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Abstract: The article analyzes existing materials and structures with quadratic-nonlinear optical
properties that can be used to generate a difference frequency in the terahertz and sub-terahertz fre-
quency ranges. The principle of constructing a nonlinear optical-radio converter, based on an optical
focon (a focusing cone), is proposed. Based on the assumption that this focon can be implemented
from the metal-organic framework (MOF), we propose a technique for modeling its parameters. The
mathematical model of the process of propagation and nonlinear interaction of waves inside the
focon is based on a simplification of the nonlinear wave equation. Within the framework of the
developed model, the following parameters are approximately determined: the 3D gradient of the
linear refractive index and the function determining the geometric profile of the focon, which provide
a few-mode-based generation of the difference frequency. The achieved theoretical efficiency of radio
frequency generation is at least 1%; the proposed device provides a guiding structure for both optical
and radio signals in contrast to the known solutions.

Keywords: radio photonics; radio-over-fiber; orbital angular momentum; quadratic-nonlinear structure;
difference frequency generation

1. Introduction

One of the main strategic tasks for the development and implementation of new
generation communication networks is the development of new information technologies
that allow increasing the bit-rate of data transmission (up to 1 Tbit/s) and the spectral
efficiency (60 bit/s/Hz) of the used radio frequency channels, as well as the use of ultra-
wideband communication channels (up to 100 GHz), high energy efficiency with ultra-short
network propagation delays up to 1 µs. These modern-day system requirements can be
addressed by improved data processing techniques based on new principles of access to
the physical layer of the network, modulation schemes and channel coding, waveforms,
reception of the information, multiple access and security in communication channels.
Thus, according to one of the pioneer books dedicated to 6G system analysis and vision [1],
which proposes possible ways to implement broadband access in 6G wireless networks, it is
assumed that sub-terahertz radio frequencies will be useful for wireless communication and
scanning in the THz range. In these applications, it is required to ensure the operation of
non-extended radio channels, but with a significant information capacity not only between
subscribers, a subscriber and a device, but also between smart devices.

These channel requirements imply both the use of new modulation formats and
physical layer technologies, which ensure, in particular, the “seamlessness” (absence of
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intermediate operations) of optical-radio conversion, which is especially relevant in sub-
THz and THz systems, where it is very difficult to generate high-frequency radio signals
by electronic devices, and it also seems inefficient to decode a multichannel signal for
subsequent conversion of its components [2–5]. Therefore, to ensure such seamlessness, in
particular, for optical-radio conversion in two-frequency (or wavelengths λ: λ1, λ2) radio
over fiber (RoF) networks transmitting vortex signals (carrying orbital angular momentum,
OAM), a nonlinear converter was developed [2]. However, according to the results of the
simulation of the converter’s parameters [2] and experimental results (see Section 2), the
efficacy of this converter is very low—about 10−16—which obviously is not applicable
(note that we do not use any resonators such as whispering gallery modes (WGM) res-
onator because of complexity of fiber-to-resonator coupling, although it could increase the
converter efficiency). According to our study, this is due to (a) a very small coefficient of
quadratic nonlinearity χ(2) of the ferroelectric crystal used in [2], and it is also (b) due to
radiation losses in the specified crystal because of divergence of the input light beam, which
is associated with the absence of any wave-guiding structures in the scheme proposed
in [2]. The negative impact of these factors can be significantly reduced if the material and
structure for the nonlinear element are properly selected. Thus, the purpose of this article
is to determine the structure and the material for this type of frequency conversion.

Note that a number of papers have been published describing the generation of
high-frequency radio signal by mixing optical waves with close frequencies (so-called pho-
tomixers). They generate difference frequency corresponding to the radio range (subTHz,
THz) due to the interaction of input optical waves in a nonlinear element. However, ac-
cording to publications, in particular [6–8], a THz photomixer consists of two independent
tunable laser sources that provide a difference frequency at the output of the device by
heterodyning beams on a photoconductive receiver, where charge transfer occurs in a
semiconductor material (GaAs is used in the [6–8]). That means the usage of electronic
circuits, which significantly reduces the positive effect achieved, given the frequency of
the discussed radio range, while the proposed solution does not require any additional
electronic equipment. It should be noted that the basic scheme of the photomixer presented
in [6–8] corresponds to the classical RoF scheme, which uses two independent lasers and
which is known to have a significant phase noise—there is a need of phase-noise compen-
sation. Moreover, in contrast to photomixers, the proposed device is supposed to guide
both optical and radio signals, see Section 3.

2. Analysis of Optical Quadratic-Nonlinear Materials and Structures Potentially
Suitable for the Design of a Nonlinear Converter

It was shown in [2] that during the nonlinear interaction of two input light beams in a
quadratic medium, for example, in a lithium niobate (LiNbO3) crystal, an electromagnetic
beam with a frequency equal to a difference between the frequencies of the input signals is
generated (difference frequency generation, DFG). In this case, several physical properties
of the input beams are also transferred to the output beam (conserved), namely, for OAM
carrying input beams with topological charges `1 and `2, respectively, at the output we
obtain OAM signal with `3, which is equal to the difference between the input OAMs:
`3 = |`1 − `2| [2]. This fact arouses interest in further development of the seamless
principle of optical-radio conversion by a nonlinear element, presented in [2].

However, numerical estimates in [2] showed that the generation efficiency η of a vortex
(OAM) radio beam for a nonlinear medium with a length of several millimeters is extremely
low (about 10−16). This efficiency significantly depends on the frequency ratio between the
generated (difference) frequencyω3 and input frequencyω1, i.e.,

η ≈
(
ω3

ω1

)2
, (1)

where ω3 = |ω1 − ω2|. Some causes of this were emphasized in the introduction: a small
value of χ(2) and the absence of a guiding structure.
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Analysis of the other authors results obtained in a similar problem shows that this
scheme is actively studied and successfully tested experimentally. Thus, in [9], the conver-
sion of an OAM signal from the optical to the terahertz spectral region was experimentally
studied using a quadratic-nonlinear element. The relations for the output signal parameters,
in particular, the OAM topological charge (`THz) and the conversion efficiency ηDFG, are
presented as Equations (2) and (3).

`THz = (`OPA1 − `OPA2)
λOPA2 − λOPA1

|λOPA2 − λOPA1|
, (2)

ηDFG
0,l (ω1,ω2) =

∣∣∣x uLG
0,l (r, φ,ωDFG)

∗uDFG(r, φ,ω1,ω2)rdrdϕ
∣∣∣2, (3)

where OPA corresponds to the optical signal, u is the field function, λ is wavelength, and ω
is frequency. In this case, the conversion efficiency, according to [9], significantly depends
on the beam interaction region, but the dependence on the input and output frequencies
ratio, see Equation (1), is not taken into account. The authors of [10,11] also assume that a
quadratic ferroelectric crystal is quite applicable for the process of parametric frequency
generation: terahertz difference frequency, half-frequency, as well as double frequency and
sum-frequency. In this case, the efficiency of the output beam depends on the parameters
of the system and is proportional to the propagation length z:

I2 =
ω4π2

4
β2

2 I2
1 z2 sin c2

[
(k2 − 2k1)

z
2

]
. (4)

The coefficients in Equation (4) are described in [11]. The authors of [12] also present
the results of experimental approbation of the considered principle of frequency transfor-
mation. According to the studies carried out, it was found in [12] that a quadratic-nonlinear
crystal can indeed be used for the considered task; however, the conversion efficiency is
also low—it did not exceed 0.1% of the input radiation intensity.

