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Abstract: Three types of GaAsP metamorphic buffer layers, including linearly graded, step graded,
and metamorphic superlattices, were compared for the purposes of virtual substrates for red laser
diode heterostructures. Laser diodes were fabricated on GaAs substrates and relaxed GaAsP meta-
morphic superlattice virtual substrates. A laser diode structure with a tensile-strained quantum well
on a standard miscut GaAs substrate achieved TM-polarized emission at a 638 nm wavelength with
45% peak power conversion efficiency (PCE) at a 880 mW continuous wave (CW) output power with
T0 = 77 K and T1 = 266 K. An analogous laser diode structure with a compressively strained quantum
well on the metamorphic superlattice emitted TE-polarized 639 nm light with 35.5% peak PCE at
880 mW CW with T0 = 90 K and T1 = 300 K.

Keywords: diode lasers; visible lasers; metamorphic buffer

1. Introduction

High-power red laser diodes are of particular interest for laser projection and holo-
graphic heads-up displays [1,2], but other applications include targeted drug delivery in
the medical industry and aiming beams for fiber lasers [3]. High illuminance is crucial for
projection and display applications in order to produce a highly visible image in a variety
of ambient lighting conditions. Since image area is also a key factor for projection displays,
illuminance must be maximized through the increase in luminous flux. This is achieved for
the red laser sources either by increasing the radiant flux (i.e., laser output power) or by
increasing luminous efficacy through the reduction in emission wavelength corresponding
to human eye sensitivity. However, maintaining output power and power conversion
efficiency (PCE) becomes more difficult at reduced emission wavelengths, due to limita-
tions in the properties of available III-V materials that are nominally lattice matched to
GaAs [4]. Typical red laser diodes are InGaAlP-based heterostructures, but despite having
the widest available bandgap of materials lattice matched to GaAs, the InGaAlP layers
do not offer sufficient relative band offsets to maintain consistent high levels of carrier
confinement for wider bandgap quantum wells and performance degrades significantly
as the emission wavelength decreases below 634 nm. One strategy to improve carrier
confinement is to use cladding and waveguide layers that are Ga/Al-rich InGaAlP alloys
that have wider bandgaps. These InGaAlP compositions have a reduced lattice constant
relative to GaAs, so the growth of high-quality, unstrained films requires a substrate with
an equally reduced lattice constant. This alteration of substrate lattice constant can be
achieved through metamorphic buffer layers (MBLs) that gradually shift the material lattice
constant through relaxation of strained layers, resulting in a tunable virtual substrate.

Metamorphic buffer layers generally alter the material lattice constant by grading
an alloy composition toward the desired lattice constant using one of several common
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transitions, including linear grading, step grading, or logarithmic grading [5]. Strained
superlattices have been previously used as a means to filter defects to reduce threading
dislocation density (TDD), as well as reducing surface roughness through mitigation of
local lateral strain fluctuations [6–9]. In this work, metamorphic strained superlattices are
implemented as both a composition-shifting metamorphic buffer and a defect filter [10].
The MSLs comprise a series of alloy layers with alternating compositions, so that the strain-
relaxed equilibrium lattice constant of the layers differs from the underlying substrate. A
schematic comparing a single stage of the MSL to other common MBLs is shown in Figure 1.
The MSL layers are referred to as wells and barriers, where wells denote the alloy with
the narrower bandgap and the barriers denote the alloy with the wider bandgap. The
individual layers within the MSL were grown below their respective critical thickness, but
the net-strained MSLs were designed to surpass the critical thickness of the bulk composite
superlattice (SL) stages to induce relaxation by forming misfit dislocations at interfaces
within the SLs and at interfaces between SL stages and the substrate [10]. Threading
dislocations formed within the SL are in close proximity to interfaces and dislocation
lengths are limited within the thin layers. This may increase the formation of bending
threading dislocations at the interfaces versus half loops, which leads to an increased
probability of annihilation or migration to the edge of the crystal through glide and climb
mechanisms [7,11]. As more SL periods are added beyond the net SL critical thickness,
the in-plane lattice constant continues to relax and approaches that corresponding to the
strain-balanced equilibrium of the wells and barriers. As the MSL relaxes, the marginal
incremental strain of subsequent SL periods is diminished, since the relative strain of
the new layers gradually decreases. These diminishing returns in strain relaxation can
be countered by adding additional MSL stages with compositional steps of the wells
and barriers, so that the increase in the net strain of the new stages corresponds to the
overall relaxation of the previous MSL stage. Alternately, the wells and barriers could
be compositionally graded throughout the MSL to maintain an approximately constant
relative strain of the newly added SL periods to that of the gradually relaxing bulk MSL.
In this work, MSLs with compositionally stepped stages are used, due to reactor control
software limitations and the added complexity of compositional grading during epitaxy
of superlattices.
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In this work, the results are demonstrated for optimizations to device structure and
chip dimensions, as well as the implementation of a novel laser diode structure on a multi-
stage step-graded metamorphic superlattice (MSL). The MSL mitigates some of the issues
that typically arise within MBL materials, such as threading dislocations and interfacial
roughness, while allowing a shorter wavelength compressively strained (CS) quantum
well (QW) to be realized, which exhibit a TE-polarized emission. Additionally, the MSL
may increase the optical design space with materials that allow larger index steps while
maintaining sufficient band offsets for active region carrier confinement.

