown in Figure 1, the pointing error causes the center of the HG beam to move
randomly at the receiving plane. For convenience, a TEM11 HG beam was selected to
illustrate this process. The term S denotes the center of the HG beam at the transmitter,
and O denotes the center of the receiver plane. The term SO denotes the propagation
axis without pointing error (Figure 1a). The center of the HG beam moves to position Oj
under the pointing error angle θj at time ∆tj, and the cases of j = 1, 2 and 3 are shown
in Figure 1b. The term SOj (j = 1, 2, 3, . . . ) denotes the propagation direction under the
pointing error, and θj denotes the pointing error angle between SOj and SO. The average
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irradiance under the pointing error can be obtained by statistically averaging multiple HG
beams at different positions (Figure 1c). Because the probability of appearance at a specific
position is determined by the probability density function (PDF) of the pointing error angle,
the statistical averaging results can be formulated through position probability weighting
for the HG beam irradiance at different positions (see Figure 1c).

Photonics 2022, 9, x FOR PEER REVIEW 3 of 16 
 

 

illustrate this process. The term S denotes the center of the HG beam at the transmitter, 
and O denotes the center of the receiver plane. The term SO denotes the propagation axis 
without pointing error (Figure 1a). The center of the HG beam moves to position Oj under 
the pointing error angle θj at time Δtj, and the cases of j = 1, 2 and 3 are shown in Figure 
1b. The term SOj (j = 1, 2, 3, …) denotes the propagation direction under the pointing error, 
and θj denotes the pointing error angle between SOj and SO. The average irradiance under 
the pointing error can be obtained by statistically averaging multiple HG beams at differ-
ent positions (Figure 1c). Because the probability of appearance at a specific position is 
determined by the probability density function (PDF) of the pointing error angle, the sta-
tistical averaging results can be formulated through position probability weighting for the 
HG beam irradiance at different positions (see Figure 1c). 

 
Figure 1. Forming process of average irradiance of HG beam under pointing error. (a) Propagation 
axis without pointing error, (b) Pointing error induced random deviation at different times, (c) 
Average irradiance under pointing error. 

The pointing error angle can be generally composed of two independent random 
variables along the horizontal and vertical axes, and the PDF of the pointing error angle 
for both the horizontal and vertical axes follows a nonzero-mean Gaussian distribution 
[5,15]. The pointing error-induced displacement is the product of the pointing error angle 
and propagation distance, which also follows a zero-mean Gaussian distribution for both 
the horizontal and vertical axes as follows [5,16,17]: 

2

2

1( ) exp
22
x

x
rr

r
f r

σπσ
 −

=  
 

,  (2)

2

2

1( ) exp
22
y

y
rr

r
f r

σπσ
 −

=   
 

,  (3)

where x xr Lθ=  and y yr Lθ=  denote displacements along the horizontal and vertical 
axes, respectively, and xθ  and yθ  represent the pointing error angles along the hori-
zontal and vertical directions, respectively. Correspondingly, r Lθσ σ=  denotes the 
standard variance of xr  and yr , and θσ  represents the standard variance of xθ  and 

yθ . 
Then, the statistical averaging results for multiple HG beams at different positions 

can be expressed as follows: 

( , , ) = ( , , ) ( ) ( )mn mn x y x y x yPE
I x y L I x r y r L f r f r dr dr

∞ ∞

−∞ −∞
− − × ×  .  (4)

By substituting Equation (1) into Equation (4), the average irradiance of the HG beam 
under the pointing error can be rewritten as follows: 

Figure 1. Forming process of average irradiance of HG beam under pointing error. (a) Propaga-
tion axis without pointing error, (b) Pointing error induced random deviation at different times,
(c) Average irradiance under pointing error.

The pointing error angle can be generally composed of two independent random
variables along the horizontal and vertical axes, and the PDF of the pointing error angle for
both the horizontal and vertical axes follows a nonzero-mean Gaussian distribution [5,15].
The pointing error-induced displacement is the product of the pointing error angle and
propagation distance, which also follows a zero-mean Gaussian distribution for both the
horizontal and vertical axes as follows [5,16,17]:
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where rx = θxL and ry = θyL denote displacements along the horizontal and vertical axes,
respectively, and θx and θy represent the pointing error angles along the horizontal and
vertical directions, respectively. Correspondingly, σr = σθ L denotes the standard variance
of rx and ry, and σθ represents the standard variance of θx and θy.

