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Abstract: Recent advances in optics and computing technologies have encouraged many applications
to adopt the use of three-dimensional (3D) data for the measurement and visualization of the world
around us. Modern 3D-range scanning systems have become much faster than real-time and are able
to capture data with incredible precision. However, increasingly fast acquisition speeds and high
fidelity data come with increased storage and transmission costs. In order to enable applications
that wish to utilize these technologies, efforts must be made to compress the raw data into more
manageable formats. One common approach to compressing 3D-range geometry is to encode its
depth information within the three color channels of a traditional 24-bit RGB image. To further reduce
file sizes, this paper evaluates two novel approaches to the recovery of floating-point 3D range data
from only a single-channel 8-bit image using machine learning techniques. Specifically, the recovery of
depth data from a single channel is enabled through the use of both semantic image segmentation and
end-to-end depth synthesis. These two distinct approaches show that machine learning techniques
can be utilized to enable significant file size reduction while maintaining reconstruction accuracy
suitable for many applications. For example, a complex set of depth data encoded using the proposed
method, stored in the JPG 20 format, and recovered using semantic segmentation techniques was
able to achieve an average RMS reconstruction accuracy of 99.18% while achieving an average
compression ratio of 106:1 when compared to the raw floating-point data. When end-to-end synthesis
techniques were applied to the same encoded dataset, an average reconstruction accuracy of 99.59%
was experimentally demonstrated for the same average compression ratio.

Keywords: 3D-range geometry compression; depth encoding; phase unwrapping; deep learning;
fringe analysis; range image processing

1. Introduction

Modern three-dimensional (3D) range scanning systems are capable of capturing
high-quality data at speeds much faster than real-time [1]. Additionally, many types
of range scanning systems have been produced that are highly portable and relatively
inexpensive. Subsequently, 3D-range scanning technologies are increasingly applicable to
fields such as telecommunications, entertainment, and security (e.g., facial recognition).
Although the precision and acquisition speed of modern systems may meet the needs of
these applications, the increase in required data-storage costs and transmission bandwidths
is potentially prohibitive.

One common approach to the representation and storage of 3D data is through mesh
formats such as OBJ, STL, or PLY. This format of data typically stores geometry and
connectivity (i.e., vertices and edges) information, as well as auxiliary information such
as surface normals and texture coordinates. It is important to note that, in order to reduce
the file size associated with a mesh object, mesh compression algorithms perform different
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operations on geometry coordinates, connectivity data, and auxiliary information [2]. As
a result, processing 3D meshes is typically expensive, requiring either relatively large
amounts of time or computing power [3,4]. In order to overcome this challenge, several
additional methods of compressing 3D-range data have been proposed.

One such method, proposed by Gu et al. [5], performs a remeshing operation of the
3D data onto a regular grid, allowing for modern 2D image compression techniques to
be further leveraged in the pursuit of reduced file sizes. The advantage of this regular
remeshing operation is the ability to disregard the original connectivity information typi-
cally required in the representation of 3D data. The resultant grid of 3D information can be
stored in an image format and the original 3D data can be recovered with a high degree of
accuracy. Many methods have been subsequently proposed that aim to store high-quality
3D data into the three color channels of traditional 2D RGB images, allowing for mature,
well-defined image-compression techniques to be applied in order to reduce file sizes [6–10].
These methods typically use two color channels in order to store encodings representing
the 3D geometry present in the scene being compressed. The third color channel is then
used to store information required to recover the original 3D data from the two encoded
signals. Additional methods have been proposed that aim to reduce file sizes by encoding
3D information in a manner that only requires two of the three color channels available in
an RGB image to store and recover 3D-range data [11–15].

This manuscript proposes a novel method for the compression of floating-point 3D
data that leverages machine-learning techniques such that depth data can be encoded
within, and faithfully recovered from, only a single 8-bit grayscale image. Specifically,
semantic segmentation techniques will be utilized in order to perform traditional phase
unwrapping, allowing for the original depth information to be recovered from the encoded
3D data. Additionally, end-to-end depth synthesis will be used in order to directly recover
depth information from the encoded image. Machine learning enables the proposed method
to store and recover depth from only a single-channel encoding, offering immediate file-size
savings compared to existing three-channel and two-channel depth encoding approaches.
Further, both methods of depth recovery proposed in this manuscript are compatible
with either lossless (e.g., PNG) or lossy (e.g., JPG) image-compression standards, allowing
even greater compression ratios to be achieved when compared to the original floating-
point data.

Section 2 will give the principle for the proposed method, including both the encoding
process and the machine-learning models used to decode the original input information.
Section 3 will discuss the datasets analyzed, highlight the steps required to train the models
used, and give experimental results for the proposed methods. Section 4 will provide
discussion of the generalizability and applicability of the techniques used to decode the
depth information, as well as discuss avenues for future research. Section 5 will summarize
the proposed method and conclude this manuscript.

2. Principle
2.1. Phase-Shifting-Range Scanning Techniques

Modern 3D-range scanning systems are capable of capturing three-dimensional infor-
mation about the world around us using a variety of techniques. Some examples of these
different capture mechanisms include time-of-flight, stereo vision, and structured-light
scanners. Of these three examples, structured-light scanners are of great interest due to
their ability to achieve high-accuracy captures of 3D scenes that have uniform or limited
surface features [1]. Structured-light scanning systems are composed of, at a minimum, a
single camera and projector. The projector is used to project known patterns of light onto
the surface being scanned. The patterns are distorted by the structure of the 3D surface
and are subsequently captured by the 2D camera. Since the geometric relationship (i.e.,
translation and rotation) between the camera and projector can be estimated [16], it is
possible to analyze the amount of distortion between the projected image and the captured
image in order to determine the depth information present in the scene.
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One high-accuracy approach to the structured-light capture method is digital fringe
projection (DFP). In a DFP system, the projector is used to encode the physical 3D scene
using a series of fringe images. These fringe images vary sinusoidally across the projected
frame, and each successive image is phase-shifted by some amount. Traditional digital
fringe projection typically projects and subsequently captures a minimum of three fringe
images when scanning a 3D scene. The captured fringe images, which are distorted by the
scene on which they are projected, can be defined mathematically as

I1(x, y) = I′(x, y) + I′′(x, y) cos(φ(x, y)− 2π/3), (1)

I2(x, y) = I′(x, y) + I′′(x, y) cos(φ(x, y)), (2)

I3(x, y) = I′(x, y) + I′′(x, y) cos(φ(x, y) + 2π/3), (3)

where I′ is the average intensity of the projection, I′′ is the intensity modulation, and φ is
the phase that represents the 3D information related to the scene’s specific geometry.

