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Abstract: A concurrent parametric amplifier consisting of two pump beams is used to investigate
the possibility of generating multi-mode correlation and entanglement. The existence of three-mode
entanglement is demonstrated by analyzing the violation degree of three-mode entanglement criteria,
including the sufficient criterion, i.e., two-condition and optimal single-condition criterion, and
necessary and sufficient criterion, i.e., positivity under partial transposition (PPT) criterion. Besides,
two-mode entanglement generated from any pair is also studied by using the Duan criterion and PPT
criterion. We find that three-mode entanglement and two-mode entanglement of the two pairs are
present in the whole parameter region. Our results pave the way for the realization and application
of multi-mode correlation and entanglement based on the concurrent parametric amplifiers.
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1. Introduction

Parametric amplifier, for example, four-wave mixing (FWM), acts as a nonlinear
interaction process that permits the transfer of energy and momentum between multiple
optical modes, specifically, two pump modes can be converted into a signal and an idler
modes via various nonlinear media [1–3]. For the atomic medium, a high-power pump
beam intersects a low-power seed beam in a hot rubidium cell, causing them to interact
and generate an idler beam, then the amplified seed (signal) and the newly-generated
idler beams can be demonstrated to be quantum correlated and entangled [4–10]. Based
on this simple model of only one pump mode and only one seed mode, other variations
have been presented. For example, when the FWM process is seeded by the coherent
signal and idler beams and only pumped by one pump beam, a scheme of a two-mode
phase-sensitive amplifier has been constructed, and its classical and quantum properties
have been theoretically analyzed [11] and experimentally measured [12]. Similarly, when
the FWM process is seeded by two coherent signal beams at the same angle but in opposite
directions on either side of the pump beam, this dual-seed scheme has been allowed to
achieve intensity-difference squeezing at ultra-low frequency [13].

On the other hand, with the FWM process pumped by two coherent pump beams
with non-degenerate frequency and only seeded by one coherent signal beam, a noiseless
optical amplifier has been experimentally realized, and its noise figure is always superior
than that obtained with a phase-insensitive amplifier with the same gain [14].

Motivated by the above scientific advances, we propose a concurrent parametric
amplifier scheme in which FWM process is pumped by the two coherent pump beams
with the degenerate frequency and only seeded by one coherent signal beam. As shown
in Figure 1, two pump beams P1 and P2 are focused and crossed in the center of a hot
rubidium vapor cell. A coherent seed beam, red-shifted from pump beam as shown in
the block in Figure 1, is seeded into the vapor cell, and it symmetrically crosses with the
two pump beams on one plane with the proper crossing angles [15] to eliminate any other
cascaded FWM processes. Under this experimental condition, each pump beam will interact
with the seed beam individually by means of FWM process. The seed beam is amplified
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(S) and two idler beams (I1 and I2) are simultaneously generated, therefore the interaction
mechanism of the triple output beams S, I1 and I2 constitute a concurrent parametric
amplification process [16]. In this work, the quantum properties of two-mode and three-
mode entanglement existed in the triple output beams generated from the concurrent
parametric amplifier will be discussed in detail. Firstly, the Hamiltonian describing this
concurrent parametric amplifier can be written as below

Ĥ = ih̄[ε1(â†
s â†

1 − âs â1) + ε2(â†
s â†

2 − âs â2)], (1)

with εi (i = 1 and 2) representing the interaction strength and âi (i = s, 1, and 2) the bosonic
annihilation operators. By applying the Heisenberg equation of motion to Equation (1), the
solution for the annihilation operators is found to be

âs(t) = Aâs(0) + Bâ†
1(0) + Câ†

2(0),

â1(t) = Bâ†
s (0) + Dâ1(0) + Eâ2(0), (2)

â2(t) = Câ†
s (0) + Ea1(0) + Fâ2(0),

with

A =
√

G,

B = α
√

G−1√
1+α2 ,

C =
√

G−1√
1+α2 ,

D = 1+α2
√

G
1+α2 , (3)

E = α(
√

G−1)
1+α2 ,

F = α2+
√

G
1+α2 ,

where Γ =
√

ε2
1 + ε2

2, cosh(Γt) =
√

G, and ε1/ε2 = α. Before investigating the two-mode
and three-mode entanglement existing in the system, the optical quadrature definitions
should be given firstly due to the requirement of the following criteria. Concerning the
three modes characterized by bosonic annihilation operators âi involved in the present
system, where i = s, 1, and 2, quadrature operators can be defined as follows:

Xi = âi + â†
i , Yi = −i(âi − â†

i ), (4)

such that [Xi, Yi] = 2i, and Xi and Yi are, respectively, position and momentum quadra-
tures. Following the definitions of Equation (4), Equation (2) can be recast in the form of
quadrature operators:

Xs(t) = AXs(0) + BX1(0) + CX2(0),

X1(t) = BXs(0) + DX1(0) + EX2(0), (5)

X2(t) = CXs(0) + EX1(0) + FX2(0),

and

Ys(t) = AYs(0)− BY1(0)− CY2(0),

Y1(t) = −BYs(0) + DY1(0) + EY2(0), (6)

Y2(t) = −CYs(0) + EY1(0) + FY2(0).