Then, the statistical averaging results for multiple HG beams at different positions can
be expressed as follows:

〈Imn(x, y, L)〉PE =
∫ ∞

−∞

∫ ∞

−∞
Imn(x− rx, y− ry, L)× f (rx)× f (ry)drxdry. (4)

By substituting Equation (1) into Equation (4), the average irradiance of the HG beam
under the pointing error can be rewritten as follows:

〈Imn(x, y, L)〉PE = 〈Im(x, L)〉PE × 〈In(y, L)〉PE
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where 〈Im(x, L)〉PE =
∫ ∞
−∞ Im(x− rx, L)× f (rx)drx and 〈In(y, L)〉PE =

∫ ∞
−∞ In(y− ry, L)× f (ry)dry.
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Equation (5) is composed of two separate components determined by m and n, re-
spectively. However, Equation (5) cannot be integrated when m and n are uncertain. For
an FSOC system, the values of m and n are commonly equal to 1, 2 and 3 [8–10]. When
the values of m and n are certain, the Hermite polynomials have a certain expression,
and Equation (5) can be deduced as a closed-form expression. Table 1 summarizes the
integration results of

〈
Ip(s, L)

〉
PE for p = 1, 2 and 3, where p represents either m or n, and

s represents either x or y. This article only provides the expression for the orders equal
to 1, 2 and 3, but the expression for higher orders can also be derived using the statistical
averaging method of this paper.

Table 1. Expression of
〈

Ip(s, L)
〉

PE for p = 1, 2 and 3.

〈
Ip(s, L)

〉
PE

p

8W0
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Thus, the closed-form expression for the average irradiance of the HG beam under a
pointing error can be formulated by multiplying 〈Im(x, L)〉PE and 〈In(y, L)〉PE. For instance,
the average irradiance of the TEM21 HG beam under the pointing error is equal to the
product of 〈I2(x, L)〉PE and 〈I1(y, L)〉PE as follows:

〈I21(x, y, L)〉PE = 〈I2(x, L)〉PE × 〈I1(y, L)〉PE

= 32W0

(W2+4σ2
r )

7 exp
[(
− 2(x+y)2

W2+4σ2
r

)][
W2(y2 + σ2

r ) + 4σ2
r
]

×
[
W8 + 8W6(−x2 + σ2

r ) +16W4(x4 + 2x2σ2
r + 3σ4

r ) + 256W2σ4
r (x2 + σ2

r ) + 512σ8
r
] (6)

3. Numerical Simulation Results and Verification

The Monte Carlo simulation is widely used in FSOC system link simulation [19,20]. In
this section, we adopted Monte Carlo simulation to design the propagation process of an
HG beam under pointing error.

The random variation at the receiver caused by the pointing error can be generated
using the Monte Carlo method. The detailed simulation process is shown as follows:

Combined with Equations (1)–(3), the instantaneous HG beam irradiance deviating
under the influence of pointing error can be calculated as follows:

Ip
mn(x, y, L) = Imn(x− rx, y− ry, L) (7)

where rx and ry are generated by Equations (2) and (3), respectively.
Then, the simulated average irradiance under pointing error can be obtained statisti-

cally, which is shown as follows:

〈Imn(x, y, L)〉′PE =
1
M

M

∑
j=1

Ip
mn(x, y, L) (8)

where j denotes a serial number from 1 to M and Ip
mn(x, y, L) denotes the j-th simulated

speckle irradiance moving under the j-th simulated pointing error.
The numerical simulation parameters were set as follows: beam waist at transmitter

W0 = 0.05 m, wavelength λ = 850 nm and propagation distance L changes from 1000 to
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3000 m. According to Equations (2) and (3), 10,000 groups of random displacements along
the horizontal and vertical axes were generated, and the standard variance of the pointing
error angle was set as 0, 5, 10 and 20 µrad. The simulation parameters are set in Table 2;
they are often used in practical FSOC systems.

Table 2. Simulation parameter settings.

Parameters Value

Optical beam waist (W0) 0.05 m
Wavelength (λ) 850 nm
Propagation distance (L) 1000, 2000 and 3000 m
Standard variance of pointing error angle (σr) 0, 5, 10 and 20 µrad
Grid points (N × N) 1024 × 1024
Simulated numbers (M) 10,000

For a satellite–satellite FSOC link, owing to the difference in the selection of tracking
mechanism, the magnitudes of pointing error are equal to several microradians (µrad) to
several tens of microradians (µrad) [4]. Especially for small satellite FSOC links, the fine
pointing of small satellite FSOC links is primarily dependent on the fast-steering mirror
(FSM) of microelectromechanical systems (MEMSs) with lower precision and smaller size,
and the pointing error commonly reaches several tens of microradians (µrad) [21]. In this
condition, the deduced average irradiance for the HG beam under arbitrary pointing error
can provide guidance for theoretical analysis.