This phase information can be recovered from the captured fringe images via

φ(x, y) = − tan−1

( √
3(I1 − I3)

2I2 − I1 − I3

)
. (4)

It is important to note that the inverse tangent function is only defined on the range
(−π, π], which leads to discontinuities at multiples of 2π within the recovered phase
information. Thus, φ is referred to as a wrapped phase and must be unwrapped—prior to the
recovery of the original 3D information—using either spatial or temporal algorithms [17].

Temporal-phase unwrapping algorithms are advantageous when compared to spatial
unwrapping techniques due to their ability to correctly resolve both spatially isolated
surfaces and sharp depth discontinuities within a 3D scene. However, these advantages
come at the cost of an increased amount of information—typically in the form of additional
captured fringe images—in order to decode the original 3D data present in a range scan.

Several methods have recently been proposed that utilize deep-learning networks
in order to improve the accuracy or efficiency of temporal-phase unwrapping for DFP
systems [18,19], motivating the potential benefits of such networks in depth recovery for
3D scenes that may include spatially isolated surfaces. In order to mitigate the need for
auxiliary information required to perform temporal phase unwrapping, Zheng et al. [20]
proposed the use of a deep-learning framework in order to execute an image-to-image
transformation between a single captured fringe image and its corresponding 3D-range
geometry. This method utilized a U-Net architecture with 512 feature maps at the bridge
layer. Their network was trained on 560 computer-generated pairs of captured fringe
images and complex depth maps, with testing RMS reconstruction accuracy reaching
96.8% (on 120 pairs). Their trained model was then applied to physically captured data
and achieved similar reconstruction accuracies. The benefit of this method is that only a
single fringe image need be projected in order to recover the 3D-range geometry present
in the scene, reducing the amount of time required to capture a 3D scan. Overall, this
method’s results highlight the potential applicability of deep-learning algorithms towards
the recovery of depth information captured using DFP techniques. Similar deep-learning
techniques may be able to be employed to reduce the total amount of information required
to faithfully represent compressed 3D data, potentially reducing files sizes associated with
the 3D data and enabling a greater number of applications.

2.2. Image-Based Range Geometry Compression

One technique for the compression, storage, and transmission of 3D-range data is to
encode it within the three color channels of a traditional 24-bit 2D RGB image. This method
of 3D-range compression makes use of the rigid, grid-like structure of pixels inherent to
the 2D image, so that the connectivity information required by 3D mesh representations
may be disregarded, enabling file size savings to be achieved. Once stored in an image
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format, file sizes can be further reduced through the application of modern 2D image-
compression standards such as PNG and JPG. Several algorithms have been proposed
that utilize this technique in the compression of complex 3D scans. One approach is to
utilize principles of phase-shifting in order to store sinusoidally encoded representations of
the original 3D information in two color channels of a traditional image [7–9]. The third
color channel is reserved for the storage of auxiliary information required to unwrap the
discontinuous phase information recovered from the sinusoidal encodings, using phase
unwrapping algorithms similar to those used in the decoding of DFP scans [17]. Note that
only two sinusoidal encodings of the 3D information are required to faithfully represent the
scene—instead of the three typically used by physical DFP scanning techniques—because
the encoding process is performed under ideal digital conditions.

An example algorithm that utilizes this technique is multiwavelength depth encoding
(MWD) [10], which directly encodes the depth information present in the scene into two
color channels of an RGB image. The third color channel is used to store a quantized and
normalized version of the original depth information in order to enable phase unwrapping
during the decoding process. These signals can be described mathematically as

I1(i, j) = 0.5 + 0.5 sin
(

2π × Z(i, j)
P

)
, (5)

I2(i, j) = 0.5 + 0.5 cos
(

2π × Z(i, j)
P

)
, (6)

I3(i, j) =
Z(i, j)−Min(Z)

Range(Z)
, (7)

where Z is the depth information being compressed and P is a user-defined parameter,
fringe width, which determines the frequency of the resultant encoding. It is important to
note that the fringe width is inversely related to the number of periods (n) used to encode
the depth range. This relationship can be defined as

n =
Range(Z)

P
. (8)

In general, as the number of encoding periods increases, a higher precision 3D recon-
struction can be recovered at the cost of a larger file size associated with the output image.

Although the MWD method and similar algorithms are able to achieve high com-
pression ratios when compared to the original floating-point 3D-range data or its mesh
representation, several approaches have been proposed that attempt to reduce the num-
ber of encoding signals required to faithfully decode the 3D information from the color
channels of a 2D RGB image [11–15]. These methods are able to decode compressed depth
information from only two of the three color channels available within a traditional image
format through either the removal of redundant encoded depth information or through the
removal of the auxiliary information required by typical phase unwrapping algorithms.
Subsequently, these methods are able to achieve considerable file-size savings when com-
pared to the original floating-point 3D-range data or its mesh representation, as well as
higher compression rates than their counterparts that require all three color channels in
order to encode 3D information. The success of these two-channel compression schemes
motivates the methods proposed in this manuscript: an additional reduction in file sizes
can be achieved, when compressing 3D-range data, if the information required to faithfully
represent a 3D scene can be stored and recovered from within a single 8-bit grayscale image.
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2.3. Single-Channel Depth Encoding

This manuscript aims to evaluate two novel approaches to the recovery of compressed
3D-range data from within only a single 8-bit grayscale image. The single encoding can be
described mathematically as

I(i, j) = 0.5 + 0.5 cos
(

2π × Z(i, j)
P

)
, (9)

where Z, as in the MWD method described in Section 2.2, is the depth information to
be compressed and P is the user-defined fringe width that determines the frequency
of the encoding. This depth information, once encoded, can be stored in a single 8-bit
(i.e., grayscale) image. This single-channel encoding achieves file-size savings by removing
the redundant encoding and auxiliary information typically required by similar 3D-range
compression algorithms. Further compression is also achievable through the use of lossless
or lossy image compression standards such as PNG and JPG.

