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Abstract: A noise elimination method based on an improved particle swarm algorithm is applied to
direct absorption spectroscopy. The algorithm combines the theory of spectral line shape to calculate
a fitness function according to the original spectra. Comparing the particles and the fitness function
to calculate the updating direction, and position of particles, the iterative update finally finds the
optimal solution. The algorithm is applied to direct absorption spectroscopy to measure methane;
compared with the signal without algorithm processing, the signal-to-noise ratio (SNR) is improved
by 4.17 times, and the minimum detection limit in the experiment is 15.3 ppb. R2 = 0.9999 is calculated
in the calibration experiment, and the error is less than 0.1 ppm in the repeatability experiment of
constant methane at 2 ppm concentration.

Keywords: direct absorption spectroscopy; particle swarm algorithm; denoising

1. Introduction

Infrared detection technology has been widely used in the field of gas detection.
The methods for gas detection include tunable diode laser absorption spectroscopy [1],
photoacoustic spectroscopy [2], cavity-enhanced absorption spectroscopy [3], and cavity
ring-down spectroscopy [4]. Among these, the application of tunable diode laser absorption
spectroscopy has relatively matured in the field of trace gas detection. The tunable diode
laser absorption spectroscopy includes direct absorption spectroscopy [5] and wavelength
modulation spectroscopy [6].

The wavelength modulation spectroscopy can reduce the background noise influence
on measurement accuracy by superimposing a high-frequency signal [7]. However, the sys-
tem cost of wavelength modulation spectroscopy is higher, and the peak of the absorption
spectrum is easily affected by modulated signal, which reduces the system sensitivity [8],
especially in high modulating value conditions. In contrast, direct absorption spectroscopy
can work effectively at a low cost but has the downside of a relatively simple back-end pro-
cessing system [9], and the absorption spectroscopy signal is influenced by the interference
fringe. Therefore, to measure trace gas concentration, a software algorithm is applied to
direct absorption spectroscopy that can increase the accuracy and stability of the system.

The software algorithm shows a lower cost and better ability to debug than compli-
cated hardware circuits and is widely used in the field of digital signal processing [10].
The averaging algorithm is widely used in the field of real-time signal processing [11].
P.Werle investigated an average algorithm on multi periodic signals to eliminate the system
noise [12]. The average algorithm is simple and easy to use and effective for eliminating
white noise but needs large sample data and much time to support the algorithm, and the
denoising ability of the average algorithm has not good with small amounts of data. The
idea of using wavelet transform is to decompose a signal into high-frequency components
and low-frequency components, and then eliminate the high-frequency noise [13]. Work
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by Li et al. detailed that the use of wavelet transform for detecting carbon dioxide con-
centration could improve the signal-to-noise ratio (SNR) and eliminate the interference
fringe [14], however, there exist some limitations on the decomposition level and difficulty
of debugging. The main strength of wavelet transform is that it can identify sudden noise
and extract useful signals. However, the wavelet transform needs to select a reasonable
wavelet basis function and adjust decomposition level and thresholds several times [15].

The particle swarm algorithm is an intelligent solution algorithm that simulates the
population behavior of birds [16]; the individuals of the population are considered to
only have speed and direction, and the population tends to be an optimal solution [17].
Each particle receives information from the population and other particles, and then
the fitness value is calculated. The particle swarm algorithm can calculate the updating
direction and position of particles by learning factors and making the particles converge to
a global optimum solution [18]. We use three learning factors to eliminate white noise and
interference fringes, and only retain the concentration information. Therefore, the particle
swarm algorithm applied to direct absorption spectroscopy can eliminate the system noise
quickly and effectively.

A particle swarm algorithm applied to direct absorption spectroscopy is designed
based on the above background. Firstly, we introduce the experimental system, such
as the selection of absorption line, the principle of the methane detection system, and
noise analysis of the experimental system. We describe in detail how to construct and
improve the particle swarm algorithm, including computing the fitness function and
configuring learning factors. Then we show the denoising performance of the algorithm
and comparison with other filtering algorithms. Finally, we evaluate the accuracy and
stability of the improved particle swarm algorithm through the calibration experiment and
repeatability experiment.