In Figures 2–4, the lines represent the theoretical equations in Table 1, and the dots
represent the results of the Monte Carlo simulation. Red, blue, green and yellow represent
the results of the standard variance of the pointing error angle equal to 0, 5, 10, and 20 µrad,
respectively. The correlation coefficients between the theoretical and simulation results
were all greater than 0.999, which proves that the simulation results coincide with the
deduced closed-form expressions. Notably, the numerical results of the proposed model
are the same as Kiasaleh’s results under a small pointing error, and we provide the results
of a large pointing error.
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In the absence of the pointing error, the HG beam irradiance distribution is well
preserved with an increase in the propagation distance when p = 1, 2,and 3. With the
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increase in pointing error and propagation distance, the valleys of the HG beam profile rise
and converge toward the central origin, the profile changes into concave shape and then
from concave shape to an approximately flat-top shape and, finally, the profile changes into
an approximately Gaussian shape. This variation of the average irradiance profile with the
increase in pointing error and propagation distance was first discovered. Additionally, the
profile variation of a higher-order HG beam is slower than that of a lower-order HG beam
under the same propagation conditions.
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The average irradiance of the HG beam under the pointing error with different beam
waists at the transmitter is illustrated in Figure 5. The beam waist at the transmitter was set
as 0.05, 0.1 and 0.2 m. The standard variance of the pointing error was 20 µrad, and the
propagation distance L = 2000 m. The other parameters were the same as those described
initially. The lines represent the theoretical equations listed in Table 1, and the dots represent
the results of the Monte Carlo simulation. Red, blue and green represent the beam waists
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at transmitter W0 = 0.05, 0.1, and 0.2 m, respectively. Figure 5a–c shows the cases of p = 1, 2
and 3, respectively. We found that a larger beam waist at the transmitter could mitigate the
profile change of the average irradiance of the HG beam under an increasing pointing error.
Therefore, the original profile of the HG beam can be maintained by properly increasing
the beam waist and controlling the standard variance of pointing error.
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4. Discussion
4.1. Effective Spot Size

Different from the lowest-order TEM00 Gaussian beam, the HG beam forms a pattern
of spots rather than a single spot of light; the conventional spot size W of a Gaussian
beam is not suitable for an HG beam, and a new definition of the spot size of an HG beam
is needed.

Carter et al. defined the “effective spot size” of an HG beam without pointing error [5,7,11]:

ρs,p(L) = ρx,m(L)× ρy,n(L). (9)

The terms ρx,m(L) and ρy,n(L) represent the spot size of the p-th mode [5,7,11]:

ρ2
s,p(L) =

4
∫ ∞
−∞

∫ ∞
−∞ s2 Imn(x, y, z)dxdy∫ ∞

−∞

∫ ∞
−∞ Imn(x, y, z)dxdy

, (10)

where p represents either m or n, and s represents either x or y.
Based on Equations (1) and (10), ρx,m(L) and ρy,n(L) can be rewritten as follows [5,7]:

ρ2
x,m(L) = (2m + 1)W2, (11)

ρ2
y,n(L) = (2n + 1)W2. (12)

In the presence of a pointing error, substituting Equation (5) into Equation (10), the
spot size under the pointing error can be deduced as follows:

ρ2
x,m(L)PE = (2m + 1)W2 + 4σ2

r , (13)

ρ2
y,n(L)PE = (2n + 1)W2 + 4σ2

r . (14)

Equations (13) and (14) show that the pointing error increases the spot size of the
HG beam. The spot size ratio is defined as ρ2

s,p(L)/ρ2
s,p(L)PE, where p represents either

m or n, s represents either x or y, and m can be replaced by n with the same result. In
Figure 6, red, blue and green represent the beam waist at transmitter W0 equal to 0.05, 0.1
and 0.2 m, respectively. We found that the effective spot size of the higher-order HG beam
experiences less broadening under the pointing error than that of the lower-order HG beam.
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Meanwhile, the pointing error-induced HG beam spot size broadening decreased with an
increase in the beam waist at the transmitter.
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4.2. Location of the Local Extreme Value in the Average Irradiance under Pointing Error

The higher-order HG beam forms a pattern of spots rather than a single spot of an
optical beam. Therefore, the location of each spot is necessary for the formulation of the
receiving scheme.

According to the expressions in Table 1, the location of the local extreme value in
the average irradiance under the pointing error can be obtained by solving the equa-
tion d

〈
Ip(s, L)

〉
PE/ds = 0 and determining by the positive and negative of equation

d2〈Ip(s, L)
〉

PE/ds2, where p represents either m or n, and s represents either x or y.
The locations of the local maxima and minima in the average irradiance under the

pointing error are listed in Table 3.

