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Abstract: The scattering of light after passing through a complex medium poses challenges in many
fields. Any point in the collected speckle will contain information from the entire target plane
because of the randomness of scattering. The detailed information of complex targets is submerged
in the aliased signal caused by random scattering, and the aliased signal causes the quality of the
recovered target to be degraded. In this paper, a new neural network named Adaptive Encoding
Scattering Imaging ConvNet (AESINet) is constructed by analyzing the physical prior of speckle
image redundancy to recover complex targets hidden behind the opaque medium. AESINet reduces
the redundancy of speckle through adaptive encoding which effectively improves the separability of
data; the encoded speckle makes it easier for the network to extract features, and helps restore the
detailed information of the target. The necessity for adaptive encoding is analyzed, and the ability of
this method to reconstruct complex targets is tested. The peak signal-to-noise ratio (PSNR) of the
reconstructed target after adaptive encoding can be improved by 1.8 dB. This paper provides an
effective reference for neural networks combined with other physical priors in scattering processes.

Keywords: deep learning; scattering imaging; computational imaging

1. Introduction

Vision is an important way for humans to obtain information. Normally, light travels
along a straight line if the medium is homogeneous. Complex media such as fog and
biological tissues will cause the light to scatter and the target information obtained by
the human eye or camera is highly degraded [1,2]. How to obtain target information
through the scattering medium has become a hot research topic. The existing technologies
to look through an opaque medium mainly include adaptive optics technology [3,4], optical
coherence tomography [5,6], and methods based on point spread function or transmis-
sion matrix [7–11]. Methods based on speckle correlation and machine learning are also
increasingly being used [12–18]. Physical modeling-based methods have a limitation on
optimization and solution capabilities. At present, those methods can successfully restore
characters or simple line structure targets, but it is difficult to recover hidden targets with
more details such as the human face. The main reason is that the existing physical methods
find it difficult to effectively extract target features from the aliased signals after scattering.

Machine learning is more and more widely used in computational imaging, because
it can establish connections between data and improve the image quality metrics [19,20].
The nonlinear characteristics of deep learning can well solve the ill-posed problem such as
recovering the target hidden behind the diffuser. Yiwei Sun et al. use the Generative Ad-
versarial Network (GAN) to improve the quality of the recovered image through adaptive
scattering media [21]. PDSNet proposed by Enlai Guo et al. to look through the diffuser
and the field of view (FOV) expended up to 40 times the optical memory effect (OME) [17].
In addition, there are some methods that use machine learning to reconstruct face targets
with more details.

Photonics 2022, 9, 467. https://doi.org/10.3390/photonics9070467 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics9070467
https://doi.org/10.3390/photonics9070467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics9070467
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics9070467?type=check_update&version=1


Photonics 2022, 9, 467 2 of 11

Horisak et al. introduced the Support Vector Regression (SVR) to recover the face
target, but the reconstructed face is not accurate and lacks detailed information [22]. At
the same time, SVR still reconstructs a face learned during the training process when a
non-face target appears in the test set. Shuai Li et al. propose IdiffNet to image through the
scattering medium, and the quality of reconstructed images influenced by loss function and
training set is discussed in detail [23]. This network can reconstruct the face targets which
are behind ground glasses with 600 coarser grit. However, the details of the reconstructed
target will be lost when the ground glass with the stronger scattering ability of 220 grit
is used. Without increasing the amount of training data and system modulation, it is
difficult to reconstruct the exact details of complex objects by using deep learning without
integrating physical priors.