2. Experiment System
2.1. The Absorption Line of CH4

The absorption line of 100 ppm CH4 in the spectral range of 1650–1657 nm based on
HITRAN database is depicted in Figure 1. The parameters for the simulation in the inset of
Figure 1 are as follows: temperature T = 300 K, pressure P = 1 atm, and optical path length
L= 2000 cm.
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2.2. Principle of the CH4 Detection System

The experimental data used in the particle swarm algorithm are absorption spectra
of CH4 measured in temperature T = 300 K, pressure P = 1 atm, and optical path length
L = 2000 cm. We choose the 1653 nm near-infrared laser. Figure 2 illustrates the principle
of the CH4 detection system. The laser is controlled by a laser diode controller, and its
driving signal is a sawtooth wave generated by a signal generator. The output beam of the
laser is propagated to a multiple-reflection optical cell, and variable concentration CH4 is
configured in the multiple-reflection optical cell. Subsequently, the output light intensity
from the multiple-reflection optical cell is converted to a voltage signal by a photodetector.
Finally, the experimental data processing is completed by the PC.
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Figure 2. Schematic of the CH4 detection system.

2.3. Noise Analysis

The absorption spectrum signal will be disturbed by system noise, especially in the
case of low gas concentration the peak value of absorption spectrum signal is submerged
in noise. Figure 3 illustrates the absorption spectrum signal of 0.2 ppm CH4, it can be seen
that the system noise interferes with the concentration information seriously. The system
noise consists of two parts: the first one is white noise generated by current pulse [19], this
kind of noise has the characteristics of strong randomness and short duration, therefore,
it can be removed by calculation of the average. The second one is interference fringe.
This disturbance is mainly generated in the multiple-reflection optical cell [20], which is
composed of cosine signals with multiple frequencies and is periodic [21]. Etalon length is
the main factor affecting the interference fringe [22]. Although interference fringe can be
suppressed by applying anti-reflection coating to optical elements or changing the structure
of the light path [23], it also has disadvantages, such as high cost and complexity of the
system [24].
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Figure 3. The original absorption spectrum signal of 0.2 ppm CH4.

3. The Improved Particle Swarm Algorithm
3.1. Simulation

The particle swarm algorithm we use with regards to the original spectra as feasible
solutions, and the algorithm calculates a fitness function based on the original spectra. The
fitness values are calculated by comparing the original spectra with the fitness function,
which shows the advantages and disadvantages of the data. Subsequently, based on the
fitness values and learning factors, we can calculate the updating direction and position
and update the data accordingly. The algorithm updates the new position of the data
and determines whether the maximum number of iterations has been reached. Finally,
get an optimal solution. Figure 4 illustrates the effect of the improved particle swarm
algorithm applied to an analog signal. By using the particle swarm algorithm, the noise
can be removed with details of the analog signal well-preserved.
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Figure 4. The result of analog signal processing with particle swarm algorithm. (a) The number of
iterations is 0, (b) the number of iterations is 1, (c) the number of iterations is 5, and (d) the number of
iterations is 80.
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3.2. Fitness Function

Calculating the fitness function is the most important part of the improved particle
swarm algorithm [25]. The gas absorption line shapes agree with the theory of spectral line
shape [26], therefore half-width at half-maximum ∆v and center frequency v0 are the main
parameters. According to the experimental environment, the gas absorption line shape has
a Lorentzian profile:

gL(v) =
1
π

[
∆vL

(v− v0)
2 + ∆v2

L

]
(1)

Therefore, the expression of fitness function:

f (x∗) =
a
π

[
∆vL

(v− v0)
2 + ∆v2

L

]
+ b (2)

where a is an amplification parameter of the system, which is mainly related to the laser,
amplifier circuit and data acquisition card. b is a constant. The algorithm calculates the
values of ∆v, v0, a and b according to the original spectra, and the obtained fitness function
is compared with the original spectra until the root mean square error is the smallest.

3.3. Learning Factors

Learning factors affect the convergence speed and updating direction of the improved
particle swarm algorithm [27,28]. The learning factors of the particle swarm algorithm we
use consist of three parts: self-learning factor “c1”, learning factor of population “c2”, and
learning factor of adjacent particle “c3”.

The self-learning factor “c1” is an acceleration factor that the feasible solution tends to
the fitness function f (x∗). The expression of particle fitness value f itness(xi):

f itness(xi) = f (xi)− f (x∗i ) (3)

The expression of the particle fitness value f itness(xi) indicates the deviation degree
to which the feasible solution deviates from the optimal solution and has the characteristics
of randomness and instability. When the optimal solution is unknown, it is impossible
to judge whether the larger fitness value is caused by noise or concentration information.
Therefore, the self-learning factor “c1” is relatively smaller.