2. Materials and Methods
2.1. Growth Parameters

The laser diodes presented here were fabricated from material grown by metalorganic
vapor phase epitaxy (MOVPE) using a 6 × 2” close-coupled showerhead reactor. GaAs
(100) substrates were used with on-axis orientation as well as miscut 10◦ to <111>A for the
metamorphic material growths. Complete laser diode structures were grown only on the
miscut wafers.

2.2. Metamorphic GaAsP

MBL and MSL structures were grown on on-axis and 10◦ miscut GaAs substrates.
A linearly graded MBL and an evenly distributed 10-step graded MBL with comparable
nominal phosphorus fractions were grown as a baseline for MBL material quality charac-
terization. Multi-stage MSLs were compared over a range of 4–10 stages and at growth
temperatures ranging from 680 ◦C to 760 ◦C measured by k-type thermocouple at the
reactor susceptor. Photoluminescence (PL) spectroscopy was used to estimate the bandgap
of the GaAsP layers. X-ray diffractometry (XRD) and reciprocal space mapping (RSM) were
used to extract in-plane and out-of-plane lattice constants, tilt, and relaxation for a 4-stage
MSL structure. The surface roughness of the as-grown epitaxial structures was measured
by white light interferometry and atomic force microscopy (AFM). TDD was estimated
using cathodoluminescence (CL).

2.3. Laser Diode Structures

The baseline laser diode structure and MSL-based structure consist of GaAs(P)/InGaAlP-
based materials and are shown schematically in Figure 2 and the relative band offsets for
the baseline structure on GaAs are shown in Figure 3. Indices for these materials have been
described in the literature [12]. In addition to the baseline structure, iterations of that structure
were grown for the optimization of cladding layer thickness and chip dimension. The MSL-
based laser structure used a 4-stage MSL as the virtual substrate and a modified baseline laser
structure consisting of GaAsP/InGaAlP layers that were nominally lattice matched to the
virtual substrate.

Cavity length analysis (CLA) was performed to extract internal properties of the device
material using chips with uncoated facets and lengths ranging from 1.5 to 3.0 mm. Chips
with highly reflective/anti-reflective (HR/AR) facet coatings were then mounted using
AuSn on CuW and tested under continuous wave (CW) operation.