2.4. Single-Channel Depth Decoding with Semantic Segmentation

The method proposed in this section enables the recovery of depth information from a
single-channel depth encoding using a semantic segmentation approach. This is accom-
plished by first calculating the unsigned wrapped phase from a single sinusoidal encoding
in the same fashion as that demonstrated in [14]. This process can be described for each
pixel (i, j) as

|φ(i, j)| = cos−1(2I(i, j)− 1). (10)

However, this unsigned wrapped phase is inherently ambiguous, as each distinct
grayscale value within the recovered |φ| can represent any one of 2n depth values in the
original geometry’s depth range (where n is the number of periods used in the encoding
process). This ambiguity can be reduced by first associating a sign with every pixel of |φ| via

φ(i, j) =
{

+ | φ(i, j) | , γ(i, j) is even
− | φ(i, j) | , γ(i, j) is odd,

(11)

where the γ is a gamma map that, for each pixel (i, j), specifies whether the magnitude
of the cosine encoding is increasing or decreasing. The generation of the gamma map is
crucial and will be discussed later in this section. The resultant signed wrapped phase (φ)
is conventionally referred to as only the wrapped phase.

Although this wrapped phase has less ambiguity than its unsigned counterpart, sharp
discontinuities are present in φ that must be resolved. These discontinuities occur at
multiples of 2π within the total range of the original phase information, resulting in a total
number of discontinuous phase regions equal to the number of encoding periods plus one
(n + 1). These sharp discontinuities can be removed through the use of a stair image, K,
which determines the fringe order, or the number of 2π to add to each pixel of the wrapped
phase, φ. This stair image can be calculated using the gamma map, γ, as

K(i, j) = Floor
(

γ(i, j)
2

)
. (12)

A continuous absolute phase can be generated from K and φ via

Φ(i, j) = φ(i, j) + 2π × K(i, j). (13)

This absolute phase can then be scaled into the original depth dimensions of Z by

Z′(i, j) =
Φ(i, j)× P

2π
. (14)
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Thus far, this section has illustrated the necessity of the gamma map, γ, in the decoding
of 3D-range data from a single sinusoidal encoding. An ideal gamma map can be computed
from the original depth information, Z, as

γIdeal(i, j) = Floor
(

2× Z(i, j)−Min(Z)
P

)
. (15)

However, knowledge of the original depth information is, of course, unavailable at
the time of decoding. This section proposes the use of a deep-learning algorithm in order
to generate an in-situ gamma map through the semantic segmentation of the 8-bit encoded
image, I. This is possible because the number of labeled regions within γ that must be
determined is fixed based on the number of periods (n) used to generate the encoded image,
I. Additionally, the labels associated with each pixel of γ are dependent on the structure
of the data being encoded, which is often very similar across the range of 3D scans that a
specific application may require to be compressed.

A U-Net architecture [21] was chosen to accomplish this gamma segmentation task due
to the simplicity of its implementation and its ability to achieve high segmentation accuracy
on smooth images. The specific architecture implemented is illustrated in Figure 1. This
U-Net implementation has encoding blocks (shown on the left half of Figure 1) comprised
of 3× 3 convolutions using the LeakyReLU activation function, with batch normalization,
followed by 2× 2 maximum pooling layers. Each block of the encoder reduces the size
of the feature layers by half while doubling the total number of layers. For this semantic
segmentation problem, a maximum of 256 feature layers was chosen; increasing this number
did not substantially improve performance. The decoding blocks used (shown on the right
half of Figure 1) increase the size of the feature layers by two while reducing the number
of layers by one half. Following this process, the outputs from each block of the decoder
are concatenated with the equivalent-sized encoder block outputs (i.e., skip connections).
These concatenated outputs are then passed through the same 3× 3 convolution operations
used in the encoder. It should be noted that the number of 3× 3 convolutions applied in
each block of the encoder and decoder are equal to the number of classes it is necessary
to segment. For the example data shown in Figure 1, the number of classes is four, which
means that four 3× 3 convolutions are applied for every block. The output of the final
decoder block is then passed through the Softmax activation function, which allows for the
determination of a probability distribution over the number of segmentation classes [22].
As illustrated in Figure 1, a trained implementation of this model allows an 8-bit encoded
image to be input into the network, resulting in a predicted gamma map, γ, at the output.
Model training is performed using pairs of encoded images (defined in Equation (9)) and
their corresponding ideal gamma maps (defined in Equation (15)). Further training details,
and experimental results, will be given for specific datasets in Section 3.

This novel method for the recovery of compressed 3D-range data from a single 8-bit
grayscale encoded image, using deep-learning segmentation techniques, is illustrated in
Figure 2. Figure 2a is a 3D rendering of the original data to be compressed. Figure 2b is
Z, the 2D depth map corresponding to the original 3D data. In this case, Z is a 256× 256
ideal Gaussian surface with a depth range of 100 mm. Figure 2c is I, the sinusoidally
encoded depth information generated using Equation (9), stored in the PNG image format.
Figure 2d is the ideal gamma map, γIdeal , calculated from Z using Equation (15). Figure 2e
is the unsigned wrapped phase, |φ|, decoded from Figure 2c using Equation (10). Figure 2f
is the gamma map, γ, predicted from only Figure 2c using the trained U-Net architecture
illustrated in Figure 1. Figure 2g is the wrapped phase, φ, where the sign of each pixel is
determined using γ (Figure 2f) according to Equation (11). Figure 2h is a 3D rendering of
Z′, the depth information recovered from φ using γ according to Equations (12)–(14).
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Encoded Image Predicted 
Gamma Map

Figure 1. The U-Net architecture employed for segmentation of gamma data from single-channel,
8-bit grayscale encoded images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The proposed single-channel encoding and decoding process applied to a smooth Gaussian
surface. (a) 3D rendering of the original surface; (b) 2D depth map corresponding to the data in (a);
(c) encoded image output by the proposed method, stored in the PNG format; (d) ground-truth
gamma map calculated using the original data; (e) unsigned φ; (f) gamma map predicted using
semantic segmentation techniques; (g) signed φ, calculated using (e,f); (h) 3D rendering of the
recovered geometry, calculated using (f,g).