Having analyzed the published works in the area under consideration [9–12], our
scientific team has also performed an experimental study of this principle of generation
using a periodically poled lithium niobate crystal—PPLN [4,5]—and based on the model
presented in [2] (see Figure 1). In this setup, we used two lasers with output powers of
about 22 dBm, whose signals (at close continuous wavelengths 1550 nm and 1550.8 nm,
respectively) are fed separately to two branches of free-space setup (Figure 1b); one of
the free-space branches has a diffractive optical element (DOE), forming an OAM signal
(namely, a branch with signal at 1550 nm); both optical signals are coaxially (by free-space
beam splitter) focused through a lens on the heated PPLN (T~200 ◦C) and the radio signal
from its output is detected in the radio domain by a waveguide antenna for the mm range
(Figure 1b). It was possible to establish that the quadratic-nonlinear element used actually
provides the generation of a difference frequency even when the phase matching of the
waves is performed only approximately—by custom PPLN structure with poling period
about 800 µm that corresponds to the desired output frequency—100 GHz; PPLN has
size 10 × 2 × 2 mm (Figure 1a) and is doped by MgO to improve efficacy. However, the
intensity of the output radio signal remains at the noise level (about −55 dBm), which
significantly limits the practical usability of the considered principle. We should note that
in all analyzed papers on this topic, the authors make the same conclusion: the efficiency
of the difference frequency generation using this type of crystal is unacceptably low. Our
theoretical approach is described in detail in [2]; in any case, the results of our experiment
are not the subject of this article.

At the same time, the physical reasons for this low efficiency, generally speaking, have
not been studied in detail, but only assumptions have been put forward, which, moreover,
differ from work to work. The general assumptions of the authors who published the results
of independent studies are as follows: firstly, existing ferroelectric crystals have a small
value of χ(2), secondly, optical beams arriving at the input end of the crystal have a diver-
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gence, inverse proportional to the radiation wavelength. This leads to significant decrease
in the beam intensity—the diffraction divergence causes a decrease in the optical pump
power flux, which reduces the efficiency of difference frequency generation. Moreover,
one can list additional factors such as (1) the absence of a resonant propagation condition
for the generated radio frequency; (2) violation of the few-mode propagation regime for
the input optical radiation inside the crystal (this is in addition to the divergence). If the
high-order modes are excited, the mode purity is violated and therefore efficacy decreases.

Figure 1. Photos of the fastening system (a–c) of a ferroelectric lithium niobate crystal on an experi-
mental setup using a specialized heating interface and free-space setup (b), designed to increase the
efficiency of the crystal (the heating driver is not shown; heater (a) is open); (c) measurement setup
including both optical and radio spectrum analyzers and a light source (laser).

Indeed, ferroelectric crystals, such as LiNbO3, LiTaO3, KNbO3, KTaO3, PbTiO3, and the
like, have such advantages as [13]: (1) low dependence of light transmission on frequency
in the visible and near-IR radiation; (2) low cost and high availability. However, at the same
time, they have the following disadvantages: (1) the value of the nonlinear susceptibility
χ(2), defining the efficiency of nonlinear processes, is in the range ∼=(0.5 . . . 45)’10−12 m/V,
i.e., it is very small in comparison with other quadratic-nonlinear materials that exist today;
(2) these materials cannot be made in the form of a long waveguides similar to optical fiber,
which will complicate the interface of the converter with fiber optic communication lines.

The small value of χ(2) in ferroelectric crystals is conditioned by the physical nature
of nonlinearity—it is associated with electronic polarization, and, accordingly, with the
so-called electronic nonlinearity [14,15]. This mechanism is caused by the distortion of the
outer electron cloud of atoms, ions, and molecules compared to their unperturbed state,
and it has a very fast response time (<10−15 s) but a low χ(2). In [16], it is shown that the
listed mechanism of nonlinearity can be enhanced by spatial redistribution of electrons
due to a spatially modulated light flux, which is the characteristic of spatially resonant
structures, such as photonic crystal fibers. However, the materials listed above have low
values of χ(2), which means that they will not allow one to obtain an efficient frequency
transformation.

Regarding the materials with higher nonlinearity coefficients, one can mention organic
materials [17], in which the value of χ(2) can be in the range ∼=10−6 . . . 10−7 m/V, which
is relatively large. However, the mechanism for achieving such values of χ(2) refers to
molecular reorientation with a very big establishment time about ~10−10 up to 10−3 s, i.e.,
the greater the value of χ(2) that can be reached, the longer one has to wait until the material
enters the nonlinear regime, i.e., the longer the molecule, the greater the nonlinearity
achieved, but also the longer this molecule turns. Therefore, the authors of studies in this
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area focus not only on the values of the coefficients obtained but also on the dynamics of
the observed processes. In addition, this class of materials exhibits a significant dependence
of light transmission on its physical state and condition, for example, on humidity. There is
also a significant oscillating dependence on frequency in the visible and near-IR radiation.

Nevertheless, in [17], it is said that these materials can be used to generate, for example,
a difference frequency in the case when this is not associated with the signal modulation
but is necessary only to obtain the indicated radio emission (in other words, when one
wants to generate radio carrier frequency). The authors of [17] also show that χ(2) depends
significantly on the ratio of the molecular axis and the electric intensity vector of the input
light field, and it can be found through relation Equation (5).

χ
(2)
kkk = N flocalβ

e f f
kkk = N flocal

〈
cos3 θkz

〉
βzzz, (5)

where βzzz(−2ω;ω,ω) =
ω4

eg

(ω2
eg−4ω2)(ω2

eg−ω2)
β0 (see [17] for details).

From the point of view of the problem under consideration, in addition to the long
time of the nonlinear regime establishment, a significant drawback of these materials is
also the impossibility of their implementation in the form of extended waveguides in the
form of fiber optic structures.

An interesting subclass of the considered category of materials is the so-called metal-
organic frameworks (MOF) [18–21]. In MOFs, not only the organic filler is responsible
for the macroscopic properties (see [17]), but also the metal structure, which, besides the
structure strength (which was laid in the original idea of developing the MOF), can also
form a field potential when irradiated with an electromagnetic field of the corresponding
frequency range [18,22]. Strictly speaking, as we know, there are no results of experimental
studies on the effect of the metal frame that comprises the MOF on the possible generation
of plasmon field effects, which affects the macroscopic optical properties of the material.
It should be noted that the nonlinear properties of MOF structures are studied quite
intensively in both theoretical [23] and experimental [24] ways. For example, in [25],
research is primarily focused on the design of a molecule that provides the required
nonlinear properties.

According to publications [19,21], MOFs can be used to form an optical quadratic
nonlinearity in problems of generating, for example, the second harmonic:

I2ω =
32π3ω2s2θ2ω

c3

∣∣∣e2ωχ(2)e2
ω

∣∣∣2 I2
ω∞

(
χ(2)

)2
I2
ω, (6)

where the intensity of the second harmonic I2ω is proportional to (χ(2))2. The main properties
of MOFs from the point of view of the problem under consideration include the following:

(1) Low dependence of light transmission on frequency in the visible and near-IR re-
gion [17], i.e., the transmission coefficient is almost constant in this frequency range;

(2) The χ(2) is in the range ∼=10−3 . . . 10−9 m/V, which is by several orders of magnitude
higher than in ferroelectric crystals;

(3) Nonlinear regime establishment time is ~10−14 up to 10−3 s (the spread is very
significant because the time depends significantly on the influence of the metal frame);

(4) The properties of MOF can be controlled by an external field/potential;
(5) MOFs cannot be made in the form of extended guides/fiber optic structures.