3. Results and Discussion
3.1. Metamorphic GaAsP

The cathodoluminescence surface scans of the linearly graded and 10-step graded MBL,
as well as the 4-stage MSL, are shown in Figure 4. The graded regions were approximately
2.5 µm thick and steps or stages were distributed evenly throughout the grade. Each
sample’s surface composition was approximately GaAs0.82P0.18 based on the PL emission
wavelength. Threading dislocations result in non-radiative recombination and since they
propagate through the growth plane, they are represented by dark spots [13]. The dark
lines are thought to indicate buried misfit dislocations, which run along the {111} glide
planes. Table 1 shows the TDD and surface roughness for each of these three MBLs.
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Table 1. Measured material parameters of MBLs grown by various compositional grading methods.

Linearly-Graded Step-Graded MBL MSL
MBL (10 Steps) (4 Stages)

RMS Roughness (nm) 6.52 5.14 1.73

TDD (cm−2) 1.1 × 106 3.0 × 105 7.1 × 104
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In addition to MBL type, the wafer miscut angle also affects surface roughness and
crosshatching orientation. The crosshatch orientation for the different substrate miscuts is
visible in the cathodoluminescence images in Figure 5 in the form of misfit dislocations.
The standard substrate has orthogonal misfit dislocations, while the material grown on the
miscut substrate has tilted dislocations consistent with the intersection of {111} planes and
the epitaxial growth plane.
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miscut substrate (right).

Photoluminescence measurements indicate that, in addition to gas-phase PH3/V
during growth, the phosphorous incorporation is also dependent on both the growth
temperature and the substrate miscut. Solid-state phosphorus fractions are plotted in
Figure 6 for both substrate orientations over a range of growth temperatures with consistent
PH3/V flows in each growth. In addition, surface roughness is plotted for these samples
in Figure 7. These data demonstrate that surface roughness decreases at elevated growth
temperatures, despite also increasing phosphorus fraction and overall mismatch with the
underlying substrate. The MSL appears to be able to maintain a relatively low surface
roughness, even with large compositional shifts with high-temperature growth.
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Figure 6. As-grown phosphorus fraction of terminal MBL material for various growth temperatures
on on-axis and miscut substrates for 10-step MBLs and 6-stage MSLs.
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Figure 7. Surface roughness 10-step MBLs and 6-stage MSLs for various growth temperatures on
on-axis and miscut substrates.

The in-plane and out-of-plane lattice constants for individual layers of the 4-stage MSL
were extracted from the RSM data shown in Figure 8, and the parameters are summarized
in Table 2. The maps reveal a high intensity substrate peak, four main peaks thought to
correspond to the net material composition of each MSL stage, and eight satellite peaks
corresponding to the wells and barriers of each MSL stage. Each of these layers resolve
as distinct peaks, indicating that the MSL relaxes to a strain-balanced equilibrium in each
stage with a common in-plane lattice constant throughout that stage. In addition to a
reduction in lattice constant, the MSL layers have a measurable tilt in the direction of the
substrate miscut, which is consistent with previous MBL growth studies [14,15].
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Table 2. MSL layer parameters extracted from reciprocal space maps measured with high resolution.

Barrier Well

Estimated
Net P

Fraction

In-Plane
Lattice

Const. (Å)

Out-of-Plane
Lattice

Const. (Å)

Out-of-Plane
Lattice

Const. (Å)

Relative Tilt
to <111>A
(Degrees)

Substrate 0.000 5.653
MSL Stage 1 0.046 5.644 5.571 5.720 0.048
MSL Stage 2 0.085 5.637 5.560 5.711 0.129
MSL Stage 3 0.136 5.626 5.550 5.701 0.219
MSL Stage 4 0.176 5.620 5.538 5.687 0.231

3.2. Laser Diode Structures

The MSL used in this study for the laser diode virtual substrate terminated at an ap-
proximate net composition of GaAs(1−x)Px, where x = 0.04, corresponding to a relaxed lattice
constant of 5.645 Å, based on bandgap estimation from photoluminescence. Cathodolumi-
nescence measurements of the MSL without the laser diode structure indicate a threading
dislocation density of 4 × 104/cm2 and a surface roughness of 1.17 nm RMS was measured
by white light interferometry. TEM measurements show that the QW in the MSL-based
heterostructure was 6.3 nm thick with the InxGa(1−x)P composition estimated at x = 0.487,
corresponding to a compressive strain of 0.17%. TEM micrographs of the substrate and
MSL interfaces indicate an accumulation of defects within the substrate near the MSL
interface, while dislocations were not observed in the MSL cross section (Figure 9).
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respective substrate-MSL interface (right).