2.5. Single-Channel Depth Decoding with End-to-End Synthesis of Depth

Although the segmentation task discussed in the previous section is capable of re-
covering depth information from only a single-channel 8-bit image, artifacts may occur
where γ is incorrectly segmented from the encoding. These artifacts often manifest as rings
occurring at fixed intervals throughout the depth range, corresponding to the boundaries
between the different labels associated with the gamma map. Although these errors are
often very small in magnitude, they can result in surfaces that lack the subjective visual
fidelity required for some applications. Thus, this section proposes a different method for
the recovery of depth information from a single-channel encoding. In this case, the 3D
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information is recovered through the use of a deep-learning model that enables end-to-end
depth synthesis.

The architecture chosen to accomplish this synthesis task is a similar U-Net [21]
to the one described in Section 2.4, with some modifications. This implementation is
illustrated in Figure 3. The encoding blocks (shown on the left half of Figure 3) use the
same 3× 3 convolutions with batch normalization and LeakyReLU, while 2× 2 maximum
pooling layers are again used to reduce the size of the feature layers by one half while
doubling the total number of layers at each block. This synthesis model used a maximum
of 512 feature layers in order to reconstruct depth information from the encoded input
data. The decoding blocks used (shown on the right half of Figure 3) invert the max
pooling operation used in the encoder; feature layers are doubled in size while reducing the
overall number of layers by one half. The outputs of this inverse pooling are concatenated
with their equivalent-sized feature maps from the encoder and then passed through the
same 3× 3 convolutions as used previously. Since this is a synthesis task, the number of
convolutions performed in each block of the encoder and decoder is only one, unlike in
the segmentation task described in Section 2.4. The output of the last decoder block is
passed through the Linear activation function, which simply passes all values through,
unmodified. Figure 3 illustrates that this model, once trained, allows for 8-bit encoded
grayscale images to be input to the network with synthesized depth information (ZPredicted)
being recovered from the network’s output. Model training for this task is performed
with pairs consisting of encoded images (defined in Equation (9)) and their corresponding
ground-truth depth maps. Further training details, and experimental results, will be given
for the specific datasets being analyzed in Section 3.

Encoded Image Synthesized
Depth

Figure 3. The U-Net architecture employed for end-to-end synthesis of depth data from single-
channel, 8-bit grayscale encoded images.

3. Experimental Results
3.1. Random Gaussian Surfaces

The first dataset used to train and evaluate the proposed methods for decoding depth
information from a single 8-bit grayscale image was a set of 1000 random Gaussian surfaces.
Random values for σ and µ were used to generate these surfaces, although these parameters
were constrained such that the resulting surface would fill the majority of the 256× 256
image dimensions (i.e., each surface would not be near-zero for most of the image space).
The depth range of these surfaces was normalized between zero and 100 mm. In their raw,
floating-point format, each surface has an associated file size of 256 KB (256× 256× 4 bytes).
These Gaussian surfaces were then sinusoidally encoded according to Equation (9) with
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n = 2. This dataset was split into 80%, 10%, 10% subsets used for training, validation, and
testing, respectively. The results reported in this section use only the testing subset, which
was kept independent of the model during the training process. All models evaluated
in this manuscript were trained using TensorFlow [23], a Python library developed for
machine learning.

The first decoding approach evaluated on this dataset is the semantic segmentation
for phase unwrapping discussed in Section 2.4. For simplicity, this approach to decoding is
referred to as segmentation. The training for this model was conducted using the proposed
grayscale encoded images as input, stored in the PNG format. Each encoding’s ideal
gamma map, defined in Equation (15), was used as the ground-truth segmentation result.
It should be noted that four distinct labeled regions exist within these ideal gamma maps.
The loss function used for training was sparse categorical cross-entropy, and the Adam
optimizer was selected with a fixed learning rate of 10−4. This model was trained for
100 epochs, with a batch size of 16, while monitoring validation accuracy. The model
weights were saved for every epoch with the highest validation accuracy; in this case,
epoch 99 was selected with an associated validation accuracy of 99.7%.

Figure 4 illustrates the proposed method of depth decoding utilizing semantic segmen-
tation techniques. The three rows correspond to the first three random surfaces drawn from
the testing subset. Column one shows a 3D rendering of the original depth information,
Z. Column two shows the sinusoidally encoded image (stored in the PNG image format)
generated using Equation (9) with n = 2. Column three illustrates the ideal gamma map
generated using Equation (15). Column four gives the predicted gamma-maps output from
the trained segmentation model when the encoded images from column two were used as
inputs. Column five shows 3D renderings of Z′, the depth information recovered using the
encoded image and the predicted gamma map using Equations (10)–(14) via the procedure
described in Section 2.4. The sixth column shows the absolute error, in mm, between the
recovered depth information (Z′) and the original floating-point depth information (Z).