In the framework of the considered problem, MOF under certain conditions can be
used as the basis of a quadratic-nonlinear element. Namely, in the case of a decrease in the
nonlinear regime establishing time (to values of 10−14–10−13 s) due to the use, for example,
of plasmon effects. There are many varieties of MOFs designed for both nonlinear optics
and microwave radiation; the proper choice of MOF structure is a subject for further study;
MOFs for nonlinear optics are described, for example, in [26].
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Another option for constructing a quadratic-nonlinear element with properties suitable
for the problem being solved is the use of a photonic-crystal fiber (PCF). It should be
mentioned that PCFs have the widest range of macroscopic optical properties: in some cases,
their nonlinearity is reduced to zero due to the propagation of the light field in areas filled with
air [16]; in other cases, they obtain a significant macroscopic nonlinearity [16,27–31] achieved,
for example, by channeling the light field in regions of ultra-small diameter, which provides
a significant increase in the intensity and a corresponding increase in the effective nonlinear
response. As an example, this option is used for spectrum broadening by the interaction of
nonlinearity on short pulses (with durations of ~10−12 s).

The results concerning the quadratic nonlinearity in PCF have been published
widely [27–31]. So, in [29], it is said that χ(2) can be in the range ∼=10−3 . . . 10−10 m/V,
which many times exceeds the corresponding values for ferroelectric crystals. There are
additional mechanisms for obtaining nonlinearity [27,28] associated with injected carriers,
which are put into operation with a nonlinear shift in the photonic bandgap [27]. At the
same time, this mechanism is inherently akin to electronic nonlinearity, which means that
it is characterized by a short establishment time. Therefore, in quadratic-nonlinear PCFs
constructed in the above manner, one can expect significant χ(2) along with short entry
times into the specified regime. As we know, there is no published data on the dynamic
parameters of the nonlinear regime of PCF. It is also obvious that PCFs are waveguiding
structures, which is undoubtedly of interest for the problem being solved.

It is mentioned in [30,31] that quadratically nonlinear PCFs can be successfully used to
generate the second harmonic and difference frequency [32], including the THz range [33].
However, if a high nonlinearity is achieved by spreading the input light beam over high-
intensity narrow light “filaments”, then this will actually lead to multipole [34] generation
of the radio frequency wave and, quite possibly, will distort the information being carried.
Therefore, PCFs can potentially be used for the problem of square-nonlinear generation of
the RF difference frequency, but the considerations presented above will require optimiza-
tion of the PCF structure to reduce the distortion of the generated signal, as shown in the
above-mentioned papers. The main properties of the considered nonlinear materials are
summarized in Table 1.

Table 1. Comparison of the considered nonlinear materials.

Nonlinear
Material/Structure χ(2) Value, m/V Nonlinear

Response, s

Ability to
Manufacture Long Guiding

Structures, Focons and/or
Structures with

Refractive
Index Gradient

Note

Ferroelectric
crystals (PPLN, etc.)

∼=(0.5 . . . 45) × 10−12 <10−15 Waveguides are made in chip form Well-known technology
Organic materials

(e.g., DAST)
∼=10−6 . . . 10−7 10−10 . . . . 10−3 Possible Widely used for THz

generation

Metal-organic
frameworks—MOF 10−3 . . . 10−9 10−14 . . . . 10−3 Possible

Potential
usage of

plasmon effects
Photonic crystal

fibers 10−3 . . . 10−10 ∼=10−15
Difficult; it is

necessary to avoid multipole wave
addition

Usage of
photonic bandgaps

Thus, according to the presented discussion of materials and structures with quadratic-
nonlinear optical properties, it can be concluded that MOFs and/or PCFs can be used for
the problem being solved. In the first case, i.e., for MOF, one can either use the parameters
of some known structure (material) to develop a non-linear element for DFG or study the
effect of a metal frame and thereby optimize MOF parameters. In the second case, i.e., for
PCFs, it is necessary to take into account the properties of the photonic-crystal structure that
determine the mechanism of nonlinearity and, accordingly, the mechanism for generating a
radio wave, and generally speaking, it is necessary to optimize the PCF’s nonlinearity for
the problem under consideration.
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3. Proposed Conversion Device and Formulation of the Problem of Modeling
Its Parameters

As can be seen from the discussion in Section 2, the simplest solution is the use of
MOF, as presented in [21]. In this regard, to minimize losses and increase the efficiency of a
radio-photonic conversion device designed to generate a radio frequency, it is necessary
to construct a nonlinear element in the form of a guiding structure that retains resonant
properties for both input optical and output radio radiation. This can be achieved by
changing the diameter of said guided structure D(z) along the propagation axis z as in
horn antenna or focon. In this case, for the input optical radiation (λ1, λ2), it is desirable
to maintain a few-mode (with the number of modes of the order of 5, which corresponds
to low-order LP modes in weakly guiding fibers) propagation along the entire length L
of the nonlinear element. Or, in any case, to optimize the parameters of the nonlinear
element so that the few-mode propagation regime for the input radiation is optimally
maintained (i.e., there is no high-order mode excitation or no significant mode coupling).
This can be achieved by changing the radial profile of the refractive index of the material
along the length of the nonlinear element, i.e., providing the corresponding refractive index
profile n(z,r). Note that by “(quasi) single-mode” we mean the OAM mode (within the
scalar approximation it corresponds to a set of linearly polarized (LP) modes containing
angular exponent exp(i`ϕ), and each of these modes is a superposition of degenerated
transverse modes [35]), so generally speaking, we are talking about few-mode regime. So,
the proposed device, concerning the analog [2], is a focon—a guiding structure designed
to guide radiation in a given direction. The use of a focon will make it possible to avoid a
decrease in the radiation intensity when it is coupled from the fiber, in contrast to PPLN in
the scheme, described in [2], which entailed a decrease in the efficiency of the nonlinear
effect and, consequently, the transformation process. In addition, the proposed device
is designed to provide a quasi-single-mode propagation mode inside the focon, due to
a specially selected refractive index profile n(r, z) and a function of changing the focon
radius f (r, z) from the coordinate z. This design will avoid dark areas because they are not
involved in the conversion which means that this will also improve the efficiency of the
proposed device.

Thus, the proposed radio-photonic conversion device should have the following
structure (see Figure 2). Optical radiation is supplied to its input at two close wavelengths
(e.g., 1550 nm and 1550.8 nm), the difference of which (~0.8 nm) corresponds to the
generated radio wave of frequency about 100 GHz. Both input optical wavelengths should
be fed through a few-mode fiber (FMF)—step-index fiber with relatively large core diameter
about 16 µm. The connection between fiber and the focon can be provided by optical glue.
The output part of this radio photonic device must have a substantially larger diameter
than the input part, which is necessary to ensure effective resonant properties for the
generated radio wave. Since the relationships that interconnect the geometric parameters
of the guiding structure with the mode wavelength are linear, we can estimate:

Dout

Din
≈ γ

Λ
λ

, (7)

where Λ is the wavelength of the generated radio wave, λ is one of the input optical
wavelengths and γ is a proportionality factor. Note that relation Equation (7) shows only
the interdependence between the parameters but not the exact values. In order to obtain
precise values, we provide a simulation of the focon taking into account its geometric and
optical parameters (see Section 4).

