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Abstract: Ionization-induced multiwave mixing is attracting much interest nowadays due to the
possibility of generating short pulses of secondary radiation over a very wide spectral range, from
terahertz to far ultraviolet. This paper presents an analytical method for calculating the amplitudes of
arbitrary spectral components of free electron currents arising under the action of multicolor ionizing
laser pulses. We show that this method can be used to obtain the dependences of characteristics
of a frequency-tunable third harmonic of the intense component of a three-color pulse obtained
in an optical parametric generator. The obtained results are in good agreement with quantum
mechanical calculations.
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1. Introduction

At present, the processes associated with the generation of secondary radiation in
gases under the action of ionizing laser pulses are widely studied in connection with the
possibility of creating compact sources of frequency-tunable super-broadband coherent
radiation in wide ranges of central wavelengths (100–10,000 nm) [1–5]. Within this range,
several different subranges can be distinguished, each of which is relevant for different ap-
plied areas; as a rule, such ultrashort pulses are in demand for ultra-precise measurements
and spectroscopy [6,7], control of various quantum or chemical processes [8,9], biomed-
ical imaging [10], while the possibility of frequency tuning further expands the range of
applicability of such sources. This can be done using the frequency tuning of the ionizing
pulse components in optical parametric generators [11–13]. Recently, the possibility of
using multi-color (three or more) pulses instead of traditional two-color ionizing pulses
has been increasingly investigated [13–16]. The solution of optimization problems for such
systems is complicated by the fact that the extremely nonlinear nature of ionization-induced
multiwave mixing (IMWM) manifests itself in a strong interdependence of the optimal
values of each pulse parameter on the values of all others [14,17–19].

In this work, we propose a new method for calculating the combination frequencies
in the spectrum of the free electron current generated under the action of a multicolor
laser pulse. This method does not rely on the smallness of the intensities of any compo-
nents compared to others, or on a large number of mixing waves, and is also suitable for
arbitrary elliptical polarizations of quasimonochromatic components. We show that our
results are in good agreement with the solutions of three-dimensional time-dependent
Schrödinger equation.

Section 2 of this paper contains a description of the semiclassical approach and the
derivation of closed expressions for combination frequencies in the free electron current
spectrum. Section 3 presents the results of semiclassical and quantum-mechanical numeri-
cal calculations for two- and three-color ionizing pulses with different polarizations of the
quasimonochromatic components and the discussion of the obtained results.
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2. Analytical Model

In our analytical model, we use the so-called semiclassical approach [2,4,5,14,17,19].
To calculate the current density of free electrons generated by the laser field, we use the
system of equations

∂N
∂t

= (Nm − N)w(|E|), (1)

∂j
∂t

=
e2

m
NE, (2)

with the initial conditions N(t → −∞) = 0, j(t → −∞) = 0. Here, N is free-electron
density, Nm is initial density of neutral particles, w(|E|) is tunneling ionization probability
per unit time under the action of electric field E, j is the free-electron current density, e and
m are electron charge and mass.

The electric field is given by

E = f (t)
l

∑
k=1

Ekeiakω0t + c.c., (3)

where f (t) is a slow envelope, ak are some natural numbers, l is the total number of quasi-
monochromatic components of the pulse, Ek are the complex amplitudes of components
with frequencies akω0

Ek = Ekxeiφkx x0 + Ekyeiφky y0, (4)

x0 and y0 are unit vectors along X and Y axes, Ekx,y and φkx,y are the amplitudes of
projections and phase shifts. In this case, we do not assume the field as a successive series
of harmonics, ω0 has the meaning of the least common divisor of frequencies (or the least
common multiple of wavelengths) for example, for a pulse of two components at 800 nm
and 1200 nm, such a frequency will correspond to a wavelength of 2400 nm (and such
a pulse itself, within the framework of the proposed theory, should be understood as
a combination of the second and third harmonics of this fundamental frequency). We
do not assume that ak are small, and the following calculations are also applicable to
incommensurate multicolor laser pulses.