The separability of the data reflects the difficulty of extracting characteristics from the
data to a certain extent. The redundant character of the speckle reduces the separability
of data, and it increases the difficulty of neural network optimization without combining
any physical feature. Speckles need to be modulated to improve the separability of signals
and enhance the ability of the neural network to reconstruct the target. Coding as a good
signal modulation method is widely used in scenes such as aliasing signal unmixing, and
it has been introduced into the field of scattering research. Tajahuerce et al. proposed
a single-pixel-based method to look through scattering media [24]. The encoding in the
imaging process is used as the measurement matrix in Compressed Sensing (CS) to recover
the encoded hidden target information. Li et al. proposed a method of imaging a target
hidden behind scattering media based on the CS theory [25]. However, this method is
sensitive to noise and is only suitable for translation-invariant systems. In the reconstruction
process of the above two methods, the encoding mask is regarded as a known quantity to
recover the encoded object, and the encoding process is used as a modulation means for
the reconstruction algorithm to solve the encoded object, rather than as a tool for mining
the physical characteristics of speckle or improving the separability of data. Both of them
use the fixed encoding mode without considering the difference of the encoded object itself
and the lack of effective mining of its structure and noise characteristics, which also limits
the reconstruction ability and robustness of the algorithm.

This paper proposes a neural network named AESINet which can make effective
use of the physical characteristics of speckle information redundancy. AESINet improves
the separability of data by adaptively encoding speckle patterns, and better separability
of data can help the network to extract more effective features from the training data,
which further enhances the ability of detail reconstruction. Targets with similar structure
and rich details can be reconstructed even when the industrial CMOS is used, whose
sensitivity and resolution are lower than that of the scientific complementary metal-oxide
semiconductor (sCMOS). The ability of AESINet to reconstruct the target hidden behind
the opaque medium is tested. The PSNR of the reconstructed face target can reach 24 dB
and the PSNR can be increased by 1.8 dB at least compared with non-adaptive encoding or
random coding methods.

2. Adaptive Encoding Model Design

For a learning-based algorithm, the neural network can map the relationship from
speckle to the original target with the help of a large amount of data. Speckle patterns are
highly redundant, therefore it is possible to recover target structure information through
low-resolution speckles [26]. If a neural network with a reasonable structure is constructed,
it is possible to recover the target behind the scattering medium by using the low-resolution
speckle. It can reduce the requirements for camera resolution and computing resources.

Current methods based on deep learning to look through scattering media mainly
use an end-to-end neural network structure. This structure gives the flexibility of neural
network optimization. However, the neural network sometimes converges to a local
optimal solution and overfitting occurs because of the high degree of freedom of the
network parameter. Solving those problems often requires a lot of training data. It will be
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difficult to recover the target with complex structure and rich details if there are not enough
data, and a model with good generalization performance is also difficult to build. Although
the redundancy of speckles makes it possible to recover the original target through low-
resolution speckles, the noise introduced by the industrial camera further reduces the
separability of the data, and it increases the difficulty of neural network optimization.
Thus, the simple fitting of data by using an end-to-end network will not be conducive to
recover the high-quality reconstructed target. A new neural network structure needs to
be properly constructed to improve the separability of the pattern by adaptively encoding
redundant speckles.

The randomness of scattering causes every pixel on the sensor to receive signals
from any area of the target, therefore, the information of the entire target is aliased on
the speckle recorded by the sensor. Since the high-frequency part containing the detailed
information is weaker than the low-frequency information, the detailed information is
easily submerged. In addition, the aliased information makes it more difficult to extract
features from speckles and the dataset of speckles is less separable. Inspired by coding
modulation, it is expected to find the corresponding coding mask based on speckle signal
characteristics, and modulating the original speckle with the optimized coding template.
Because the high-dimensional features extracted by neural networks are difficult to express
and constrain by existing methods, therefore, a two-stage network is constructed and
the unique features of the speckle are extracted through the first stage network and the
coding template is generated. The encoded speckles are an input to the second stage
neural network for reconstruction. The evaluation of the reconstruction results is used
as the constraint of each stage network, and the optimization coding mask and better
reconstruction results are sought by the way of gradient descent.

AESINet is composed of two parts that are respectively used for the construction
of adaptive encoding and the reconstruction of a hidden target structure. In the first
stage, AESINet-E takes the original speckle as input, and it is responsible to build the
intrinsic relationship between the original speckle image and its corresponding ideal
encoding pattern. After the encoding process, the data separability of the encoded speckle
is effectively enhanced compared with the original speckle, which will be proved in the
following experiments. AESINet-R as the second stage takes the encoded speckle ES as
input, which can better extract features that contain hidden target structure information.
ES is calculated by:

ES = S . ∗M, (1)

where S is the original speckle, M is the ideal encoding pattern of S, and .∗ is the dot product
operation. Because only the speckles captured by the camera need to be encoded, only the
mask needs to be dot to the original speckle, and no additional devices need to be added
for system modulation The networks of the first and second stage are jointly optimized;
this strategy makes the adaptive encoding process to seek global optimal solutions easier.
Finally, the detailed information of the face and other targets is reconstructed.