Therefore, we can consider the nonlinear element as a focon, whose geometric profile
D(z) can either be a continuously increasing function or have a minimum (as shown in
Figure 2) in the case of a significant inlet diameter. Such a focon can be made by MOF. The
design of the focon parameters is reduced to find D(z) and n(z,r) with known λ1, λ2, χ(2),
Din, Dout, and focon length L provided that the amplitude of the output radio wave AΩ
is above a given threshold A*: AΩ ≥ A*. An additional physical condition that ensures
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AΩ ≥ A*, as mentioned above, is the requirement to maintain a quasi-single-mode regime
for input radiation at length H, which in the limit H→ L. Note that if the focon is made
of the PCF, the parameters of the PCF structure should also be included in initial design
parameters, since the PCF’s nonlinearity cannot be replaced by the averaged χ(2). From
a technological point of view, for the PCF-based focon manufacture, one can modify a
photonic lantern technology (applied for PCF in, e.g., [36]) taking to account the nonlinear
properties of the PCF; however, this problem requires a separate study and is beyond the
scope of this article.

Figure 2. An illustration of the structure of the proposed radio-photonic conversion device that
provides the generation of differential radio signal when optical radiation is supplied to the input at
two close wavelengths.

Based on the proposed device and the design parameters, we need to model the
electric field strength for the input (with indices 1 and 2) and output (3) waves to determine
the spatial distribution of the refractive index of the focon and its geometric profile. We
introduce the following parameters:

- For the focon profile, one can write x2 + y2 = r2 = f1(z), and let f1(z) be a smooth function.
- n(z, r) is the linear refractive index for r2 < f1(z) inside the focon. In this case, we

will assume that n(r, z) = n0 + ∆n(r, z), and ∆n(r, z) determines the gradient of the
refractive index, and in relative representation ∆n(r, z) is the same for each of the
waves: n(r, z) = n0 + θ(r, z)n0 = n0(1 + θ(r, z)), where n0 is initial (unperturbed by
the gradient) refractive index. Thus, the undetermined function for all waves is θ(r, z),
and, as the results of similar studies presented in [37–40] show, θ(r, z) most likely
will not exceed a few percent of n0 (1–10%). For definiteness, we set: |θ(r, z)| ≤ 0, 1 ·
n0θ(r, z). Note that the function θ(r, z)must satisfy some obvious requirements, for example,
it must be continuous and monotonic; such requirements are dictated by the condition of
focon’s physical realizability. In this way, n(r, z) = n0 +∆n(r, z) = n0 + θ(r, z)n0.

- The parameter χ(2) can be considered homogeneous over the focon volume, since it
changes slightly in the presence of a linear refractive index gradient. This assumption
is due to the fact that the effect of the gradient of the linear refractive index on the
phase of the signal during the interference process is much more significant than the
effect of a change on the nonlinear process (see below). In other words, when the
linear part of the refractive index changes, its nonlinear part undergoes proportional
changes, which is, however, very insignificant. We also neglect the dispersion of χ(2)

for the considered waves according to [41].
- The refractive index outside the focon n(r, z) = ncl for r2 > f1(z), where we assume

that ncl = 1.46 and index “cl” stands for “cladding”.
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4. Modeling the Parameters of the Proposed Device

The propagation of an electromagnetic wave in a nonlinear medium is described by
the following equation:

∇2
→
E − ε

c2
∂2
→
E

∂t2 =
1
c2

∂2
→
P NL
∂t

, (8)

where
→
E(x, y, z, t) is the vector of the electric field strength, c is the speed of light in vacuum,

ε is the permittivity of the medium, and
→
P NL(x, y, z, t) is the nonlinear polarization vector.

By analogy with [2] and using the technique described in [41], to obtain a solution
Equation (8), one should, firstly, use the separation of variables, and secondly, apply the
Fourier transform of the given functions in the time domain. The latter allows us, in
Equation (8), to get away from time derivatives by performing the following replacement,
and thus, the d/ dt→ jωe Fourier image of the solution Equation (8) will be written in
the form:

Ẽ(x, y, z,ω) = Ã(z,ω)F̃(x, y) exp(jβz) ≡ E(r, ϕ, z,ω) = A(z,ω)F(r, ϕ) exp(jβz), (9)

where we omit the symbol ~ in the further notation for simplification. Now we change the
Cartesian system to cylindrical coordinates (we consider the focon to be a body of rotation);
ω is the radiation frequency, β = ω

c
√

ε, A(z,ω) is a function describing the longitudinal
(along the focon, Figure 2 dependence of E, and F(r, ϕ) is the transverse component of the
vector E. In addition, in Equations (8) and (9), the indices 1, 2 and 3 related to the input (1
and 2) waves and the output Equation (3) wave, respectively, since the above expressions
for all three waves appear to be identical.

Next, we find the derivative of Equation (9) with respect to coordinates, and substitute
the resulting relation into Equation (8), taking into account the properties of the Fourier
transform. Following [37], we neglect the second derivatives with respect to coordinates to
obtain the final equation, since we assume that functions A(z,ω) and F(r, ϕ) change much
slower than eiβz. Now, if we divide β into components depending on the basic physical
processes under consideration, we can obtain two equations of the form:

dA
dz

= j[βΦ(ω)− β0] · A and
dF(q)

dr
= j[βΦ(ω)− β0] · F(q), (10)

where βΦ(ω) determines the additional phase incursion of the wave under the influence
of the determining physical process. So, for example, if a light wave propagates in an
extended optical path, then the determining physical process will be chromatic dispersion.
In this article, we assume that there are no dispersion distortions during the propagation of
waves inside the focon since we consider two close wavelengths. On the contrary, quadratic-
nonlinear changes in the refractive index have significant influence, characterized by χ(2),
when the waves propagate along the focon, and the interference of waves during transverse
distribution, which ensures the addition of re-reflecting waves into a single mode. However,
the function F in (9) also has a z-axis dependence; moreover, as shown in [37–39], to obtain
a proper solution, one should divide the entire focon into transverse layers of width ∆z
where ∆z→ 0 (see Figure 3). Within each layer, the “transverse” process can be considered
independent of z, as noted in the second equation in (10) and justified in [37–39]. Here,
index q is the counter of such layers. The dependence of F on z is ensured by the fact that
the output of each qth layer is the input of each (q + 1)th layer. In addition to previous
assumptions, we also neglect the Rayleigh losses inside the focon since it has quite short
length. The parameter β0 in (10) determines the phase incursion of a wave in a medium
with an initially unperturbed refractive index (in the absence of nonlinear processes and
any refractive index gradient), i.e., β0 = ω

c n0.
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Figure 3. Illustration of the principle of splitting the focon into short layers, q ∈ [1, Q], Q is total
number of layers, z = ∆z · q.