Next, this dataset was used to evaluate the end-to-end depth synthesis approach
discussed in Section 2.5. This method will be referred to in this section as synthesis, for con-
venience. The synthesis model was trained using the single-channel encoded image (stored
in the PNG image format) as input, while the original floating-point depth information (Z)
was used as the ground truth. The loss function evaluated in training was a custom root
mean squared error (RMSE) function calculated between the predicted output (ZPredicted)
and ground truth, which can be defined mathematically as

RMSE =

√
∑i,j(Z− ZPredicted)2

H ×W
, (16)

where the summation occurs over each pixel of the squared error. The values for H and W
are the image height and width, respectively. An Adam optimizer was selected for this task
with a fixed learning rate of 10−4. The synthesis model was trained for 450 epochs, with a
batch size of 4, while monitoring the validation loss. Model weights for each subsequent
epoch with the best performance were saved. For this experiment, epoch 330 was selected
with an associated validation loss of 0.99%.

Figure 5 illustrates the proposed synthesis method for the recovery of depth infor-
mation from a single-channel grayscale encoding stored in the PNG format. Each row
corresponds to the first three random surfaces in the testing subset. Column one shows a
3D rendering of the original depth information, Z. Column two shows the corresponding
2D depth map. Column three gives the sinusoidally encoded depth maps, generated using
Equation (9), stored in the PNG format. Column four contains the synthesized 2D depth
maps (ZPredicted) output by the trained synthesis model when the encoded images from col-
umn three are used as inputs. Column five shows 3D renderings of the synthesized depth
information from column four. The sixth column shows the absolute error (in mm) when
the synthesized depth information is compared to the original floating-point depth data.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 4. The proposed method of semantic image segmentation on random Gaussian surfaces when
the 8-bit encoded images were stored in the PNG format. (Row 1)–(Row 3) correspond to the first three
surfaces from the testing subset. (Column 1) 3D renderings of the original depth information with a
depth range of 100 mm; (Column 2) Sinusoidal encodings of the original depth information, stored
in the PNG format; (Column 3) Ideal gamma maps for the original depth information; (Column 4)
Gamma maps predicted by passing the sinusoidal encodings into the trained segmentation model;
(Column 5) 3D renderings of the depth information recovered using the predicted gamma maps and
sinusoidal encodings; (Column 6) Absolute error (in mm) between the recovered depth information
and original floating-point depth data.

Table 1 provides numerical results for the proposed segmentation and synthesis
methods when the random Gaussian surface testing subset was analyzed. The average
file size for the original floating-point surfaces is 256 KB. This file size was reduced to an
average of 12.55 KB when sinusoidally encoded and stored in a single 8-bit PNG image,
achieving an average compression ratio of 20:1 for both proposed methods. It can also be
seen that both of the proposed methods were able to achieve well above 99% reconstruction
accuracies, which is suitable for many applications.

Table 1. Performance of the proposed methods when the random Gaussian-surface testing dataset
was encoded and stored in the PNG format.

PNG Original
File Size

(KB)

Mean
File Size

(KB)

Mean
Compression

Ratio

Mean
RMSE
(mm)

Mean RMS
Reconstruction

Accuracy

Segmentation
256 12.55 20:1

0.294 99.70%

Synthesis 0.539 99.46%

3.2. Texas 3D Face Recognition Database

To evaluate the proposed methods with geometry that is more complex, a second set
of experiments was performed. The dataset selected was one that is representative of the
type of data commonly used in applications such as telepresence and security (e.g., facial
recognition). Here, 3D scans of human faces from the University of Texas’ 3D Facial Recog-
nition Database [24–26] were cropped and zero-padded to dimensions of 512 × 512 pixels.
These depth maps, once cropped and padded into the expected dimensions, were passed
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through a 2D Gaussian filter with σ = 0.5 and normalized between zero and 255 mm in
order to ensure the depth values were floating-point. These raw, floating-point scans have
an associated file size of 1024 KB (512× 512× 4 bytes). Each depth map was encoded using
Equation (9) with two encoding periods (i.e., n = 2). These 1149 scans were randomly
shuffled and split into subsets with lengths 800, 100, and 149 for training, validation, and
testing, respectively. The results reported are the results of analysis on only the testing
subset, which was kept independent of the model during the training process.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 5. The proposed method of end-to-end depth synthesis on random Gaussian surfaces when
the 256× 256 encoded images were stored in the PNG format. (Row 1)–(Row 3) correspond to the first
three surfaces from the testing subset. (Column 1) 3D renderings of the original depth information;
(Column 2) 2D depth maps with a depth range of 100 mm; (Column 3) Sinusoidal encodings of
the original depth information, stored in the PNG format; (Column 4) Depth maps recovered by
passing the sinusoidal encodings through the trained synthesis model; (Column 5) 3D renderings
of the synthesized depth maps; (Column 6) Absolute error (in mm) between the synthesized depth
information and original floating-point depth data.

The first decoding method evaluated on this dataset is the segmentation approach
discussed in Section 2.4. Each encoded image in the dataset was paired with its correspond-
ing ideal gamma map, γIdeal , generated using Equation (15). It should be noted that the
original scans have an associated background that is unrelated to the faces themselves; as a
result, these ideal gamma maps were generated with an additional integer value (in this
case, zero) corresponding to the background pixels. Thus, this segmentation task aims to
apply five labels to the resulting output gamma map, unlike the four labels required for
the random Gaussian surfaces. The training for this segmentation model is identical to
the training scheme utilized for the segmentation of the random Gaussian surface dataset:
an Adam optimizer with a fixed learning rate of 10−4 was applied for 100 epochs while
monitoring validation accuracy; the loss function used was sparse categorical cross-entropy;
and the epoch selected, based on best validation accuracy, was epoch 86 with an associated
validation accuracy of 99.20%.

The segmentation approach to the decoding of depth information from a grayscale
image is shown for the first three scans in the testing subset in Figure 6. The first column
shows 3D renderings of the original depth information, Z. The second column shows the
sinusoidally encoded images generated using Equation (9) with two encoding periods,
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stored in the PNG format. The third column shows the ideal gamma map, γIdeal , generated
using Equation (15). The fourth column shows the predicted gamma map generated by
passing the encoded images from column two into the trained segmentation model dis-
cussed previously. Column five shows the reconstructed depth information, Z′, calculated
using the predicted gamma map and Equation (10)–(14) via the procedure described in
Section 2.4. Finally, column six shows the absolute error when the reconstructed geometry
is compared to the original, floating-point data.