The U-shaped network commonly used in the optical field is used as the basic struc-
ture of AESINet-E and AESINet-R. The two parts of the network have similar structures
although the roles of them are different. Speckles with a low-resolution of 256 × 256 are
used as the input of AESINet to strike a balance between network computing efficiency
and the amount of input information. AESINet uses a combination of the small-scale con-
volution kernel and dilated convolution to fully extract the features of different dimensions.
At the same time, a combination of 1 × 3 and 3 × 1 convolution is used to replace the
3 × 3 convolution to reduce the number of parameters while ensuring the accuracy of the
convolution. In the Encoder part, the scale of feature maps is decreasing as the calculation
progresses from shallow to deep. The feature information obtained by each layer gradually
changes from low-dimensional pixel-level information to high-dimensional semantic-level
information. Keeping the size of the convolution kernel constant during this process is
equivalent to the expansion of the receptive field. Different sizes of dilated convolution
are applied on the 32 × 32 feature layer to extract semantic-level high-dimensional features.
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Each convolution output contains information corresponding to a larger range of feature
pattern to extract information under different sizes of receptive fields. In addition, to
avoid overfitting and vanishing gradients in the training process a dropout strategy with a
parameter of 0.1 is also used in AESINet, that is, 10% of the convolution kernel elements
are randomly reset to zero during each calculation. At the end of the AESINet-E structure,
an additional Sigmoid layer is added. On the one hand, it is used as an activation function
and on the other hand, it is to control the grayscale distribution of the output code between
0 and 1. The finally constructed AESINet takes into account the computational efficiency
and feature mining capabilities of the network is shown in Figure 1.

Figure 1. Network structure diagram of AESINet.

The Mean Square Error (MSE) is used as the loss function in the training process of
AESINet. The MSE is formulated as:

MSE =
1

H ∗W

H

∑
i = 1

W

∑
j = 1

[I′(i, j)− I(i, j)]2, (2)

where I′ is the reconstructed image, I is the original image contained targets. H and W are
the height and width of those images, respectively. The mini-batch strategy is adopted,
that is, the entire training set is randomly divided into several parts, and the samples in
a subset are trained each time. This training strategy can help the network to jump out
of the local minimum and can effectively speed up the convergence of the network. The
original low-resolution speckle image is first sent to AESINet-E for forwarding propagation
calculation. After getting the adaptive encoding template under the current network
parameters, the encoding template is multiplied to the original speckle image and sent to
AESINet-R. The reconstructed target and the Ground Truth (GT) in the training set are sent
to the loss function to calculate. Then the backpropagation algorithm is used to optimize
the network parameters.

3. Experiment
3.1. Experimental Verification of Speckle Redundancy

The optical system set up in this paper is shown in Figure 2. A projector based on
an LED light source (Acer, K631i, 1280 × 820 DPI, Xinbei, China) was used to project the
target. The light signal carrying the target information was modulated by the ground
glass (Edmund, #47-953, 220 grit, Barrington, NJ, USA), then the beam passed through the
pupil (Thorlabs, ID25SS/M, Diameter = 12 mm, Nuneaton, NJ, USA) and bandpass filter.
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Finally, the speckle was recorded by the camera. The projector was working at the shortest
projection distance in the process of data acquisition, and the distance between the focal
plane and the projector was 40 cm. The distance between the focal plane and the scattering
medium was 170 cm and the distance between the scattering medium and the camera was
25 cm.

Figure 2. The optical system setup and the process of adaptive encoding and reconstruction
of speckles.