We make the following assumption: there is no re-reflection (and hence interference)
between the layers in the longitudinal direction, despite the difference in the refractive
index between the layers. This is because the focon has a smooth gradient and does not
consist of layers with a hop in the refractive index at the boundary. Moreover, when ∆z→ 0,
the increment of the refractive index between the layers is ∆n→ 0.

Further, if we take into account that in a quadratic-nonlinear medium
→
P NL = χ(2)E ·

→
E ,

i.e., PNL = χ(2)|E|2, and make mathematical transformations similar to the technique [41]
for the function A, and represent the function F in the form of counter-propagating waves
F↑ (up) and F↓ (down) relative to the focon axis, then for each of the waves (1, 2 and 3),
Equation (10) will take a form that is suitable for numerical solution:

dA(q)
1

dz = ε0χ(2)ω1
2

2c2

[(
µ
(q)
11

∣∣∣A(q)
1

∣∣∣+ 2 ∑
m 6=1

µ
(q)
1m

∣∣∣A(q)
m

∣∣∣)A(q)
1 + 2µ(q)123 A(q)

2
∗A(q)

3 exp(j∆βz) exp(j∆

Photonics 2022, 9, x FOR PEER REVIEW 11 of 18 
 

 

for the function A, and represent the function F in the form of counter-propagating waves 


F  (up) and 


F  (down) relative to the focon axis, then for each of the waves (1, 2 and 3), 

Equation (10) will take a form that is suitable for numerical solution: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2) *1 1

0 11 1 1 1 123 2 32
1

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +      

  
  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2) *2 2

0 22 2 2 2 213 1 32
2

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +      

  
  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2)3

0 33 3 3 3 312 1 22
3

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +  −  −    

  
  

( )

( ) ( ) ( ) ( )
,

, ,1, ( )

1, , 11, 1,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and

( )

( ) ( ) ( ) ( )
,

, ,1, ( )

1, , 11, 1,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

( )

( ) ( ) ( ) ( )
,

, ,2, ( )

2, , 22, 2,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and 

( )

( ) ( ) ( ) ( )
,

, ,2, ( )

2, , 22, 2,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

( )

( ) ( ) ( ) ( )
,

, ,3, ( )

3, , 33, 3,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and 

( )

( ) ( ) ( ) ( )
,

, ,3, ( )

3, , 33, 3,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

 

 

 

 

 

(11) 

 

 

 

 

 

 

 

 

on each step Δz with number q. In this case, due to the fact that the function F was divided 

into two components (up and down), then solution Equation (9) should also take the cor-

responding form (for each of the waves): 

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,( )

, , ,
1 1

, ,ω ( )exp β ( )exp β ( )exp β .
l lK K

l q l q qq

r z r z r z
l k

E r z F r j r F r j r A z j z
 

= =

 
= + − − 
  
   (12) 

In Equations (11) and (12), we use the following designations: 


11 , 


22 , 


33 , 


12 , 


13 , 


21 , 


23 , 


13  and 


32 are the overlap integrals between the corresponding waves (

iv


 for each pair of ith and vth modes), while we assume that 
 = 

12 21 , 
 = 

13 31  and 

 = 
23 32 ; 123 , 


213  and 


312 – overlap integrals of all three waves: 

 =  = 
123 213 312 ; pa-

rameters 
 = + −

0,3 0,2 0,1 , where 


0 ,i , are determined for the corresponding frequen-

cies ωi and unperturbed values n0,i at these frequencies. The factor exp( )j   in Equation 

(11) is determined by the difference of the topological charges (an integer) ℓi of the vortex 

beams for each of the waves and represents the projection of the OAM in the direction of 

propagation [2–5]; it is determined by the dependence of the electromagnetic field of the 

vortex beam on the azimuthal angle φ. If the waves have no OAM, then the specified 

multiplier is not taken into account, i.e., exp( ) 1j  =  when  = 0 . Otherwise, 

 = − −
1 2 3  by analogy with [2]. The parameter 


( )q

l  is the wavenumber of the qth 

layer (see Figure 3), which has multipath interference properties. Each layer can be con-

sidered as a multibeam interferometer—a Fabry–Perot interferometer (FPI). However, 

ϕ)

]

dA(q)
2

dz = ε0χ(2)ω2
2

2c2

[(
µ
(q)
22

∣∣∣A(q)
2

∣∣∣+ 2 ∑
m 6=2

µ
(q)
2m

∣∣∣A(q)
m

∣∣∣)A(q)
2 + 2µ(q)213 A(q)

1
∗A(q)

3 exp(j∆βz) exp(j∆

Photonics 2022, 9, x FOR PEER REVIEW 11 of 18 
 

 

for the function A, and represent the function F in the form of counter-propagating waves 


F  (up) and 


F  (down) relative to the focon axis, then for each of the waves (1, 2 and 3), 

Equation (10) will take a form that is suitable for numerical solution: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2) *1 1

0 11 1 1 1 123 2 32
1

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +      

  
  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2) *2 2

0 22 2 2 2 213 1 32
2

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +      

  
  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2)3

0 33 3 3 3 312 1 22
3

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +  −  −    

  
  

( )

( ) ( ) ( ) ( )
,

, ,1, ( )

1, , 11, 1,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and

( )

( ) ( ) ( ) ( )
,

, ,1, ( )

1, , 11, 1,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

( )

( ) ( ) ( ) ( )
,

, ,2, ( )

2, , 22, 2,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and 

( )

( ) ( ) ( ) ( )
,

, ,2, ( )

2, , 22, 2,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

( )

( ) ( ) ( ) ( )
,

, ,3, ( )

3, , 33, 3,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and 

( )

( ) ( ) ( ) ( )
,

, ,3, ( )

3, , 33, 3,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

 

 

 

 

 

(11) 

 

 

 

 

 

 

 

 

on each step Δz with number q. In this case, due to the fact that the function F was divided 

into two components (up and down), then solution Equation (9) should also take the cor-

responding form (for each of the waves): 

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,( )

, , ,
1 1

, ,ω ( )exp β ( )exp β ( )exp β .
l lK K

l q l q qq

r z r z r z
l k

E r z F r j r F r j r A z j z
 

= =

 
= + − − 
  
   (12) 

In Equations (11) and (12), we use the following designations: 


11 , 


22 , 


33 , 


12 , 


13 , 


21 , 


23 , 


13  and 


32 are the overlap integrals between the corresponding waves (

iv


 for each pair of ith and vth modes), while we assume that 
 = 

12 21 , 
 = 

13 31  and 

 = 
23 32 ; 123 , 


213  and 


312 – overlap integrals of all three waves: 

 =  = 
123 213 312 ; pa-

rameters 
 = + −

0,3 0,2 0,1 , where 


0 ,i , are determined for the corresponding frequen-

cies ωi and unperturbed values n0,i at these frequencies. The factor exp( )j   in Equation 

(11) is determined by the difference of the topological charges (an integer) ℓi of the vortex 

beams for each of the waves and represents the projection of the OAM in the direction of 

propagation [2–5]; it is determined by the dependence of the electromagnetic field of the 

vortex beam on the azimuthal angle φ. If the waves have no OAM, then the specified 

multiplier is not taken into account, i.e., exp( ) 1j  =  when  = 0 . Otherwise, 

 = − −
1 2 3  by analogy with [2]. The parameter 


( )q

l  is the wavenumber of the qth 

layer (see Figure 3), which has multipath interference properties. Each layer can be con-

sidered as a multibeam interferometer—a Fabry–Perot interferometer (FPI). However, 