Next, the synthesis approach to the recovery of depth information discussed in
Section 2.5 was evaluated using this dataset. Here, each encoded image in the dataset
was paired with its corresponding original floating-point depth map (Z). The training for
this model is the same as the scheme utilized when training for the random Gaussian sur-
face dataset: an Adam optimizer was utilized with a fixed learning rate of 10−4; the batch
size used was four; and a custom RMSE loss function was monitored for the 450 epochs
that the model was trained. The model weights were selected (based on best results from
the validation subset) from epoch 273, with an associated validation loss of 0.61%. It should
be noted that, since the depth information also contains irrelevant background pixels,
the RMSE loss function that was minimized when training the synthesis model does not
consider background pixels in its calculation.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 6. Proposed method of semantic image segmentation on 3D scans of faces [24–26] when the
8-bit encoded images were stored with PNG. (Row 1)–(Row 3) are the first three scans from the
testing subset. (Column 1) 3D renderings of the original depth data with a depth range of 255 mm;
(Column 2) Sinusoidal encodings of the original depth data, stored in the PNG format; (Column 3)
Ideal gamma maps for the original depth data; (Column 4) Gamma maps predicted by passing the
sinusoidal encodings into the trained segmentation model; (Column 5) 3D renderings of the depth
data recovered using the predicted gamma maps and sinusoidal encodings; (Column 6) Absolute
error (in mm) between the recovered depth data and original floating-point depth data.

The synthesis approach to the recovery of depth information from an 8-bit grayscale
image is shown for the first three scans in the testing dataset in Figure 7. The first column
shows a 3D rendering of the original floating-point depth information, Z. The second
column shows the 2D depth map corresponding to the 3D renderings shown in the first
column. Column three is the sinusoidally encoded depth image (with n = 2) from column
two, stored in the PNG image format. Column four is the output of the synthesis model,
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ZPredicted, when the encoded image from the third column is input. The fifth column
is a 3D rendering of the synthesized depth information shown in column four. Finally,
column six is the absolute error when the recovered geometry is compared to the original,
floating-point depth information.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 7. The proposed method of end-to-end depth synthesis on 3D scans of human faces [24–26]
when the 512× 512 encoded images were stored in the PNG format. (Row 1)–(Row 3) correspond
to the first three surfaces from the testing subset. (Column 1) 3D renderings of the original depth
information; (Column 2) Depth maps with a depth range of 255 mm; (Column 3) Sinusoidal encodings
of the original depth information, stored in the PNG format; (Column 4) 2D depth maps recovered by
passing the sinusoidal encodings through the trained synthesis model; (Column 5) 3D renderings
of the synthesized depth maps; (Column 6) Absolute error (in mm) between the synthesized depth
information and original floating-point depth data.

The next experiment demonstrates the ability of the proposed segmentation method to
recover depth information from a single-channel image when lossy compression is applied.
In this case, the JPG image format was used to store the encoded output image, with the
quality set to 20. The segmentation model was retrained with these JPG-20 encoded images
using the same procedure described for the previously discussed case when PNG was used
to store the output. Here, the model weights were selected from training epoch 73 with an
associated validation accuracy of 99.0%. Figure 8 illustrates the proposed segmentation
process on lossy encoded images for the first three faces from the testing subset, and each
column directly corresponds to its equivalent column from Figure 6. Column one shows
3D renderings of the original depth information, Z. Column two shows the sinusoidally
encoded images generated using Equation (9), stored in the JPG-20 image format. Column
three and four are the ideal gamma maps and gamma maps predicted by the trained
segmentation model, respectively. The recovered depth information is rendered in column
five, and column six gives the absolute error for this reconstruction when compared to the
original floating-point depth information. Note that, since the encoded images needed to
be regenerated and stored in the JPG format, the random shuffling caused the training,
validation, and testing subsets to differ from the lossless case discussed previously. Thus,
the faces shown in Figure 8 are not the same as the faces shown in Figure 6.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 8. The proposed method of semantic image segmentation on 3D scans of human faces [24–26]
when the 8-bit encoded images were stored in the JPG 20 format. (Row 1)–(Row 3) correspond
to the first three scans from the testing subset. (Column 1) 3D renderings of the original depth
information with a depth range of 255 mm; (Column 2) Sinusoidal encodings of the original depth
information, stored in the JPG 20 format; (Column 3) Ideal gamma maps for the original depth
information; (Column 4) Gamma maps predicted by passing the sinusoidal encodings into the
trained segmentation model; (Column 5) 3D renderings of the depth information recovered using the
predicted gamma maps and sinusoidal encodings; (Column 6) Absolute error (in mm) between the
recovered depth information and original floating-point depth data.

Next, the synthesis approach was analyzed on the lossy encoded images. The synthesis
model was retrained using the JPG 20 encoded images, following the same procedure as
when the PNG encoded images were used. The model weights selected were generated
at training epoch 353, with an associated validation loss of 0.51%. Figure 9 shows the
experimental results for the proposed method of depth synthesis from lossy encoded
images for the first three faces from the testing subset, and each column directly corresponds
to its equivalent column from Figure 7. Columns one and two show the 3D renderings
of the original depth information and the corresponding 2D depth maps, respectively.
Column three shows the sinusoidally encoded depth maps from column two, generated
using Equation (9), stored in the JPG 20 image format. Columns four and five respectively
illustrate the synthesized 2D depth maps and corresponding 3D renderings output by
the trained synthesis model when the encodings from the third column were input. The
sixth column illustrates the absolute error for the synthesized depth maps compared to the
original floating-point depth information.