Since the carrier of laser field is periodic with a period 2π/ω0, we can also represent
the dependence of the ionization probability on time as a superposition of harmonics of the
fundamental frequency:

w(|E(t)|) = ∑ wseisω0t, (5)

where ws are slow amplitudes. Moreover, the derivative of the free electron current density
can also be expanded in a similar series dj/dt = ∑ djs/dteisω0t, with coefficients

djs

dt
≈ e2

imw0ω0

dN̄
dt

l

∑
k=1

Ekws−ak

s− ak
+

E∗k ws+ak

s + ak
, (6)

where N̄(t) = Nm[1− exp (−
∫ t
−∞ w0(t′)dt′)]. These amplitudes of the spectral components

of dj/dt determine the energy spectrum of the secondary radiation generated during the
ionization of a gas target. So far, the only unknown quantities in expressions (5) and (6) are
the amplitudes ws, the rest of this subsection is devoted to finding their values.

Traditionally, the polynomial dependence of the ionization probability on the strength
of the ionizing field is associated with the multiphoton ionization regime. In this paper,
we propose the use of the polynomial approximation also for the probability of tunneling
ionization, for example, given by the expression [20]
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w(|E|) = 4Ωa
Ea

|E| exp
(
− 2Ea

3|E| −
12|E|

Ea

)
, (7)

where Ea and Ωa are atomic field and frequency. For practical purposes, it is sufficient
to carry out such an approximation for a segment limited by the value of Elim, equal
to the sum of the amplitudes of all quasi-monochromatic components of the ionizing
pulse (since the field strength modulus cannot exceed this sum). The use of polynomial
approximation makes it possible, as will be shown below, to express the combination
components amplitudes as finite sums of combinations of the ionizing pulse parameters.

There are several different ways to expand a given function on a segment into a poly-
nomial series, for example, using Legendre polynomials that form an orthogonal system
on the segment [−1, 1] [21]. Since the argument of w is strictly positive, it is convenient for
us to extend it in an even way to the region of negative values. For linearly polarized fields,
this corresponds to using the field strength projection E as an argument of this function.
The n-th Legendre polynomial is defined by a formula Pn(z) = 1

2nn!
dn

dzn (z2 − 1)n (in our
case z = E/Elim), and the expansion coefficients for decomposition w(z) = ∑ αnPn(z) for
an arbitrary function can be calculated as αn = (

∫ 1
−1 w(z)Pn(z)dz)/(

∫ 1
−1 P2

n(z)dz) (since w
is a function of the modulus of the field strength, we can use only even polynomials and
integrate from 0 to 1). This series converges to the original smooth function at each point,
and the remainder term for the final expansion satisfies the condition of the least square de-
viation from the original function. There are other ways of approximating a given function
by a polynomial; we will carry out further reasoning for an arbitrary polynomial, without
relying on specific methods of expanding the function. As a suggestion, for simplicity one
can use a binomial approximation of the form

wbin(E) = w(Elim)
(
(n0 − n1)(E/Elim)n1+2 + (n1 + 2− n0)(E/Elim)n1

)
/2, (8)

where n0 = Elimw′(Elim)/w(Elim) is the effective exponent of w at the point Elim, and
n1 = 2bn0/2c. The comparison of the original function (7) with this approximation for
Elim = 0.1Ea (which for a one-color pulse corresponds to intensity of 3.5× 1014 W/cm2)
is shown in the Figure 1. This approximation is convenient primarily because it allows
you to reduce the number of necessary calculations to a minimum. However, the error in
such a binomial approximation is rather difficult to calculate accurately. On the contrary,
when using expansions in Legendre or Chebyshev polynomials, we obtain a guaranteed
smallness of the remainder term, from which, due to the linearity of the Fourier transform,
follows the smallness of the error in estimating any combination frequency ws.