ϕ)

]

dA(q)
3

dz = ε0χ(2) Ω2

2c2

[(
µ
(q)
33

∣∣∣A(q)
3

∣∣∣+ 2 ∑
m 6=3

µ
(q)
3m

∣∣∣A(q)
m

∣∣∣)A(q)
3 + 2µ(q)312 A(q)

1 A(q)
2 exp(−j∆βz) exp(−j∆

Photonics 2022, 9, x FOR PEER REVIEW 11 of 18 
 

 

for the function A, and represent the function F in the form of counter-propagating waves 


F  (up) and 


F  (down) relative to the focon axis, then for each of the waves (1, 2 and 3), 

Equation (10) will take a form that is suitable for numerical solution: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2) *1 1

0 11 1 1 1 123 2 32
1

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +      

  
  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2) *2 2

0 22 2 2 2 213 1 32
2

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +      

  
  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
(2)3

0 33 3 3 3 312 1 22
3

2 2 exp exp
2

q
q q q q q q q q

m m
m

dA
A A A A A j z j

dz c 

   
=    +  +  −  −    

  
  

( )

( ) ( ) ( ) ( )
,

, ,1, ( )

1, , 11, 1,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and

( )

( ) ( ) ( ) ( )
,

, ,1, ( )

1, , 11, 1,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

( )

( ) ( ) ( ) ( )
,

, ,2, ( )

2, , 22, 2,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and 

( )

( ) ( ) ( ) ( )
,

, ,2, ( )

2, , 22, 2,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

( )

( ) ( ) ( ) ( )
,

, ,3, ( )

3, , 33, 3,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   and 

( )

( ) ( ) ( ) ( )
,

, ,3, ( )

3, , 33, 3,
β β

l q

l q q l qq

l r z

dF
j F j F

dr



 
= − +   

 

 

 

 

 

(11) 

 

 

 

 

 

 

 

 

on each step Δz with number q. In this case, due to the fact that the function F was divided 

into two components (up and down), then solution Equation (9) should also take the cor-

responding form (for each of the waves): 

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,( )

, , ,
1 1

, ,ω ( )exp β ( )exp β ( )exp β .
l lK K

l q l q qq

r z r z r z
l k

E r z F r j r F r j r A z j z
 

= =

 
= + − − 
  
   (12) 

In Equations (11) and (12), we use the following designations: 


11 , 


22 , 


33 , 


12 , 


13 , 


21 , 


23 , 


13  and 


32 are the overlap integrals between the corresponding waves (

iv


 for each pair of ith and vth modes), while we assume that 
 = 

12 21 , 
 = 

13 31  and 

 = 
23 32 ; 123 , 


213  and 


312 – overlap integrals of all three waves: 

 =  = 
123 213 312 ; pa-

rameters 
 = + −

0,3 0,2 0,1 , where 


0 ,i , are determined for the corresponding frequen-

cies ωi and unperturbed values n0,i at these frequencies. The factor exp( )j   in Equation 

(11) is determined by the difference of the topological charges (an integer) ℓi of the vortex 

beams for each of the waves and represents the projection of the OAM in the direction of 

propagation [2–5]; it is determined by the dependence of the electromagnetic field of the 

vortex beam on the azimuthal angle φ. If the waves have no OAM, then the specified 

multiplier is not taken into account, i.e., exp( ) 1j  =  when  = 0 . Otherwise, 

 = − −
1 2 3  by analogy with [2]. The parameter 


( )q

l  is the wavenumber of the qth 

layer (see Figure 3), which has multipath interference properties. Each layer can be con-

sidered as a multibeam interferometer—a Fabry–Perot interferometer (FPI). However, 

ϕ)

]
dF1,↑

(l,q)

dr = j
(
β
(q)
l − β1,r,z

)
F1,↑

(l,q) + j<(q)
1

∣∣∣F1,↓
(l,q)
∣∣∣ and

dF1,↓
(l,q)

dr = j
(
β
(q)
l − β1,r,z

)
F1,↓

(l,q) + j<(q)
1

∣∣∣F1,↑
(l,q)
∣∣∣

dF2,↑
(l,q)

dr = j
(
β
(q)
l − β2,r,z

)
F2,↑

(l,q) + j<(q)
2

∣∣∣F2,↓
(l,q)
∣∣∣ and

dF2,↓
(l,q)

dr = j
(
β
(q)
l − β2,r,z

)
F2,↓

(l,q) + j<(q)
2

∣∣∣F2,↑
(l,q)
∣∣∣

dF3,↑
(l,q)

dr = j
(
β
(q)
l − β3,r,z

)
F3,↑

(l,q) + j<(q)
3

∣∣∣F3,↓
(l,q)
∣∣∣ and

dF3,↓
(l,q)

dr = j
(
β
(q)
l − β3,r,z

)
F3,↓

(l,q) + j<(q)
3

∣∣∣F3,↑
(l,q)
∣∣∣

(11)



Photonics 2022, 9, 417 11 of 17

on each step ∆z with number q. In this case, due to the fact that the function F was divided
into two components (up and down), then solution Equation (9) should also take the
corresponding form (for each of the waves):

E(q)(r, z,ω) =

[
Kl

∑
l = 1

F̃↑(l,q)(r) exp
(

jβr,zr
)
+

Kl

∑
k = 1

F̃↓(l,q)(r) exp
(
−jβr,zr

)]
A(q)(z) exp

(
−jβr,zz

)
. (12)

In Equations (11) and (12), we use the following designations: µ11, µ22, µ33, µ12, µ13,
µ21, µ23, µ13 and µ32 are the overlap integrals between the corresponding waves (µiv for
each pair of ith and vth modes), while we assume that µ12 = µ21, µ13 = µ31 and
µ23 = µ32; µ123, µ213 and µ312—overlap integrals of all three waves: µ123 = µ213 = µ312;
parameters ∆β = β0,3 + β0,2 − β0,1, where β0,i, are determined for the corresponding
frequenciesωi and unperturbed values n0,i at these frequencies. The factor exp(j∆
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l  is the wavenumber of the qth 
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sidered as a multibeam interferometer—a Fabry–Perot interferometer (FPI). However, 

ϕ) in
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3 by analogy with [2]. The parameter β(q)l is the wavenumber
of the qth layer (see Figure 3), which has multipath interference properties. Each layer can
be considered as a multibeam interferometer—a Fabry–Perot interferometer (FPI). However,
due to the fact that the medium is nonlinear, β(q) depends on how many re-reflections
have already occurred in this qth layer; here l is the re-reflection counter, l ∈ [1, Kl ], Kl
in the ideal FPI is equal to ∞, but in this case it is determined by the number of effective
re-reflections and is calculated through the reflection coefficient of the focon profile. For
each of the waves, we will assume that:

β
(q)
l = β

(q)
M + ∆B(q)l, β(q)MD = π

2
√

f1(∆zq)
〈n(r, ∆zq)〉|r ,

∆B(q) =
2πχ(2)

(√
P(q)

1+
√

P(q)
2+
√

P(q)
3

)
λ max(µ(q)i,m),

(13)

where β(q)MD is the initial (unperturbed) wave number of the q-th FPI with the averaged
refractive index over the radius. This leads to the fact that the calculation of F(l,q) is
performed for a certain FPI refractive index averaged over the radial gradient, and thus
allows one to obtain only an estimations, but, on the other hand, ensures avoidance of the
recurrence. Moreover, we apply this approach at the first iteration of the calculation; when
the main parameters have already been estimated, in particular, an approximate value
_
n (r, z) has been obtained, then for the calculation of β(q)MD in Equation (13) it is possible to
use the value

_
n (r, z) found at the previous iteration. The parameter ∆B in Equation (13)

determines the nonlinear contribution from the transmitted radiation, and is written by
analogy with [38,39], P(q)

1, P(q)
2 and P(q)

3 are the peak powers of the waves at the point

∆z · q, which at the first iteration can be calculated as P(q) =
∣∣∣E0

(q)
∣∣∣2 for each of the waves.