Based on the above relations about quadrature operators, the variances and covariances of
the position and momentum quadratures can be obtained to analyze the violation degree of
different entanglement criteria. V(Xi) = 〈X2

i 〉 − 〈Xi〉2 represents the position quadrature
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variance. For the covariance, it can be defined as Vij = (〈XiXj〉+ 〈XjXi〉)/2− 〈Xi〉〈Xj〉. It
should be noted that the covariance Vij will reduce to the usual variance V(Xi) under the
condition of i = j. In reality, the variances of the three modes can be expressed as〈

X2
s (t)

〉
=
〈
Y2

s (t)
〉
= A2 + B2 + C2 = 2G− 1,〈

X2
1(t)

〉
=
〈
Y2

1 (t)
〉
= B2 + D2 + E2 = 1+α2(2G−1)

1+α2 , (7)〈
X2

2(t)
〉

=
〈
Y2

2 (t)
〉
= C2 + E2 + F2 = α2+(2G−1)

1+α2 ,

and here, we used the fact that the mean values of quadrature operators are all equal to 0
and 〈Xi(0)Xj(0)〉 = 〈Yi(0)Yj(0)〉 = δij (i, j = s, 1, and 2). Similarly, the covariances can be
expressed by

〈Xs(t)X1(t)〉 = −〈Ys(t)Y1(t)〉 = AB + BD + CE

=
2α
√

G(G−1)√
1+α2 ,

〈Xs(t)X2(t)〉 = −〈Ys(t)Y2(t)〉 = AC + BE + CF (8)

=
2
√

G(G−1)√
1+α2 ,

〈X1(t)X2(t)〉 = 〈Y1(t)Y2(t)〉 = BC + DE + EF

= 2α(G−1)
1+α2 ,

and the above expressions can be used to discuss the entanglement properties of both
two-mode and three-mode cases; this is due to the fact that the triple beams in the con-
current parametric amplifier are Gaussian states, which can be fully quantified by their
corresponding covariance matrix (CM).

Seed
P1P2

I1 I2

S

Cell

5S1/2

5P1/2

F=2
F=3

Figure 1. The concurrent parametric amplifier. P1 and P2: two pump beams; S: signal beam; I1 and
I2: two idler beams. The energy level is shown in the block.

2. Two-Mode Entanglement
2.1. Duan Criterion

On the one hand, two-mode entanglement in this concurrent parametric amplifier is
analyzed using a sufficient criterion, i.e., Duan criterion [17], which is based on the total
variance of a pair of Einstein–Podolsky–Rosen-type operators, Xi − Xj and Yi + Yj. For
physical entangled continuous variable states, this variance will rapidly reduce to zero by
increasing the correlation degree. Thus, if any inequality in Equation (9) is violated, there
will exist two-mode entanglement between any pair. Based on the quadrature definitions
in Equation (4), the inequalities can be expressed asnumerical order.
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Ds1 = V(Xs − X1) + V(Ys + Y1) ≥ 4,

Ds2 = V(Xs − X2) + V(Ys + Y2) ≥ 4, (9)

D12 = V(X1 − X2) + V(Y1 + Y2) ≥ 4.

We calculate the dependence of Ds1, Ds2, and D12 on the gain G and interaction
strength ratio α as

Ds1 = 2[2G− 1− 4α
√

G(G− 1)√
1 + α2

+
1 + α2(2G− 1)

1 + α2 ],

Ds2 = 4[G− 2
√

G(G− 1)√
1 + α2

+
G− 1
1 + α2 ],

D12 = 4G. (10)