Let us represent the square of the field modulus (3) in the form

|E(t)|2/ f 2(t) = I0 +
(

∑
k
I2ak ei2akω0t+

+ ∑
n 6=m
Ian+am ei(an+am)ω0t + ∑

n 6=m
Ian−am ei(an−am)ω0t + c.c.

)
,

I0 = ∑
k

EkE∗k ,

I2ak = E2
k , Ian+am = 2EnEm, Ian−am = 2EnE∗m.

(9)

Here, vector multiplication is a scalar product without complex conjugation, XY = (XY∗).
To calculate the harmonics of an even polynomial function, we use the following. Let us
have the product of two Fourier series (∑ Aseist)(∑ Bseist) = ∑ Cseist, then Cs = ∑k AkBs−k.
By iterating this procedure, we can obtain an expression for the Fourier components of any
even power of the field,

|E(t)|2n/ f 2n(t) = ∑ I (n)s eisω0t, (10)
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where
I (n)s = ∑

s1,s2,...,sn−1

Is1Is2 · ... · Isn−1Is−s1−s2−...−sn−1 , (11)

summation should be carried out over all non-zero components of |E(t)|2 in the expression (9).
In certain cases, some of the terms in Equation (9) vanish, for example, for two circular
components, either only the sum frequency remains (for opposite directions of polarization
rotation) or only the difference frequency (for codirectional rotation), while for orthogonal
linear polarizations, on the contrary, both the sum and difference frequencies vanish (see
Figure 2).

Figure 1. Comparison of the dependence of tunneling ionization probability per unit time on the
field strength given by Equation (7) (solid red curve) and the binomial approximation given by
Equation (8) with n0 ≈ 4.5 and n1 = 4 (dashed black curve) on a segment (0, 0.1Ea).

Finally, for a polynomial

w(|E(t)|) = ∑
n

αn|E(t)|2n, (12)

we obtain

ws = ∑
n

f 2n(t)αnI (n)s . (13)

Substituting (13) into (6) we obtain a closed analytical formula for the pulse shape of
an arbitrary combination frequency of the generated secondary radiation.

The obtained analytical expressions, although not always compact, can be used by
algorithms for the analytical calculation of the objective function and its derivatives in
solving the problems of optimizing the generation of a given combination frequency in
the secondary radiation spectrum [22]. The complexity of direct calculations of such
optima can be quite large, since each quasi-monochromatic component, even with a given
envelope shape, is characterized by a frequency and four more parameters that determine
its polarization. In the next section of this work, we consider the simplest illustrative
properties of this model, which are observed in the results of numerical calculations.
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Figure 2. Normalized to the maximum value, natural logarithm of the squared spectrum of dj/dt
(SCE) from a two-color pulse in hydrogen with varying frequency ratio with λ1 = 800 nm and fixed
intensities of components I1 = 2× 1014 W/cm2, I2 = 1014 W/cm2, FWHM duration τp = 50 fs
and different polarizations of components: (a) collinear linear polarizations; (b) orthogonal linear
polarizations; (c) corotating circular polarizations; (d) counterrotating circular polarizations. Noise is
suppressed at the −20 exponential level.

3. Numerical Calculations and Discussion

The above model may seem complicated to use: iterations in the expressions (6), (11)
and (13) look unwieldy. However, in many cases these expressions can be simplified.
Figure 2 shows the results of semiclassical calculations of the spectral components of dj/dt
for two-color pulses with fixed intensities and durations of the components with a change
in the frequency of one of the components, different subplots correspond to different
polarizations of the components. The envelopes of the pulse components in the numerical
calculations had Gaussian shapes,

f (t) = exp

(
− t2 ln 4

τ2
p

)
, (14)

with the pulse FWHM duration τp = 50 fs and ω1 corresponding to the wavelength
λ1 = 800 nm. Ionization probability for a hydrogen atom was given by expression (7).