The parameter βr,z in (12) is defined as βr,z = ω·n(r,∆zq)
c , but for the first iteration it is

determined as βr,z = ω
c 〈n(r, ∆z · q)〉|r. To calculate the coupling coefficient of interfering

waves <i, i = 1, 2, 3, similarly to [42], we will use the relation:

<(q)
i
∼=

π

λi

∣∣∣∣( 〈ni(r, ∆z · q)〉|r
)2
− n0,i

2
∣∣∣∣ · µ(q)ii, (14)

according to which each of the waves interferes only with itself. In Equation (14), the index
i of the refractive index relates to the corresponding frequency (wavelength).
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The number of effective re-reflections in the FPI can be determined as [42,43]: Kl =
π·√ρz
(1−ρz)

where ρ(q) is the reflection coefficient of the focon profile at arbitrary point z (due to reflection from

the interface between media with different refractive indices): ρ(q) =

∣∣∣n(r =
√

f1(∆z·q),z
)
−ncl

∣∣∣
n
(

r =
√

f1(∆z·q),z
)
+ncl

. The

overlap integrals µ for the considered waves (for each pair of i-th and v-th modes) are
determined by analogy with [38]:

µ
(q)
i,v =

〈(
F(q)
↑,i + F(q)

↓,i

)(
F∗(q)↑,v + F∗(q)↓,v

)〉
√

∏
i

〈∣∣∣F(q)
↑,i + F(q)

↓,i

∣∣∣2〉 , (15)

where the terms F(q)
↑,i and F(q)

↓,i for each of the waves can be found using the properties of
the FPI for re-reflecting (superposing) waves [40]:

F↑(q) =
Kl+1
∑

l = 1

(
ρ(q)

)l−1
(∆z · q)F↑(0,q) exp

(
j(l − 1)δ(q)

)
;

F↓(q) =
Kl+1
∑

l = 1

(
ρ(q)

)l−1
(∆z · q)F↓(0,q) exp

(
j(l − 1)δ(q)

)
; F(q) = F↑(q) + F↓(q).

(16)

The parameter δwill be defined by analogy with (13): δ(q) =
4π·
√

f1(∆z·q)
λ · 〈n(r, ∆z · q)〉|r ,

and the initial amplitude value will be set for the first iteration as: F↑(0,q) = F↓(0,q) ∼= 1
4

√
P(q),

assuming that the refraction index is isotropic within the layer and therefore the power
is divided equally, i.e., a half for each wave. In addition, for the components of the
terms F under consideration, which characterize re-reflections from the focon profile in the
transverse direction, the following one can use the following relations:

F↓(l,q)

F↑(l+1,q)
= ρ(q) =

F↑(l,q)

F↓(l+1,q)
, F↓(Kl ,q) = F↓(0,q+1), F↑(Kl ,q) = F↑(0,q+1). (17)

The transformation in Equations (8)–(11) is generally known, so we considered it
unnecessary to present a detailed derivation of equations Equation (11) in the article. Let
us pay attention to the fact that the left parts of each equation for the functions A in
Equation (11) do not depend on the angle ϕ, so the solutions of system Equation (11)
exist under the following condition: ∆
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l  is the wavenumber of the qth 

layer (see Figure 3), which has multipath interference properties. Each layer can be con-

sidered as a multibeam interferometer—a Fabry–Perot interferometer (FPI). However, 

= 0. This suggests that in a quadratic-nonlinear
medium, the input signals carrying OAMs `1 and `2 at frequencies ω1 and ω2 generate
an output signal with OAM `3 = `1 − `2 and frequencyω3 =ω1 − ω2, which ensures the
seamlessness of optical-radio engineering conversion. Note that for the existence of OAM
modes, as is well known [35], a few-mode regime (excitation of several transverse modes)
is required. That is why we search n(r, z) and f1(z)—to provide a proper few-mode regime.
Therefore, we reckon that the wave field (for each of the waves under consideration),
determined by Equation (12), should obey the following relation:

E(q)
M−1 =

√
P(q)

J
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ϕ, (18)

where J` is the Bessel function of the `-kind, u`m is the first `mth maximum of the J`, P(q) is
the power parameter, and β∗ is the generalized mode propagation coefficient. The specified
“quasi-single-mode” addition will ensure the absence of dark areas, which means the large
volume of the interacting light, and with this the highest efficiency of the device (especially
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in case of low-order OAMs, e.g., `1 = 1, `2 = 0, etc.). Relation Equation (18) is valid for E as
a function of time, to which inverse Fourier transform Equation (12) should be performed.

Note that the stated condition can be simplified, namely, the power parameter in (18)
can be considered only as a multiplier, i.e., as weight coefficient. In addition, the considered
amplitude distribution has no dependence on z (except the phase exponent), but only
on r,ϕ, so condition Equation (18) applies only to function F. Therefore, we consider
that relation Equation (18), which is valid for F(q) as a function of time, complements
relations (16). As a result of the numerical solution of equations Equation (11), taking
into account Equations (13)–(18), iterative selection of the functions n(r, z) and f1(z) was
carried out (see Figure 4). In the calculations, we assumed χ(2) = 10−6 m/V. As we can see
in Figure 4, the proposed converter structure can be easily coupled with few-mode fiber
due to a comparative input diameter of a few microns.

Figure 4. An illustration of the calculated parameters (distribution of the refractive index gradient
defined by f 1(z)) at the second iteration of the calculation under the condition that the power of the
generated wave P3 is at least 1% of P1 (see an explanation below).

The purpose of the simulation was to find the parameters n(r, z) and f1(z); we have
carried out two iterations. For the first iteration, we have set all the input values described
above (see explanations to Figure 2) as well as the initial values of the transverse amplitude
components: F↑(0,q) = F↓(0,q) ∼= 1

4

√
P(q), where P(q) for q = 1 was taken equal to 30 mW,

which is an average fiber optics signal power (we assume the fiber optic input of the device).
The first iteration was intended to estimate a number of parameters, including the value of
P(q). To ensure the acceptable level of output radio signal, the input signal powers were
set as P1 = P2 = 70 mW at wavelengths λ1 and λ2, respectively. We assume that the desired
parameters n(r, z) and f1(z) must provide the following condition: P3 ≥ 1% P1, i.e., the
output radio signal power P3 is at least 1% of P1 (see Figure 4).

The result of the first iteration proved the convergence of the model, and it was also
found that F↑(0,1) = F↓(0,1) ∼= 1.32 [mW]1/2. After that, the second iteration was carried
out to obtain the parameters n(r, z) and f1(z). Figure 4 shows the obtained results.