The violation of the first, second, and third inequalities in Equation (9) can be used to
claim the existence of two-mode entanglement between âs and â1, âs and â2, and â1 and
â2, respectively. As depicted in Figure 2a, as G and α get larger, the value of Ds1 becomes
smaller and smaller. This is because, under this condition, the concurrent parametric
amplifier will reduce to a simple single pump amplifier only pumped by P1, and two-mode
entanglement between the modes âs and â1 will dominate. Contrary to the dependence
of Ds1 on G and α, the two-mode entanglement between âs and â2 depicted in Figure 2b
can be improved by means of a larger value of G and a smaller value of α, meaning that, in
this situation, the concurrent parametric amplifier will reduce to the simple single-pump
amplifier only pumped by P2, and two-mode entanglement between the modes âs and
â2 will dominate. This also explains the opposite behaviors between Figure 2a,b. More
interestingly, as depicted in Figure 2c, two-mode entanglement between â1 and â2 is absent.
The reason for this phenomenon is that the two modes â1 and â2 are both generated from
the seed mode âs and compete with each other.

(a) (b)

2

1

( c)

4

2

4

3

5

Figure 2. The dependence of Ds1 (a), Ds2 (b), and D12 (c) on the gain G and interaction strength
ratio α.

2.2. Positivity under Partial Transposition Criterion

On the other hand, the PPT criterion as a necessary and sufficient criterion can be
used to quantify two-mode entanglement in the concurrent parametric amplifier. Generally,
two-mode entanglement shared by âs and â1 can be fully quantified by the following
CMs1 [18,19]:

CMs1 =


〈

X̂2
s (t)

〉
0

〈
X̂s(t)X̂1(t)

〉
0

0
〈
Ŷ2

s (t)
〉

0
〈
Ŷs(t)Ŷ1(t)

〉〈
X̂s(t)X̂1(t)

〉
0

〈
X̂2

1(t)
〉

0
0

〈
Ŷs(t)Ŷ1(t)

〉
0

〈
Ŷ2

1 (t)
〉

. (11)

Only when both of the symplectic eigenvalues of the partially transposed (PT) CMs1 are
no less than 1, this indicates the absence of two-mode entanglement between them [18–21].
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In this way, the smaller symplectic eigenvalue Es1 can be used to quantify two-mode
entanglement between âs and â1, i.e., if Es1 is smaller than 1, two-mode entanglement will
exist between them. Substituting Equations (7) and (8) into Equation (11), we can obtain
the detailed result for Es1 as below:

Es1 =
1

(1 + α2)3/2

√
1 + α2 + (1 + α2)[α4 + 2(G + 2Gα2)2 − 2G(1 + 3α2 + 4α4)]−

2(1 + α2)[G + (2G− 1)α2]
√
(G− 1)[G(1 + 2α2)2 − 1]

, (12)

and the dependence of Es1 is depicted in Figure 3a. Due to the value of Es1 being smaller
than 1, thus âs is quantum entangled with â1 in the whole parametric region (G > 1 and
α > 0). Similarly, the smaller symplectic eigenvalue Es2 of âs and â2 can be calculated as

Es2 =
1

(1 + α2)3/2

√
1 + α2 + (1 + α2)[α4 + 2G2(2 + α2)2 − 2G(4 + 3α2 + α4)]

−2(1 + α2)[G(2 + α2)− 1]
√
(G− 1)[G(2 + α2)2 − α4]

, (13)

and its value is smaller than 1 in the whole parametric region as depicted in Figure 3b,
meaning that âs is also quantum entangled with â2.

Besides, the smaller symplectic eigenvalue E12 of â1 and â2 can be given by

E12 =
1− G− α2 + Gα2 +

√
G2 − 4α2 + 8Gα2 − 2G2α2 + G2α4

1 + α2 , (14)

and its value is larger than 1 in the whole parametric region, as depicted in Figure 3c,
indicating that â1 is not quantum entangled with â2. This is determined by the following
fact: â1 and â2 are both generated from âs and in a competitive relationship.

(a) (b)

0.4

0.3

( c)

0.6

0.5

1.5

Figure 3. The dependence of Es1 (a), Es2 (b), and E12 (c) on the gain G and interaction strength
ratio α.