The current learning-based methods usually use speckle signals with a spectral band-
width of about 1 nm as the network input. Either a narrow-band light source such as a
laser is used, or a narrow-band filter is used in front of the camera. The use of narrow-band
light sources will increase the cost of the optical system, and other devices need to be
introduced for coordination. If a narrow-band filter is used, it is required that the light
source has sufficient intensity in the gated band. Otherwise, it is necessary to increase
the exposure time of the camera to ensure that enough light signals are collected, which
will introduce more detector noise into the collected image. Both of these methods are not
conducive to the application of this technology in actual scenarios. Thus, a bandpass filter
(Thorlabs, FB500-10, Nuneaton, NJ, USA) with a half-height width of 10nm was used in
front of the camera. Compared with the narrowband speckle signal of 1nm, the contrast
of the speckle signal input to AESINet was significantly reduced [13], and it was more
difficult to construct the mapping relationship between the speckle and the original target.
The industrial camera (Balser, acA1920-155um, Ahrensburg, Germany) was used to collect
8-bit low-resolution speckle signals. Compared with scientific CMOS, the hardware price
is significantly reduced. Low-resolution speckles also place higher requirements on the
ability of the network to extract data features. AESINet needs to be able to reconstruct the
original target from the speckle where part of the information is submerged by noise.

In order to intuitively verify the characteristics of speckle redundancy, the original
speckle image with a resolution of 1920 × 1200 pixel was collected, and five areas with
a size of 400 × 400 pixel were randomly cropped on the image as R1 to R5, as shown in
Figure 3a. A0 is the autocorrelation of GT, and A1 to A5 is the autocorrelation of R1 to R5
respectively. As shown in Figure 3b, to put the effective autocorrelation scale close to A0 for
comparison, the autocorrelations of subspeckle are the 65 × 65 areas of the center original
image. The five curves in the left image of Figure 3c are the intensity curves of A1 to A5 at
the position L1, and the right image of Figure 3c is the intensity curve corresponding to
autocorrelations at the position L2. Figure 3d–f correspond to three different independent



Photonics 2022, 9, 467 6 of 11

experiments. The FOV in the experiments was within the constraints of OME, therefore,
the autocorrelation of the speckle image in the experiments should be consistent with the
original target.

Figure 3. Comparison of speckle redundancy. (a) Original speckle pattern, R1 to R5 are the position
of five subspeckle. (b) A0 is the autocorrelation of the GT corresponding to (a), A1 to A5 is the
autocorrelation of speckles at the corresponding positions at R1 to R5. (c) The left and right curves are
the gray values at direction of L1 and L2 on A1 to A5 respectively. (d–f) shows speckles corresponding
to three different targets

Although the positions of the five subspeckles in each group of experiments were
randomly selected, it can still be found that the autocorrelations of these subspeckles were
highly consistent with the autocorrelation of GT corresponding to the complete speckles.
It shows that the local speckle was modulated with all the information of the original
hidden target. This experimental phenomenon verifies that the speckle has the physical
characteristic of redundancy.

3.2. Dual-Character Target and Face Dataset Experiment

Dual-characters and human faces were used as hidden targets to build two datasets
respectively, and the image quality of reconstructed targets with different complexities was
tested and analyzed to verify the effectiveness of the AESINet. The dual-character dataset
was generated by the MNIST handwritten character set. Each time, two characters were
randomly selected from MNIST and combined into a new target to increase the complexity
of the target structure. The dual-characters generated by these random characters were
used as the target, and the corresponding gray speckle image with a resolution of 256 × 256
was collected in the optical system. Seven thousand five hundred groups of data pairs
consisting of speckle and GT were randomly selected as the training set, and the remaining
500 groups were used as the test set. The ability of the AESINet was tested by recovering
the unseen objects in the test set. The recovered target of the test set is shown in Figure 4.
However, part of the structure in the reconstructed targets had some errors, such as the
first reconstruction result which was composed of the number 8 and the number 1; the
continuous part of the number 8 was recovered into a discontinuous structure. As shown
in Table 1, the average SSIM of the reconstructed image is 0.9060, which also proves that
the image reconstructed by AESINet can contain the overall structure of the original target.
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Table 1. Objective evaluation indexes of AESINet reconstruction results under test sets.