The learning factor of population “c2” is an acceleration factor that the population
tends to the fitness function. The expression of population fitness value f itnessNP:

f itnessNP =
∑NP

n=1 f itnessn(x)
NP

(4)

NP is the size of the population, the population fitness value f itnessNP is calculated
by summing all particle fitness values and dividing by the population size NP. This value
indicates a convergence trend of the population. Although there are individual particles
with large deviations, the population tends to an optimal solution. Therefore, the learning
factor of population “c2” is relatively large.

The learning factor of adjacent particle “c3” is our newly added learning factor. For
direct absorption spectroscopy, the disturbance mainly comes from the interference fringe
generated by the multiple-reflection optical cell. This disturbance is roughly periodic, and
the mean is 0. The expression of adjacent particle fitness value f itnessAD(xi):

f itnessAD(xi) =
f (xi−1) + f (xi+1)

2
(5)

The introduction of the learning factor of adjacent particle “c3” enhances the ability
to search for the optimal solution, and each particle can be compared with the adjacent
particles. Therefore, the learning factor of the adjacent particle “c3” should be relatively
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large. Compared with the traditional particle swarm algorithm, the improved particle
swarm algorithm can speed up the convergence speed of the algorithm and effectively
remove the interference fringe.

4. Experimental Results and Analysis
4.1. Denoising Performance and Analysis

The data used for the test algorithm are four groups of normalizing original spectra of
1 ppm CH4. The collected original spectra are shown in Figure 5.
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We set the iteration maximum number of the algorithm to 1, 5, 20, and 80, and the
outputs are shown in Figure 6.
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It can be concluded from Figure 6 that our particle swarm algorithm can increase the
SNR of the original signal obviously with the small number of iterations. When the number
of iterations increased, although the improvement of the SNR slowed down, the signal was
smoother. If the number of iterations was large, the output signal converged to a Lorentzian
line, and the peak containing the concentration information can be easily calculated.

The denoising ability of the improved particle swarm algorithm is compared with
that of the average algorithm, averaging window algorithm, and wavelet transform by
calculating the SNR of the signal. As shown in Figure 7, the average algorithm shows the
worst denoising ability, even though it improved the low SNR original signal by around
3.8349 dB, and with large sample size, the disturbance of interference fringes is still very
serious. Based on the averaging algorithm, we used the averaging window algorithm.
When the number of iterations was reasonable, the output signal was relatively smooth,
and the signal-to-noise ratio was improved by 8.3578 dB. However, when the number
of iterations was large, the peak will be weakened, which in turn affects the calculated
concentration. By contrast, the wavelet transform was much more obvious, and the SNR
was improved by about 8.6778 dB. Standing out from the above algorithms, our proposed
particle swarm algorithm showed the best performance and the highest SNR. The SNR of
the original signal was improved by about 17.235 dB. Our particle swarm algorithm can
extract the concentration information from the original signal and eliminate the influence
of white noise and interference fringes. The algorithm also had the function of smoothing
the signal. The SNR calculated by the improved particle swarm algorithm was 4.17 times
higher than the SNR of the original signal.
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Figure 7. On the left are the results of original spectra processing with average algorithm, averaging
window algorithm, wavelet transform, and our improved particle swarm algorithm. On the right is
noise analysis.

The indicators of iterative experiment and comparative experiment are shown in
Table 1.
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Table 1. The SNR of different algorithms.

Algorithm SNR (dB)

Original spectra 5.4366
Average algorithm—500 samples 9.2715

Averaging window algorithm 13.7944
Wavelet transform 14.1144

Particle swarm algorithm with 1 iteration 12.6730
Particle swarm algorithm with 5 iterations 16.0630

Particle swarm algorithm with 20 iterations 17.3101
Particle swarm algorithm with 80 iterations 22.6716

4.2. Results and Analysis of Calibration Experiment

We configure the CH4 with different concentrations, the collected original spectra were
processed by the improved particle swarm algorithm and then the peaks of absorption
spectra were calculated, and a straight line was fitted according to the concentration and
the peaks of absorption spectra, the expression of the straight line:

Y = 1305x + 0.15837 (6)

The fitting result is shown in Figure 8. After calculation, the coefficient of determina-
tion R2 = 0.9999.
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Figure 8. The fitting result in the calibration experiment.

We used the original spectra collected in the calibration experiment and calculated
the peaks of the absorption spectrum that have not been processed by the particle swarm
algorithm. Then we calculated the peaks of the absorption spectrum, which were obtained
through the particle swarm algorithm and brought the two sets of peaks into expression (6)
to calculate the concentrations. Table 2 shows the calculated CH4 concentrations for the two
absorption spectrum treatment methods (when the peak of the absorption spectrum had
no maximum value, it was represented by a concentration range). The minimum detection
limit in the experiment was 15.3 ppb.
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Table 2. The concentration of original spectra with two processing methods.