3. Three-Mode Entanglement
3.1. Two-Condition Criterion

In the following, we analyze three-mode entanglement by using different criteria, i.e.,
two-condition, optimal single-condition, and PPT. First of all, a set of inequalities based on
the two-condition criterion [22] is given by

Vs1 = V(Xs − X1) + V(Ys + Y1 + O2Y2) ≥ 4,

V12 = V(X1 − X2) + V(Y1 + Y2 + OsYs) ≥ 4, (15)

where Oi (i = s, 2), as arbitrary real numbers can be used to minimize the values in
Equation (15). If the two inequalities in Equation (15) are both violated, then it can be
deemed as a sufficient criterion to claim the presence of genuine three-mode entanglement.
Following this idea, via direct differentiation of Equation (15) with regard to Oi, the optimal
results of Oi (Oopt

i ) can be given by
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Os =
−(〈YsY1〉+ 〈YsY2〉)

〈Y2
s 〉

=
2
√

G(G− 1)(1 + α)

(2G− 1)
√

1 + α2
,

O2 =
−(〈YsY2〉+ 〈Y1Y2〉)〈

Y2
2
〉

=
2[α− Gα +

√
G(G− 1)(1 + α2)]

2G− 1 + α2 , (16)

and substituting Equation (16) into Equation (15), the detailed expression of Equation (15)
can be expressed as

Vs1 =
4(G + α2)[G + 2Gα2 − α(α + 2

√
G(G− 1)(1 + α2))]

(1 + α2)(2G− 1 + α2)
,

V12 =
4G[G(α− 1)2 + 2α]

(1 + α2)(2G− 1)
. (17)

The contour plot of Equation (17) is shown in Figure 4. The dependence of Vs1 on
G and α is shown in Figure 4a. The region of Vs1 < 4 is enlarged compared to the one of
Ds1 < 4 in Figure 2a when we consider the phase quadrature of â2 (Y2). The variance of
Ys + Y1 + Y2 becomes smaller than the one of Ys + Y1, which claims that â2 has a correlation
with âs + â1. The dependence of V12 on G and α is shown in Figure 4b, and the region of
V12 < 4 is also enlarged compared to the one of D12 < 4 in Figure 2c due to the same reason.

(a) (b)

2

(c)

4 4

3

Figure 4. The contour plot of Vs1 (a) and V12 (b); (c) the overlapped region between Vs1 < 4 and
V12 < 4.

The overlapped light blue region between Vs1 < 4 and V12 < 4 in Figure 4c means
that genuine three-mode entanglement is present in this system.

3.2. Optimal Single-Condition Criterion

Secondly, the single-condition criterion using the combined quadrature variances [22]
can be used to test and verify the presence of genuine three-mode entanglement. If its value
in Equation (18) is no more than 2, genuine three-mode entanglement can be verified.

Vs12 = V[Xs −
1√
2
(X1 + X2)] + V[Ys +

1√
2
(Y1 + Y2)]

= 2[3G− 1 + (G− 1)
2α

1 + α2 −
2(1 + α)

√
2G(G− 1)√

1 + α2
]. (18)

The dependence of Vs12 is depicted in Figure 5, and its value in most of the region is
no more than 2, which clearly shows the presence of genuine three-mode entanglement.
Inspired by the above results, by introducing different factors [22] instead of 1/

√
2, the

noise unbalance between â1 and â2 in Equation (18) can be effectively canceled; this criterion
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can be called the optimal single-condition criterion. In this way, Vopt
s12 can be expressed

as follows:
Vopt

s12 = V[Xs − F1X1 − F2X2] + V[Ys + F1Y1 + F2Y2], (19)

where the optimal expressions (Fopt
1 and Fopt

2 ) of F1 and F2 can be calculated as

Fopt
1 =

2α
√

G(G− 1)

(2G− 1)
√

1 + α2
,

Fopt
2 =

2
√

G(G− 1)

(2G− 1)
√

1 + α2
, (20)

respectively. Substituting Equation (20) into Equation (19), Vopt
s12 can be simply written as

Vopt
s12 =

2
2G− 1

. (21)

The contour plot of Vopt
s12 is depicted in Figure 6a, and it is not dependent on interaction

strength ratio α, meaning that the generation of the two modes â1 and â2 is the mode Xs;
thus, F1X1 + F2X2 is a combined idler mode with respect to the signal mode Xs.

2

1

Figure 5. The dependence of Vs12 in Equation (18).

(a) (b)

0.61

A

B

C

Figure 6. (a) The dependence of Vopt
s12 in Equation (21); (b) the dependence of Vopt

s12 (trace A); B1 (trace
B); (B2)min = (B3)min (trace C).