Dataset MAE SSIM PSNR (dB)

Untrained character target 0.0167 0.9060 23.9437
Untrained face target 0.0402 0.7680 24.1698

Figure 4. Dual-character experiment results. (a) The speckle pattern. (b) The Ground Truth (GT) of
the hidden target. (c) The reconstruction results by using adaptive coding.

A face dataset was used for targets in the following experiments to verify that the
network can recover targets with more details. The FEI face dataset was used as the hidden
target which contains faces with different expressions and shooting angles of 200 different
people. The optical system in Figure 2 was used to collect speckles corresponding to
20 different expressions of 25 people. Among the collected data, 18 group datasets were
randomly selected to become 450 groups of training data, and the remaining 50 groups
were used as the test set. After the training process converges, the recovered test set is
shown in Figure 5 The recovered image is relatively close to the real face distribution in GT,
and the global structure of the face is restored well. There are obvious differences in the
face details of different restored people, and even the details of the character’s hairstyle
have been reconstructed. The network has realized the reconstruction of the face with rich
details. However, it can also be seen from the reconstruction results that many structures of
the image are blurred, which is consistent with the changes in evaluation indicators such as
the average MAE, and SSIM drops by 0.138 compared with the reconstruction results of
the dual-character target. As shown in Table 1, the ambiguity in the reconstruction result
is basically since the features extracted by the network from the speckle signal are not
sufficient to fully characterize all the details of the target structure.

Figure 5. The reconstruction result of the face data set by AESINet. (a) The Speckle pattern. (b) The
Ground Truth (GT) of the hidden face. (c) The reconstruction results by using adaptive coding.

From the experimental results of the two different targets in this section, it can be seen
that AESINet is suitable for target reconstruction tasks of different complexity. AESINet
can extract the features needed to reconstruct hidden targets from low-resolution speckles,
especially for the reconstruction task with rich details, and the network can recover most of
the detailed information of the face structure.



Photonics 2022, 9, 467 8 of 11

3.3. Improved Data Separability by Adaptive Encoding

In this section, experiments were conducted to verify that the adaptive encoding
process can improve the separability of data. The face targets with the corresponding
speckle were used as the experimental dataset, and the low-resolution speckle signal was
used as the input to train the complete AESINet. At this time, the input of AESINet-R was
the speckle image after adaptive encoding, and then the training model was saved. The
same training set was directly input into the AESINet-R without adaptive encoding as a
contrast experiment. Six untrained speckle images from the test set were input into the
above two AESINet-R network models, and the feature maps at each layer were saved. The
feature maps output by each layer of the network were mapped from high-dimensional
space to low-dimensional space. When different speckles were used as input, the distance
of the feature map in the low-dimensional space was compared to analyze the impact of
adaptive encoding on the data separability.

The used data dimensionality reduction visualization method is Uniform Manifold
Approximation and Projection (UMAP). This algorithm is a non-linear dimensionality
reduction algorithm based on local manifold approximation. Low-dimensional projection
of the data is performed by searching for the closest equivalent fuzzy topological structure,
which can better reflect the distance between the high-dimensional global structure and the
local structure.

Figure 6 shows the visualization results of the first layer, the sixth layer, and the
21st layer. Each point in the figure represents a feature map output by the corresponding
layer, and each color represents several feature maps corresponding to a test speckle image.
In the figure, a total of six colors correspond to the feature maps of six test speckle images.
It can be seen from Figure 6 that the positions of the various color points are staggered if
the original speckle image is directly input into AESINet-R without adaptive encoding.
It is shown that the divergence between features of different test speckle images is small
whether in the shallow feature extraction process or the target reconstruction process. As a
comparison, the distribution of the same color points is relatively concentrated whether
in the shallow or deep layers after adaptive encoding, and the divergence between the
features represented by different color points increases. The separability of the data input
to the reconstruction network is effectively enhanced after adaptive encoding.