Table 2 provides numerical results for the total testing subset used in the evaluation
of both the segmentation and synthesis approaches. Table 2a compares the mean aggre-
gate file size and RMS depth recovery error for both approaches when the PNG image
compression standard was applied to the encoded output image. Table 2b compares the
mean aggregate file size and RMS depth recovery error for both approaches when the
JPG 20 image compression standard was applied to the encoded output image. It should be
noted that, for each individual image compression standard utilized (i.e., PNG and JPG 20),
identical images were used as inputs to both models. As such, the mean file size and
compression ratios are the same for each distinct image format. Additionally, the original
floating-point data for this dataset will always have the same file size (512× 512× 4 bytes).
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It can be seen that both methods were able to achieve accuracies higher than 99%, regardless
of the image compression format applied to the encoded output. Further, file sizes were
significantly reduced: when the JPG-20 image format was used, a compression ratio of
106:1 was achieved when compared to the 1024 KB original data. These results illustrate
that there was not a significant difference in reconstruction accuracy between encodings
stored with lossless and lossy compression when the synthesis model was used. This may
imply that the synthesis model learns to mitigate compression artifacts as it reconstructs
depth data from lossy encodings. That said, one should note that this ability is not learned
by the segmentation model. For instance, when the segmentation model was used with
lossy JPG 20, as opposed to lossless PNG, there was a drastic increase in reconstruction
error and a notable reduction in visual fidelity (as can be seen in Figure 8).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 9. The proposed method of end-to-end depth synthesis on 3D scans of human faces [24–26]
when the encoded images were stored in the JPG 20 format. (Row 1)–(Row 3) correspond to the first
three surfaces from the testing subset. (Column 1) 3D renderings of the original depth information;
(Column 2) 512× 512 depth maps with a depth range of 255 mm; (Column 3) Sinusoidal encodings
of the original depth information, stored in the JPG 20 format; (Column 4) 2D depth maps recovered
by passing the sinusoidal encodings through the trained synthesis model; (Column 5) 3D renderings
of the synthesized depth maps; (Column 6) Absolute error (in mm) between the synthesized depth
information and original floating-point depth data.

Table 2. Performance of the proposed methods when the Texas Facial Recognition Database testing
subset was encoded. (a) Average results for the proposed methods when the PNG image compression
standard was used to store the single-channel encoding; (b) Average results for the proposed methods
when the JPG image compression standard, with quality set to 20, was used to store the single-channel
encoding.

(a)

PNG Original File
Size (KB)

Mean File
Size (KB)

Mean Com-
pression

Ratio

Mean RMSE
(mm)

Mean RMS
Reconstruc-

tion
Accuracy

Segmentation
1024 65.46 15:1

1.182 99.53%

Synthesis 0.996 99.60%
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Table 2. Cont.

(b)

JPG 20 Original File
Size (KB)

Mean File
Size (KB)

Mean Com-
pression

Ratio

Mean RMSE
(mm)

Mean RMS
Reconstruc-

tion
Accuracy

Segmentation
1024 9.65 106:1

2.066 99.18%

Synthesis 1.031 99.59%

4. Discussion

The proposed methods of depth recovery from a single 8-bit sinusoidal encoding
allow for high compression ratios to be achieved when compared to the original floating-
point data. This was experimentally demonstrated in the previous section; both semantic
image segmentation and end-to-end depth synthesis were utilized in the decoding of depth
information from 8-bit grayscale images stored in lossless and lossy formats. However,
several factors must be taken into account when evaluating the potential use-cases for these
methods and when considering future research in this area. The following is a discussion
of these factors.

1. Generalizability. Section 3 illustrates the performance of both the segmentation and
synthesis approaches to the recovery of depth information from a single-channel en-
coding. However, it is also important to evaluate the generalizability of the proposed
methods to 3D-range scans from alternate datasets. This is demonstrated in Figure 10.
Figure 10a is a 3D rendering of depth data from the University of York’s 3D Face
Dataset [27]. In this case, the data is a 3D scan of a human face that has been cropped
and reshaped to 512× 512 pixels in order to match the dimensions expected by the
trained segmentation and synthesis models. Figure 10b is the corresponding 2D depth
map, normalized between zero and 255 mm after removing unconnected components
and being passed through a Gaussian filter (σ = 0.5) in order to ensure floating-point
precision. Figure 10c is the sinusoidally encoded depth map, generated according
to Equation (9) and stored in the PNG image format. Figure 10d is a 3D rendering
of the segmentation method’s output, trained using the Texas 3D Face Recognition
Database [24–26], when the sinusoidal encoding in (c) is used as input. Figure 10e is a
3D rendering of the synthesis model’s output, trained using the Texas 3D Face Recog-
nition Database [24–26], when the sinusoidal encoding in (c) is used as input. It can
be seen that the depth recovered by both segmentation and synthesis are reasonably
faithful to the original 3D-range data, especially when artifacts near the surface edges
are ignored. This shows that the segmentation and synthesis models are reasonably
generalizable to similar data from alternate datasets; however, it was necessary to
carefully crop this alternate input in order to match the approximate structure and
alignment of the data used to train the models. It is important to note that, while
these models may perform adequately for one particular type of data, they do not
necessarily have the ability to generalize and perform well on any given encoding of
3D-range data. For instance, all results presented thus far have shown that depth data
can be recovered from the segmentation and synthesis models trained with encodings
of a particular class of depth data: Gaussian random surfaces were recovered from
their encodings with models trained on encodings of Gaussian random surfaces, and
3D faces were recovered from their encodings with models trained on encodings of
3D faces. If the Gaussian-trained models were tasked with recovering depth from
encodings of 3D faces, for example, they may have trouble as deformations in the
encodings caused by facial structures (i.e., eyes, noses, mouths) were not seen within
the training data. Figure 10f,g show the models’ limited ability to generalize outside
of its training set. In these examples, an encoding of the face data in Figure 10a was
decoded using the segmentation and synthesis models trained on random Gaussian
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surfaces. It is clear that both approaches fail to reconstruct the proper shape of the
face. This is expected, as each Gaussian-trained model (segmentation and synthesis)
was never provided information on how to reconstruct facial encodings (i.e., they only
know how to aid in recovering the depth of Gaussian surface encodings). Further,
this indicates that each model is not simply learning how to perform an operation
analogous to phase unwrapping, but that the models are learning and relying on
the underlying structure of the 3D shape represented within the encodings. One
naturally imagines a sophisticated model that can successfully recover depth of facial
encodings, random Gaussian encodings, and surfaces in between. Achieving this level
of broad generalizability is challenging; however, useful avenues of future work to
help ensure that trained models are more generalizable include: (1) training with more
robust datasets that contain various subject categories with both single continuous
and multiple disjoint surfaces; (2) data augmentation; and (3) automated dataset
generation via virtual environments [20].