To verify the presence of genuine three-mode entanglement, all the boundaries should
be calculated according to [22]. If the value of Equation (21) is smaller than the smallest
boundary, there will exist genuine three-mode entanglement. In this sense, the boundaries
of Vopt

s12 are B1 = 2(1 +
∣∣F2

1 + F2
2

∣∣), B2 = 2(
∣∣F2

1

∣∣ + ∣∣1− F2
2

∣∣), and B3 = 2(
∣∣F2

2

∣∣ + ∣∣1− F2
1

∣∣)
with the detailed expressions of
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B1 = 4− 2
(2G− 1)2 ,

B2 =
2 + 2[1 + 8G(G− 1)]α2

(2G− 1)2(1 + α2)
, (22)

B3 =
2[1 + 8G(G− 1) + α2]

(2G− 1)2(1 + α2)
,

respectively. To find the smallest value between B1, B2, and B3, we should obtain their
extreme points when the value of α is fixed. Thus, the smallest values of B2 and B3 can
be obtained:

(B2)min = lim
α→0

2 + 2[1 + 8G(G− 1)]α2

(2G− 1)2(1 + α2)
=

2
(2G− 1)2 ,

(B3)min = lim
α→∞

2[1 + 8G(G− 1) + α2]

(2G− 1)2(1 + α2)
=

2
(2G− 1)2 . (23)

As Equation (23) shows, the value of B2 in the limit of α = 0 is equivalent to the one
of B3 in the limit of α = ∞, and this is because under both two conditions, three-mode
entanglement will reduce to two-mode entanglement only pumped by one pump beam;
thus, (B2)min and (B3)min cannot be viewed as the boundary of three-mode entanglement.
The other effective boundary B1 (trace B) is depicted in Figure 6b, and its value is always
larger than the one of Vopt

s12 (trace A); thus, genuine three-mode entanglement is present in
the whole gain range. Thus, the optimal single-condition criterion can be used to quantify
genuine three-mode entanglement more efficiently than the single-condition criterion.

3.3. PPT Criterion

Finally, the PPT criterion can also be used to quantify genuine three-mode entan-
glement [18,19,23]. For three-mode entanglement, the three possible 1 × 2 partitions
(âs − (â1, â2), â1 − (âs, â2), and â2 − (âs, â1)) have to be tested. When the smallest symplectic
eigenvalue for each of the three PT CMs is smaller than 1, all the partitions are inseparable,
and genuine three-mode entanglement will exist.

When the PT operation is applied to the mode âs, the entanglement between âs and
the rest of the modes (â1 and â2) can be quantified by the smallest symplectic eigenvalue
Ts−12:

Ts−12 =

√
1 + 3α2 + 3α4 + α6 − 8G(1 + α2)3 + 8G2(1 + α2)3 − 4(2G− 1)(1 + α2)3

√
G(G− 1)

(1 + α2)3/2 . (24)

As depicted in Figure 7a, the value of Ts−12 in the whole region is smaller than 1,
meaning that the mode âs is quantum entangled with the rest of the modes (â1 and â2). It
should be emphasized that the value of Ts−12 is independent of the interaction strength
ratio α, and this is because the combination of the two idler modes â1 and â2 can be viewed
as a combined idler mode. Similarly, when the PT operation is applied to the modes â1 and
â2, the smallest symplectic eigenvalues are T1−s2 and T2−s1, and their detailed results can
be written as

T1−s2 =

√
1 + (8G− 5)α2 + (8G2 − 5)α4 + [1 + 8G(G− 1)]α6

−4[(2G− 1)α2 − 1](α + α3)
√
(G− 1)(1 + Gα2)

(1 + α2)3/2 , (25)
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and

T2−s1 =

√
1− 5α2 − 5α4 + α6 + 8G2(1 + α2) + 8G(α4 − 1)
−4(α2 + 1)(2G− 1 + α2)

√
(G− 1)(G + α2)

(1 + α2)3/2 , (26)

respectively. The contour plots of T1−s2 and T2−s1 are depicted in Figure 7b,c, respectively.
It can be clearly seen that the values of T1−s2 and T2−s1 are both smaller than 1 in the whole
parametric region, showing that the three partitions are all inseparable and the existence of
genuine three-mode entanglement in the whole parameter region.

(a) (b)

0.15 0.3

( c)

0.3

Figure 7. The dependence of (a) Ts−12; (b) T1−s2; and (c) T2−s1.

4. Conclusions

In conclusion, we theoretically predicted that the concurrent parametric amplifier as
a simple system can be used to generate two-mode and three-mode entanglement. The
Duan criterion and PPT criterion can be used to quantify two-mode entanglement, which is
present in the two pairs. The two-condition and optimal single-condition criterion were both
analyzed to search for the entanglement region. In the case of the optimal single-condition
criterion, genuine three-mode entanglement is present in the whole parameter region. More
importantly, the PPT criterion was also used to claim the existence of genuine three-mode
entanglement in the whole parameter region. Our concurrent parametric amplifier for
generating multi-mode correlation and entanglement is integrated and phase-insensitive.
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