The calculation showed that the condition P3 ≥ 1% P1 can be provided if the refractive
index n(r, z) in the z-axis of the entire focon changes very significantly—from 1450 to 1530.
However, it basically changes in a volume constituting about 95% of the total volume of the
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focon—by a value from 1475 to 1520. The function f1(z) provides narrowing of the focon
region in its input (at a length of approximately 50 µm), and then this function undergoes a
characteristic inflection, after which the focon noticeably expands. This narrowing is most
likely explained by the need to first increase the intensity of the wave in order to effectively
implement the nonlinear optical effect for the generation of P3. Further, when the power
of the generated wave reaches a sufficient value, the need for further concentration of the
radiation density is already reduced. Another process becomes important—it is required to
guide (channel) the generated wave along the z-axis, preventing its leakage through the
sides of the focon.

It can be seen that the optical geometry of the focon (optical lengths equal to the
product of geometric lengths and the value of the refractive index near them) tends to some
leveling of the focon geometry, i.e., where the focon narrows, the refractive index is on
average larger, and vice versa. It can be said that the focon turned out to be approximately
similar to the guiding structure, i.e., waveguide. However, for nonlinear calculations, the
presence of a narrowing region is essential, which, as noted earlier, increases the intensity
(as well as the power flux) of the waves there, and hence it enhances the efficiency of their
nonlinear interaction. This is the essential difference between a focon made of a nonlinear
optical material and the traditionally used geometry of a PPLN crystal in similar tasks.

Undoubtedly, the parameters of the resulting focon, first of all—n(r, z)—are difficult to
implement in practice. We believe that this issue is the subject of our further research; our
goal here is to show the conceptual possibility of nonlinear focon converter. Nevertheless,
a significant advantage of the calculated element is the possibility of obtaining an increased
power of the generated difference wave in comparison with other solutions: 1% versus
0.1% using PPLN [11]. In addition, the dimensions of the proposed focon are significantly
smaller than the dimensions of a typical PPLN crystal in similar problems: fractions of a
millimeter versus several millimeters (ten millimeters). This potential focon subsequently
can be integrated into a single fiber optic path, or into an integrated optical device, which
will ensure the miniaturization of such a nonlinear optical-radio converter along with its
high efficiency. Such a converter seems relevant for the seamless conversion of complexly
shaped optical signals into the radio range, such as beams with OAM. Note that beams with
OAM can form a group signal, i.e., the result of adding various OAMs, the decomposition
of which before conversion would be very problematic (the need to use free space elements,
complex adjustment, etc., which makes the practical use of such a system almost impossible).
The use of the proposed focon will make it possible to avoid these difficulties, i.e., will
provide fiber-optic-radio-air systems with OAM wide practical applications.

If we compare the proposed MOF-based focon with a similar device that can be made
from a photonic crystal structure, it should be noted that the latter option can hardly be
used to convert complexly shaped optical signals, in which the spatial phase of optical
radiation is an important parameter. This is due to the fact that the high nonlinearity of
photonic-crystal structures is achieved by using several thin optical-conducting paths that
provide high radiation intensity, and with this, a significant nonlinear interaction of waves.
At the output of such a nonlinear photonic-crystal device, optical beams (after the nonlinear
processes) merge into a single output beam, where the required power results are achieved.
However, from the point of view of the formation of a given output phase (leading to the
specific distribution of the phase field, typical for OAM), significant distortions are likely to
occur because of need of the phase matching. This allows us to conclude that MOF in the
problem under consideration is preferable to a nonlinear photonic crystal structure. The
simulation results obtained here are, in fact, the requirements for the MOF structure, on the
basis of which a specific material should be selected.

5. Conclusions

In this article, we provide an analysis of currently known materials and structures with
quadratic-nonlinear optical properties. These materials and structures can be used in the
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process of non-linear parametric generation of the difference frequency in a two-frequency
optical-radio engineering conversion.

The principle of constructing a nonlinear optical-radio-technical converter based on
optical focon is proposed. Using the assumption that this focon can be made by MOF,
a technique for modeling its parameters is proposed. The mathematical model of the
process of propagation and nonlinear interaction of waves inside the focon is based on a
simplification of the nonlinear wave equation.

Within the framework of the developed model, the following parameters are ap-
proximately determined: the 3D gradient of the linear refractive index and the function
characterizing the geometric profile of the focon, which provide quasi-single-mode gen-
eration of the difference frequency. The proposed scheme can be used when deploying
fiber-optic communication lines (FOCL) network segments with seamless optical-radio
conversion (including vortex-signal conversion), which will greatly increase the capacity
and throughput of telecommunication systems.

Author Contributions: Conceptualization, formal analysis and methodology, I.L.V. and A.R.G.;
funding acquisition, formatting, I.K.M. and A.V.B.; software and visualization, I.L.V.; writing—
original draft preparation, review and editing, I.L.V., A.R.G., I.K.M., A.V.B. and M.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Ministry of Science and Higher Education of the
Russian Federation for research under the State Assignment of FSBEI HE USATU No. FEUE-2020-0007
on the topic “Theoretical foundations of modeling and semantic analysis of the processes of trans-
formation of vortex electromagnetic fields in infocommunication systems” in the part “Analysis of
optical quadratic-nonlinear materials and structures potentially suitable for the design of a nonlinear
converter” and partially funded by RFBR, DST, NSFC and NRF according to the research project
19-57-80016 BRICS_t in the part “Modeling the parameters of the proposed device”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tong, W.; Zhu, P. (Eds.) 6G: The Next Horizon: From Connected People and Things to Connected Intelligence; Cambridge University

Press: Cambridge, UK, 2021. [CrossRef]
2. Bagmanov, V.; Sultanov, A.; Gizatulin, A.; Meshkov, I.; Kuk, I.; Grakhova, E.; Abdrakhmanova, G.; Vinogradova, I. Optics-to-THz

conversion of vortex beams using nonlinear difference frequency generation. Comput. Opt. 2019, 43, 983–991. [CrossRef]
3. Bagmanov, V.H.; Sultanov, A.K.; Meshkov, I.K.; Gizatulin, A.R.; Nigmatullin, R.R.; Sakhabutdinov, A.Z. Propagation and

Transformation of Vortexes in Linear and Nonlinear Radio-Photon Systems. Fibers 2022, 10, 4. [CrossRef]
4. Meshkov, I.; Gizatulin, A.; Vinogradova, I.; Meshkova, A.; Sultanov, A.; Bagmanov, V.; Bourdine, A. Usage of SDM technology

in radio-over-fiber (RoF) transmission systems in high-speed scalable 6G wireless networks. In Proceedings of the Eighteenth
International Scientific and Technical Conference “Optical Technologies for Communications”, Samara, Russia, 22 June 2021;
Volume 117931G. [CrossRef]

5. Vinogradova, I.; Gizatulin, A.; Meshkov, I.; Bagmanov, V.; Morozov, O.; Gabdulkhakov, I.; Ganchevskaya, S.; Kazanskiy, N.;
Sultanov, A. Influence of Two-Frequency Radiation Intensity Fluctuations on the Output Signal of a Vortex Optical Fiber Forming
OAM Address in Polyharmonic Sensor Technology. Photonics 2021, 8, 351. [CrossRef]
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