2. Encoding Frequency. Throughout this manuscript, depth information was success-
fully recovered—with a high degree of accuracy—from within 8-bit grayscale images.
However, the performance of the proposed segmentation and synthesis methods was
only evaluated for a relatively low depth range and number of encoding periods
(n = 2). It is important to note that, as the number of encoding periods increases, the
complexity of the problem that must be solved by the segmentation approach also
increases. This is because the number of regions that must be correctly segmented
and labeled in order to generate the gamma map, γ, increases proportionally to the
number of encoding periods. This proportional increase in segmentation complexity
will result in a higher rate of error and a subsequent loss in subjective visual fidelity,
particularly at segmentation boundaries. Liang et al. proposed a method that miti-
gates this problem of increased semantic segmentation complexity associated with a
higher number of encoding periods for phase unwrapping in DFP systems [28]. This
was performed through the use of two deep-learning networks in series. The first
network generates a segmented and labeled image associated with the features of the
captured fringes; the second network uses this semantic segmentation as input and
outputs correctly unwrapped phase images. Similar techniques could potentially be
applied to phase unwrapping for the 3D-range geometry compression of either mul-
tiple disjoint or single continuous surfaces, although the authors of this manuscript
leave it as an avenue for future work.

3. Error Correction. The numerical performance of the segmentation and synthesis
approaches discussed in this manuscript are nearly identical when a lossless image
format such as PNG is used to store the encoded output. However, the segmentation
approach has reconstruction error that, in general, manifests as rigid, ring-like artifacts
that occur at boundaries between the labeled regions segmented by the model. The
synthesis approach has an error that occurs with less structure, and is more evenly
distributed throughout the 3D scene. One method of potentially reducing the impact
of the segmentation errors on subjective visual fidelity is to perform error correction
using the output of both the segmentation and synthesis models. For example, an
edge-detection algorithm could be applied to the gamma map generated by the
segmentation approach; this would correspond to regions of assumed error, since
most of the segmentation error is associated with these boundaries. Next, the depth
information decoded using the segmentation approach could have its regions of
assumed error replaced with the corresponding pixels from the synthesized depth
information. Finley and Bell experimentally demonstrated a conceptually similar
method of error correction using heavily filtered data to replace regions of assumed
error [14]. Additionally, deep-learning techniques have been recently applied to the
classification and correction of errors in 3D representations [29] and are an exciting
future avenue for potential error-correction frameworks.
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4. Potential Applications. This manuscript illustrated two novel methods for the re-
covery of floating-point depth information from only a single 8-bit image channel.
Both of these methods utilize deep-learning techniques in order to decode the depth
information and are able to achieve above 99% RMS reconstruction accuracy even
when the depth encoding is stored in the JPG-20 image format. This allows for very
large compression ratios to be achieved when compared to the original floating-point
depth information. However, since these two methods of 3D-range geometry com-
pression are enabled through the use of deep-learning networks, they are constrained
to use cases where a large quantity of similarly structured depth data is available for
training. Additionally, since the priority of these compression methods is small file
sizes instead of high fidelity, they are potentially suitable for applications where some
small degree of measurement error or reduction in visual fidelity can be tolerated.
Some example applications that typically meet these requirements are real-time 3D
telepresence and 3D facial recognition. However, the ethical ramifications of potential
misrepresentation due to decoding errors must also be considered when applying
deep-learning techniques to applications such as facial recognition. Given the poten-
tial uncertainty and abstract nature of the results produced by deep-learning models,
it is often challenging to determine—from the output data alone—how representative
of the original data the output may be.

(a) (b) (c)

(d) (e) (f) (g)

Figure 10. The proposed methods of depth recovery applied to a scan of a human face from a
different dataset [27] than the one with which the models were trained. (a) 3D rendering of the
original depth information with 255 mm range; (b) 512× 512 2D depth map illustrating the original
depth information, Z; (c) Depth information from (b), sinusoidally encoded with n = 2 and stored in
the PNG image format; (d) Depth data recovered from (c) using the segmentation approach discussed
in Section 2.4; (e) Depth data recovered from (c) using the synthesis approach discussed in Section 2.5;
(f) Depth data recovered using the segmentation model trained to decode random surfaces; (g) Depth
data recovered using the synthesis model trained to reconstruct random surfaces.

5. Conclusions

This manuscript has presented two novel methods for the compression and subsequent
recovery of 3D-range data from a single 8-bit grayscale encoded image using deep-learning
techniques. Specifically, semantic image-segmentation techniques and end-to-end depth
synthesis were utilized in order to reduce the file sizes associated with the storage of
depth information. The proposed methods are compatible with both lossless and lossy
image compression formats, allowing for very high compression ratios to be achieved
when compared to the original floating-point depth data. For example, when complex 3D
scans of human faces were encoded and stored in the JPG-20 image format, an average
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compression ratio of 106:1 was achieved. Further, both methods of recovering depth
information from a single-channel encoded image are capable of achieving reconstruction
accuracies suitable for many applications. When the JPG-20 image format was used to
store the encoded output, the segmentation approach achieved a mean RMS reconstruction
accuracy of 99.18% while the synthesis approach was capable of generating surfaces with
an accuracy of 99.59%. This manuscript also provided discussion of the generalizability of
the machine-learning models used, highlighted a potential method of error correction for
incorrectly segmented data, and discussed several avenues of potential future work.
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