Figure 6. Comparison of data separability before and after adaptive encoding.
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The experiments in this section prove that the adaptive encoding process can effectively
improve the data separability of the input signal while similar structural features are also
extracted through the original low-resolution speckle. The adaptive encoding provides a
good data basis for the subsequent reconstruction of the network AESINet-R to recover
detailed hidden target images.

3.4. Comparison Experiment of Reconstruction Effect under Different Encoding Methods

In this section, AESINet-R was used as the reconstruction network, and the face
speckle data in Section 3.2 was used as the dataset. A comparative experiment with three
modulation modes as variables is designed.

(1) Adaptive encoding modulation: AESINet-E is used to adaptively encode the original
low-resolution speckle, and the modulated speckle signal is used as the input of
AESINet-R to reconstruct the target as shown in Figure 7c;

(2) No encoding modulation: The original speckles are directly used for the training of
AESINet-R, and the targets AESINet-R recovered are shown in Figure 7d;

(3) Random encoding modulation: The randomly generated gaussian encoding mask is
employed to modulate the original speckle, and the modulated signal is used to train
the AESINet-R. To avoid the influence of randomness on the experimental conclusions,
three different sets of random masks are generated and tested. The reconstruction
results are shown in Figure 7e,f, respectively.

Figure 7. Comparison of AESINet-R reconstruction results with different encoding methods. (a) The
Speckle pattern. (b) The Ground Truth (GT) of the hidden target. (c) AESINet-R test set reconstruction
results after adaptive encoding by AESINet-E. (d) The AESINet-R reconstruction result when the
speckles without adaptive encoding as input. (e–g) The AESINet-R reconstruction result after speckle
is modulated by randomly generated gaussian encoding mask.

A comprehensive comparison of the reconstruction results of several modulation
methods in Figure 7 shows that adaptive encoding can help the network to reconstruct
the resulting image with more accurate details. The most representative ones are the eyes
and eyebrows of the face in Figure 7. Under the experiments of unmodulated and random
encoded modulation, the eyes and eyebrows are integrated into a group of shadows in the
restored image. With the help of adaptive encoding, the structure of eyes and eyebrows
can be distinguished in the reconstructed results, as shown in Figure 7c.
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The average MAE, SSIM, and PSNR of the recovered results of the test set under the
three modulation modes are shown in Table 2. The results with adaptive encoding are
better than the results of the non-encoding and random encoding. Compared with the
method of directly using the original speckle as the input of the reconstruction network,
the PSNR of the recovered target is increased 1.8 dB and the SSIM is increased 0.107 by
the adaptive encoding method. Those results prove that the improvement of the data
separability by the adaptive encoding technology does help the reconstruction network
to extract effective features. The result in Table 2 fully explains the instability of random
encoding, and also shows that this modulation method can not improve the quality of
reconstructed images. In the three repeated experiments, the first random mask obtains the
best indicators, but the quality of the reconstructed image is only roughly equal to that of
the method without encoding modulation, and even the visual effect of some images in
Figure 7e is reduced compared with that in Figure 7d.

Table 2. AESINet-R reconstruction results with different modulation methods.

Modulation Method MAE SSIM PSNR (dB)

AESINet-E with adaptive encoding 0.0402 0.7680 24.1698
Without encoding 0.0513 0.6610 22.3664
1st random encoding 0.0555 0.6672 21.8219
2nd random encoding 0.0937 0.5862 18.2702
3rd random encoding 0.0847 0.6278 19.2093

The comparison results in Figure 7 and Table 2 fully show that the improvement of data
separability by adaptive encoding can help the network obtain better reconstruction results.

4. Conclusions

This paper proposes an adaptive encoding method based on the physical characteris-
tics of speckle redundancy. Experiments show that the proposed method can be restored
with different complexity targets by using the 10nm bandwidth scattering signal. Adaptive
encoding can not only improve the separability of the feature between different speckles,
but also be more conducive to the reconstruction of the network to recover targets with
more details. In addition, the proposed method does not require additional devices to
modulate the system, which improves the reconstruction accuracy of target details without
increasing the system complexity. In the future, we will further explore the influence of
adaptive encoding on different speckle patterns and combine other physical characteristics
of speckles to further optimize the neural network.
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