Table 3. Locations of local maxima and minima value in the average irradiance under pointing error.

Locations of the local maxima p
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√
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√
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±
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r q1/3−48W4σ4

r q1/3+q2/3+4W8(192σ8
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±
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±
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Locations of the local minima p
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±
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The term q in Table 3 represents an expression associated with W and σr and is obtained
as follows:

q =
[
W12(W2 + 4σ2

r )
3
]
(7W6 − 36W4σ2

r + 144W2σ4
r − 192σ6

r ) + 2
√
−W24(W2 + 4σ2

r )
6

×
√
(19W12 − 324W10σ2

r + 2232W8σ4
r − 8832W6σ6

r + 20736W4σ8
r − 27648W2σ10

r + 18432σ12
r )

(15)

Because m and n represent the order in the x and y axes, the coordinates of local
extreme value locations can be determined by the location along the x and y axes. Taking
〈I21(x, y, L)〉PE for instance, the locations of local maxima and local minima of irradiance
are shown in Table 4.

Table 4. Locations of local maxima and minima for TEM21 Hermite–Gaussian beam.

In the presence of pointing error(
0,−
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)
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r√
2W

)
,(

−
√
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Coordinates of the local maximum irradiance
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Coordinates of the local minimum irradiance

In the absence of pointing error(
−
√
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2 ,− W√

2

)
,
(

0,− W√
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,
(√
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. Coordinates of the local maximum irradiance

(x, 0),
(
−W

2 , y
)

,
(

W
2 , y

)
. Coordinates of the local minimum irradiance

4.3. Average Received Power and SNR Loss

Based on the aforementioned research on the average irradiance of the HG beam under
the pointing error and location of the local maxima, the average received power at the
location of the local maxima can be further deduced for the HG-based FSOC with (SIMO).

As shown in Figure 7, the three common modes of the HG beam, TEM11, TEM22 and
TEM33, are selected for the average received power investigation. Each array receiving
the aperture center is located at the location of the local maxima. The TEM11 HG beam
irradiance without pointing error had four local maximum points, and their peak irradi-
ances were equal. Therefore, the receiving aperture D0 is arranged at four locations of the
local maxima. The TEM22 HG beam without pointing error has nine local maximum points,
which can be divided into three groups according to their peak irradiance. Therefore, the
receiving apertures D1, D2 and D3 were arranged at nine locations of the local maxima
(see Figure 7b). Similarly, the TEM33 HG beam without pointing error has 16 local maxima
points, and it can also be divided into three groups according to their peak irradiance:
the receiving apertures D1’, D2’ and D3’ are arranged at 16 locations of local maxima (see
Figure 7c). Taking the TEM33 HG beam as an example, the receiving apertures are the same
but are divided into three groups according to the peak irradiance (red, yellow and orange),
and the average received power values of similar color receiving apertures are equal.
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Figure 7. Array receiving for HG beam. (a) TEM11, (b) TEM22 and (c) TEM33.

The average received power under the pointing error can be formulated by integrat-
ing the average irradiance under the pointing error of the receiving aperture. Based on
Equation (5), the average received power for the HG beam under the pointing error is
formulated as follows:

P(D) =
x

D

〈Imn(x, y, L)〉PEdxdy (16)

where D denotes the diameter of the circular receiving aperture. However, Equation (16)
cannot be integrated over a circular area when the receiving aperture is not located at
the center of the main propagation axis. Inspired by [21,22], we use a square within the
same area to substitute the circle as the integration area. The square length l is equal to
0.5
√

πD. Assuming that the coordinates of the center of the receiving aperture are (xf, yf),
Equation (16) can be approximated as follows:

P(D) ≈
∫ x f +l

x f−l

∫ y f +l

y f−l
〈Imn(x, y, L)〉PEdxdy (17)

When taking the values of m and n, the expressions for the average received power
corresponding to TEM11, TEM22 and TEM33 are as follows:

P11 =
W2

0
4W10

E

{
exp

(
−T2

11 − T2
21
)[√

2πW3
Eer f (T11) exp(T2
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]

− exp
(
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12 − T2
21
)[√

2πW3
Eer f (−T12) exp(T2

12) + 4(l − x f )W2
]}

×
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4W2
[
exp(T2
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22)(l + y f )

]
+
√

2πW3
E exp(T2

21)[er f (T21) + er f (T22)]
} , (18)
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)
−
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−2W2
[
(1 + exp(T3))

(
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r + 64lσ4
r

)
+ (1− exp(T3))

(
4l3W2 + 12ly2

f W2 + lW4 + 20lW2σ2
r + 64lσ4

r

)]}
, (19)
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P33 =
16W2

0
W26

E

{
3
√

2πW11
E er f (−T12)− 3

√
2πW11
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r
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r
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where W2
E = W2 + 4σ2

r , T11

√
2(l+x f )

WE
, T12

√
2(l−x f )

WE
, T21

√
2(l+y f )

WE
, T22

√
2(l−y f )

WE
, T3 =

8y f l
W2

E
,
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4(y2

f +l2)
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E

and er f () is an error function.