Calibration
Gas (ppm)

Concentration Not Processed
by Algorithm (ppm)

Maximum
Error

Concentration Processed
by Algorithm (ppm) Error

0.2 0.131–0.663 231.69% 0.202 1.11%
0.6 0.553–0.904 50.68% 0.585 −2.59%
1 0.873–1.188 18.83% 0.990 −0.97%
2 1.859–2.216 10.80% 2.009 0.44%
4 3.795–4.126 −5.13% 3.953 −1.20%
5 4.805–5.230 4.59% 5.022 0.44%
10 9.450–10.223 −5.50% 10.016 0.16%
20 19.884–20.315 1.57% 20.108 0.53%
40 39.518–40.500 1.25% 40.713 1.75%

4.3. Results and Analysis of Repeatability Experiment

We configure the 2 ppm CH4 and lead the gas into the gas cell for two hours, calculating
the concentration every 15 min. The result is shown in Figure 9 and Table 3. The error is
less than 0.1 ppm in the repeatability experiment, therefore, our improved particle swarm
algorithm has good stability.

Photonics 2022, 9, x FOR PEER REVIEW 9 of 11 
 

 

Table 2. The concentration of original spectra with two processing methods.  

Calibration  

Gas (ppm) 

Concentration Not Processed  

by Algorithm (ppm) 

Maximum  

Error 

Concentration Processed  

by Algorithm (ppm) 
Error 

0.2 0.131–0.663 231.69% 0.202 1.11% 

0.6 0.553–0.904 50.68% 0.585 −2.59% 

1 0.873–1.188 18.83% 0.990 −0.97% 

2 1.859–2.216 10.80% 2.009 0.44% 

4 3.795–4.126 −5.13% 3.953 −1.20% 

5 4.805–5.230 4.59% 5.022 0.44% 

10 9.450–10.223 −5.50% 10.016 0.16% 

20 19.884–20.315 1.57% 20.108 0.53% 

40 39.518–40.500 1.25% 40.713 1.75% 

4.3. Results and Analysis of Repeatability Experiment 

We configure the 2 ppm CH4 and lead the gas into the gas cell for two hours, calcu-

lating the concentration every 15 min. The result is shown in Figure 9 and Table 3. The 

error is less than 0.1 ppm in the repeatability experiment, therefore, our improved particle 

swarm algorithm has good stability. 

 

Figure 9. The result of the repeatability experiment. 

Table 3. The calculated concentration of 2 ppm CH4 original spectra in the repeatability experiment. 

Times (min) Concentration (ppm) Error (ppm) 

15 2.081  0.081  

30 2.060  0.060  

45 1.957  −0.043  

60 2.001  0.001  

75 1.905  −0.095  

90 2.005  0.005  

105 2.008  0.008  

120 1.990 −0.010 

5. Conclusion 

The system noise affects the measurement accuracy and stability of the direct absorp-

tion spectroscopy. To solve the problem, a way of denoising is proposed based on the 

improved particle swarm algorithm. The improved particle swarm algorithm calculates 

the fitness function according to the theory of spectral line shape and sets three learning 

Figure 9. The result of the repeatability experiment.

Table 3. The calculated concentration of 2 ppm CH4 original spectra in the repeatability experiment.

Times (min) Concentration (ppm) Error (ppm)

15 2.081 0.081
30 2.060 0.060
45 1.957 −0.043
60 2.001 0.001
75 1.905 −0.095
90 2.005 0.005

105 2.008 0.008
120 1.990 −0.010

5. Conclusions

The system noise affects the measurement accuracy and stability of the direct absorp-
tion spectroscopy. To solve the problem, a way of denoising is proposed based on the
improved particle swarm algorithm. The improved particle swarm algorithm calculates
the fitness function according to the theory of spectral line shape and sets three learning
factors based on the noise analysis of gas absorption spectra, which is more reasonable than
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the traditional denoising algorithm. The improved particle swarm algorithm can extract
potential information from the original signal, whether this information is concentration
information or noise, this method greatly weakens the subjective purpose of the researcher
and objectively respects the information in the original signal. The improved particle
swarm algorithm has the ability to accurately extract the concentration information and
smooth the signal, it also can eliminate the white noise and interference fringe effectively
compared with the original spectra without algorithm processing, the SNR is improved
by 4.17 times. The coefficient of determination R2 = 0.9999 is calculated in the calibration
experiment and the minimum detection limit is 15.3 ppb. The error is less than 0.1 ppm in
the repeatability experiment.
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