The device parameters of the three structures extracted by CLA are summarized in
Table 3. The optimized baseline structure on the standard GaAs substrate incorporates
a thinned p-cladding and longer emission wavelength. The thinner p-cladding reduces
thermal impedance and junction temperature, while the narrower QW bandgap increases
relative band offsets of the separate confinement heterostructure (SCH) and increases
carrier confinement in the QW [4]. With these changes, the optimized structure shows
improvements in ηi, αi, T0, and T1. In the MSL structure, there is an increase in αi, possibly
attributed to additional loss from SL layer interfaces and crystal defects associated with
misfit and threading dislocations from lattice strain relaxation. However, the baseline struc-
ture on the MSL exhibits the highest ηi, T0, and T1, which may lead to improved relative
performance at higher operating temperatures or shorter wavelengths due to enhanced
carrier confinement. QW strain in these lasers determines the emission polarization by
shifting the relative energy of light hole (LH) and heavy hole (HH) bands, which leads to
CS QWs to favor TE polarization from HH transitions and TS QWs to favor TM polarization
from LH transitions [16]. While CS QWs can be used for short wavelengths (<640 nm)
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directly on GaAs substrates, the highest performance has been obtained from employing
TS QWs [17]. This is largely influenced by the inability to reduce emission wavelength
in CS InGaP QWs compositionally beyond the GaAs lattice-matched condition, so short
wavelengths must be achieved using quantum size effects. This leads to very thin CS QWs
at short wavelengths in traditional laser diodes on GaAs substrates. The MSL relaxes this
constraint by allowing CS QWs with lower indium fractions, leading to the realization of
high-performance, thicker QWs with TE laser emissions at shorter wavelengths.

Table 3. Device parameters measured by cavity length analysis and CW performance.

Parameter

Laser Diode Design
Baseline Optimization Baseline on MSL

Internal Quantum Efficiency, ηi 0.900 0.918 0.977
Internal Loss, αi (cm−1) 2.38 1.97 3.96
Transparency Current Density, Jtr (A/cm2) 203.1 186.0 173.5
Characteristic Temperature, T0 (K) 61 77 90
Characteristic Temperature, T1 (K) 221 266 299
Polarization TM TM TE
CW Center Wavelength (nm) 633.6 637.8 639.4
CW Peak PCE (%) 39.0 45.0 35.5

Output power (LI) and PCE curves for 45 µm wide cavity single emitter chips of
each design tested under CW operation are plotted in Figure 10. The optimization design
reaches peak PCE of 45%, which is higher than some of the best commercially available red
laser diodes [18]. Further optimization to facet coating reflectivity may yield additional
increases to PCE. The MSL design is likely to benefit from similar optimizations, possibly
to a greater extent, due to the relatively higher internal loss.
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Figure 10. LI (left) and PCE (right) curves of single-emitter red laser diodes tested under CW conditions.

4. Conclusions

In this work, we demonstrated world class red laser diodes reaching 45% PCE using
an optimized waveguide structure. In addition, high-performance TE emission laser diodes
were realized using a compressively strained QW within a compositionally shifted laser
structure on a MSL-based virtual substrate. The MSL reduced TDD and surface roughness,
allowing for the growth of higher quality materials than typical MBLs. The MSL also
appeared to maintain an advantage in material quality at smaller lattice constants than
other MBLs. This may increase design space for higher bandgap materials, which has the
potential to allow the fabrication of efficient devices while reducing emission wavelengths
in InGaAlP-based red laser diodes more than possible with a traditional GaAs substrate.
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