Collinear linear polarizations, which are most often used in calculations and in the
construction of analytical models, give the most complex picture compared to other op-
tions. The fact is that the spectrum of the squared modulus of the field of such two-color
pulses contains, in addition to the constant component, the doubled frequencies of both
components, as well as the difference and sum frequencies, and all their combinations
generated by a strongly nonlinear IMWM seem to be diverse. However, even in this case
it is quite easy to analyze Figure 2a and understand from what combinations each of the
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pronounced spectral lines is obtained. At ω2/ω1 = 1 (this is simply the one-color field)
the spectrum of dj/dt contains just odd harmonics. In other cases the spectrum contains
all the combinations aω1 + bω2 where |a| + |b| is a small odd natural number, and the
bigger this sum, the less efficient is the generation. We note here that setting the field in the
form of expression (3) allows us, without additional constructions, to consider the cases of
superposition of several channels of multiwave mixing (overlaps of bright straight lines on
each of the subplots of Figure 2).

For other polarizations of the components, the analysis becomes much simpler. With
orthogonal linear polarizations, the spectrum of |E(t)|2 contains only doubled frequencies
of both field components, with codirectional circular polarizations only their difference
frequency, and with oppositely rotating only the sum frequency. Accordingly, for bicircular
pulses there are much fewer combinations of frequencies in dj/dt spectrum, which can be
seen in Figure 2c,d.

In several recent experiments were demonstrated the generation of terahertz radiation
under the action of two-color and three-color pulses, consisting of the main field at ω fre-
quency and one or two additional waves from a parametric light generator, the frequencies
of which can be detuned from ω/2 by some small ∆ω. In this work we theoretically studied
another effect for a three-color pulse with the frequencies of additional fields ω/2− ∆ω
and ω/2 + ∆ω, which allows to generate a frequency-tunable third harmonic 3ω + 2∆ω.

For such a pulse we can use the proposed model to determine the interdependence of
dj3ω+2∆ω/dt on field amplitudes. The smallest order of wave mixing (number of mixing
waves) in which the given component appears is 6. If we assign µ1 = Eω/2+∆ω/Eω and
µ2 = Eω/2−∆ω/Eω, and set all three phases to zero, we obtain

dj3ω+2∆ω

dt
∝ µ1µ2

(
(1 + µ1)

2

ω + ∆ω
+

2 + 6µ2
1

2.5ω + 3∆ω
+

2
3.5ω + ∆ω

+
2µ2

1
2.5ω + 3∆ω

)
/w0, (15)

where w0 ∝ (1 + µ4
1 + µ4

2 + 4[µ2
1 + µ2

2 + µ2
1µ2

2]).
The obtained analytical results were also compared with the numerical solutions of

the three-dimensional time-dependent Schrödinger equation (3D TDSE)

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∇2 − erE(t) + V(r)

]
ψ(r, t), (16)

where ψ(t, t) is the electron wavefunction, h̄ is the reduced Plank constant, V(r) is the parent
ion potential. The used potential V(r) for He atom is found based on the density functional
theory [23]. The numerical 3D TDSE solution was performed similarly to [23] using
expansion of the wavefunction in spherical harmonics with maximum orbital momentum
lmax = 256 and with radial boundary at rmax = 200rB (where rB is Bohr radius). The
generated radiation is characterized by Fourier spectrum aω =

∫
a(t)eiωtdt of the atom

dipole acceleration a(t), which determines the time derivative of the electron current
density, ∂j/∂t:

∂j
∂t

= eNma, a =
e
m
[E− 〈ψ|∇V|ψ〉]. (17)

The semiclassical model uses the ionization probability rate for He atom [20],

wHe(|E|) = C2
l

1
2k2/k−1

(
2k3

|E|

)2/k−1

exp
(
− 2k3

3|E| −
α|E|
Ipk3

)
, (18)

which, for simplicity, is written in the atomic units and where Ip = 0.904 a.u. is ionization
potential of He atom, k =

√
2Ip, α = 7.0, Cl = 3.13.