As shown in Figure 8a, for the TEM11 HG beam, the average received power on
the receiving aperture D0 decreases with an increase in the pointing error. As shown in
Figure 8b, for the TEM22 HG beam, the average received power on D1 and D2 decreased
with an increase in the pointing error, and the average received power on D1 decreased
faster than the average received power on D2. The average received power on D3 fluctuated
with an increase in the pointing error. Notably, the average received powers on D1, D2 and
D3 are equal when σr = 12.67 µrad; we define it as the “equal power point”. As shown in
Figure 8c, for the TEM33 HG beam, the variation trend of the average received power on
D1’, D2’ and D3’ with an increase in the pointing error was the same as that of the TEM22
HG beam. The “equal power point” appears at σr = 14.05 µrad.
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As shown in Figure 9, the average irradiance of the TEM22 HG beam at the “equal
power point” σr = 12.67 µrad exhibits a flat-topped profile. As shown in Figure 10, the
average irradiance of the TEM33 HG beam at the “equal power point” σr = 14.05 µrad
exhibits a slightly hollow shape. The average irradiance of the HG beam appears to have a
nearly flat-topped shape at the “equal power point”.
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The TEM33 HG beam is taken as an example to analyze the received power loss ratio
(also SNR loss ratio) under the influence of pointing error in the corresponding receiving
aperture. The numerical simulation parameters are the same as above, and the transmission
distance is 3000 m.

As shown in Figure 11, with the increase in pointing error, the loss of average SNR
is 3.00 dB when σr = 7.89 µrad at receiving aperture D1’, the loss of average SNR is 2.91
dB when σr = 20 µrad at receiving aperture D2’ and the average SNR decaying speed of
receiving aperture D1’ is faster than that of receiving aperture D2’. For receiving aperture
D3’, the average SNR decreases and then increases with the increase in pointing error,
and the increase in average SNR is 0.87 dB when σr = 16.97 µrad. This shows that the
transmitted power is homogenized at the receiver under the influence of pointing error.
In order to achieve better reception efficiency for the HG beam, we should control the
transmission parameters. It can be seen that when the propagation parameter is set as
shown in Table 2, the standard variance of pointing error should be less than 7.5 µrad for
the TEM33 HG beam so that the SNR loss at each receiving aperture is less than 3.00 dB.
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5. Conclusions

The closed-form expression of the average irradiance of the HG beam under the
pointing error was deduced through a statistical averaging method and verified by Monte
Carlo simulation. The correlation coefficient between deduced theoretical expression and
Monte Carlo simulation reaches 0.999. We firstly found that the valleys of the HG beam
profile rise and converge toward the central origin, the profile changes into a concave
shape and then from a concave shape to an approximately flat-top shape and, finally, the
profile changes into an approximately Gaussian shape, and the larger beam waist at the
transmitter could mitigate the profile change of the average irradiance of the HG beam
under increasing pointing error. The effective spot size, location of the local extreme value
and average received power for the average irradiance under the pointing error were
theoretically deduced for the first time. The spot size will be broadened under the influence
of the pointing error, the location of the local extreme value will change with the variation
of the pointing error and the average received power at the local extreme value fluctuates
under different pointing errors. Moreover, the pointing error causes SNR loss in the
receiving aperture that has been analyzed. For the TEM33 HG beam, the standard variance
of pointing error should be within 7.5 µrad so that the SNR loss at each receiving aperture
is less than 3.00 dB with the transmission distance of 3000 m. The fundamental theoretical
expressions of average irradiance for an HG beam under pointing error have provided
effective guidance for analyzing the propagation characteristics and link performance.

Further research on the average irradiance for an HG beam under pointing error
in atmospheric turbulence should be conducted. Under the influence of atmospheric
turbulence, the optical field is disturbed and more random processes are introduced.
Further research may prove theoretical guidance for HG beams used in atmospheric
turbulence. The average bit error rate and fade probability for an HG beam-based FSOC
link should also be studied in following work.
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