Numerically we have investigated the properties of the combination components
3ω± 2∆ω, the results are shown on Figure 3 (the spectral density near the third harmonic
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for pulses with two different values of ∆ω) and Figure 4 (the dependence of intensities of
3ω± 2∆ω on the intensity of one of the components with fixed intensities of two other in a
three-color pulse and ∆ω = 0.07ω). Expression (15) does not correctly describe the entire
form of the dependence of dj3ω+2∆ω/dt on µ1,2, since to do this, it is necessary to take into
account all the significant higher orders of the IMWM. However, already from it one can
see some properties of the generation of a given combination frequency, such as linearity
in both amplitudes at low values, and a slight asymmetry: if we put µ1 = µ2 and change
the sign of ∆ω, we see that when the intensities of both additional components are equal,
the low-frequency satellite of the third harmonic should have a slightly larger amplitude,
which is confirmed by both semiclassical and quantum mechanical calculations.

In higher orders there will be different (and more complex) analogous terms in large
brackets, but the discussed properties will hold: this component grows linearly and equally
with both of additional waves amplitudes, when one of them is small (due to the term µ1µ2)
and then the growth with µ1 becomes slightly faster than with µ2. With the use of such an
expression one can analytically solve various optimization problems, such as searching for
the maxima of j3ω+2∆ω/dt under a fixed condition on µ1 and µ2, e.g., fixed total energy.

Another interesting example found by us in numerical calculations is that when
several channels are superimposed, which occurs when ω is a multiple of ∆ω, the effect
of “aligning” the spectral comb occurs (Figure 3b), in our case with a distance between
neighboring spectral intensity peaks of 2∆ω = 0.2ω. Moreover, this happens even if the
intensities of the three components are relatively arbitrary, but comparable to each other.
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Figure 3. Spectral density S(ω) of radiation generated during the interaction of a He atom with
three-color laser pulse with sin2 envelop f (t) and FWHM duration τp = 100 fs. The frequencies of the
components of the laser pulse ω, 0.5ω− ∆ω, and 0.5ω + ∆ω correspond to the wavelengths 800 nm,
1860 nm, 1400 nm [panel (a) corresponds to ∆ω = 0.07ω] and 800 nm, 2000 nm, 1333 nm [panel
(b) corresponds to ∆ω = 0.1ω], respectively. The intensities of the components are Iω = 1015 W/cm2,
I0.5ω−∆ω = 2× 1014 W/cm2, and I0.5ω+∆ω = 0 (solid blue lines), 2× 1014 W/cm2 (solid orange and
dash red lines). Solid blue and orange lines are 3D TDSE results, dashed red lines are direct numerical
solution of semiclassical equations. The vertical dashed lines correspond to the frequencies 3ω− 2∆ω,
3ω, 3ω + 2∆ω.
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Figure 4. The intensity of the generated radiation at frequencies 2.86ω (blue lines), 3ω (solid black
lines), and 3.14ω (red lines) as a function of the intensity of laser pulse components 0.5ω−∆ω (a) and
0.5ω + ∆ω (b). The parameters of the laser pulse correspond to Figure 3a. The dashed-dotted gray
line in panel (b) is the dependence of the final degree of ionization of He atom on the intensity
of the laser pulse component 0.5ω + ∆ω. The vertical dashed lines correspond to the intensity
2× 1014 W/cm2.

4. Conclusions

We have developed an analytical model for calculating the amplitudes of arbitrary
spectral components of free electron currents arising under the action of multicolor ionizing
pulses. We show that this method can be used to obtain the dependences of characteristics
of a frequency-tunable third harmonic of the intense component of a three-color pulse
obtained in an optical parametric generator. Our theoretical conclusions based on the
analysis of semiclassical equations for free electron currents are supported by the results
of quantum mechanical calculations using time-dependent Schrödinger equation in the
framework single-active electron approximation for the helium atom. The proposed model
can be useful in designing circuits utilizing multicolor ionizing laser radiation for generating
short pulses in a wide frequency range from mid-IR to XUV.
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