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Abstract: Because color patterns with multiple channels can carry more information than gray
patterns with only one channel, color phase-shifting profilometry (CPSP) has been widely used for
high-speed, three-dimensional (3D) shape measurement. However, the accuracy of CPSP suffers from
nonlinear errors caused by color crosstalk. This paper presents an effective nonlinear error correction
method for CPSP based on histogram equalization. The two main steps of the proposed method are
eliminating nonlinear errors with histogram equalization and optimizing the results using a spline
fitting algorithm. Compared with other compensation methods, the proposed approach does not
require any precalibration information or additional patterns, which are very time-consuming. The
simulations and experiments indicate that the proposed method has a promising performance for
nonlinear error elimination.

Keywords: color phase-shifting profilometry; nonlinear error; color crosstalk; histogram equalization

1. Introduction

As an important contactless optical metrology technique, fringe projection profilome-
try (FPP) based on the structured light technique has continuously attracted much attention
from scholars in recent years [1–3]. FPP possesses the merits of offering fast speed and
high accuracy such that it has been applied in various fields, such as reverse engineer-
ing, biomedical engineering, and online detection [4–6]. A typical FPP system consists
of a projector used to project the designed patterns and a camera used to capture the
deformed fringes. Three-dimensional (3D) geometry of the tested objects can be derived
from the deformed images. Phase-shifting is more accurate and robust in comparison with
a transform-based algorithm and is broadly used to retrieve phase maps in FPP [7]. How-
ever, a phase-shifting algorithm usually requires three or more fringe patterns to complete
measurements, which limits its measuring efficiency [8]. Accordingly, color phase-shifting
profilometry (CPSP) has been proposed to address these issues. CPSP frequently uses a
three-step phase-shifting method since it requires the least number of projected patterns,
and it encodes them into R (red), G (green), and B (blue) channels to form one color im-
age, which allows the simultaneous acquisition of three phase-shifting patterns to realize
one-shot measurement [9].

Generally, a color imaging device has no colorblind areas on the spectrum; due to
the spectra of R, G, and B, the channels are usually made to have some overlap [10].
Unfortunately, this induces crosstalk between the three different channels. The coupling
effects can distort the intensities of the captured patterns and introduce nonlinear phase
errors in the final phase map [11]. A detailed analysis of the nonlinearity in CPSP is
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described in Section 2.2. To eliminate the errors caused by color coupling or crosstalk,
many nonlinear correction methods have been proposed. Kinell [12] introduced a direct
method to compensate for the errors. The R, G, and B channels were calibrated individually,
and the difference between distorted phases and reference phases was used to establish a
look-up table (LUT) for compensation. Huang et al. [13] calculated the modulation degrees
of the R, G, and B channels, respectively. The coefficients between the three different
channels were determined and used to compensate for nonlinear errors. Zhang et al. [14]
introduced a CPSP method using extra images to compute the distorted curves to correct the
errors and reserved the color information of the object. Wan et al. [15] proposed an active
phase error suppression method for color phase-shifting fringe projection based on hue
precorrection. Wu et al. [16] presented a point-to-point method based on the correspondence
between camera pixels and projector pixels to accomplish the compensation of the full
field. However, those methods require extra images with prior knowledge to calculate
the compensation factors, which means that once the measuring condition changes, the
calibration process is repeated.

Additionally, some methods without calibration have also been proposed. Hu et al. [17]
estimated a color demixing matrix based on the color fringe patterns captured from a ref-
erence plane or the surface of an object without extra images. Ma et al. [18] presented
a blind phase error suppression approach based on isotropic n-dimensional fringe pat-
tern normalization and carrier squeezing interferometry. Flores et al. [19] implemented
a pattern normalization algorithm to achieve the intensity modulation balance and an
iterative algorithm to retrieve the phase. Naturally, the methods described above take more
time to complete the calculations. Alternatively, Wang et al. [20] first applied the Hilbert
transform to CPSP and improved the measurement accuracy with little computation. How-
ever, the Hilbert-transform-based method is sensitive to sharp edges or discontinuous
parts. Thus, methods without calibration usually require complex calculations or strict
working conditions.

This paper proposes a nonlinear error compensation method for CPSP with histogram
equalization. The proposed method eliminates the phase errors without a calibration
process or additional images. Meanwhile, the calculation is also simple, which has a
positive effect on the measuring speed. Generally, a histogram of an undistorted phase
is uniform, but that of a distorted phase becomes nonuniform. Thus, the distorted phase
can be corrected by directly applying histogram equalization. Accordingly, the first step is
directly applying histogram equalization to the wrapped phase, and the nonlinear phase
error caused by crosstalk can be compensated for roughly. Then, a spline interpolation
optimization is implemented to further eliminate the discretization error and smooth the
phase. The simulations and experiments validate the efficiency of the proposed method.

2. Principle
2.1. Color Phase-Shifting Profilometry

Employing color fringe patterns in fringe projection profilometry is the so-called
color phase-shifting profilometry (CPSP). Three fringe patterns with 2π/3 phase shifts
are encoded into the R, G, and B channels of a color fringe and then projected onto a
measured object surface by a projector [21]. Because of the modulation of object surfaces,
the color fringe is deformed and then captured by a camera. The 3D shape of the measured
object relative to the reference plane can be reconstructed by a combination of fringe
analysis and projector–camera system calibration. A three-step phase-shifting algorithm
that only requires three fringe patterns suits a color fringe pattern with R, G, and B channels.
Generally, the projected color fringe pattern can be described as follows:

Ip
r (xp, yp) = a + b cos(2πxp/T − 2π/3) (1)

Ip
g (xp, yp) = a + b cos(2πxp/T) (2)

Ip
b (xp, yp) = a + b cos(2πxp/T + 2π/3) (3)
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where (xp, yp) represents the projector pixel; a, b are two constants; T is the number of
pixels per fringe period; and Φp = 2πxp/T represents the absolute phase that increases
linearly with xp. Ideally, the intensities of three channels of the captured color fringe pattern
can be described as follows:

Ir(x, y) = A(x, y) + B(x, y) cos[φ(x, y)− 2π/3] (4)

Ig(x, y) = A(x, y) + B(x, y) cos[φ(x, y)] (5)

Ib(x, y) = A(x, y) + B(x, y) cos[φ(x, y) + 2π/3] (6)

where Ir, Ig, and Ib are the intensities of the R, G, and B channels, respectively; A represents
the average intensity; B represents the intensity modulation; and φ represents the wrapped
phase that is being solved. Combining the three equations leads to:

φ(x, y) = tan−1
[√

3
Ir(x, y)− Ib(x, y)

2Ig(x, y)− Ir(x, y)− Ib(x, y)

]
(7)

The arctangent function results in φ ranging from 0 to 2π with 2π discontinuities.
Therefore, a phase-unwrapping process is carried out to remove these 2π discontinuities.
The absolute phase can be calculated as:

Φ(x, y) = φ(x, y) + 2π × k(x, y) (8)

where k is an integer often known as the fringe order. This paper used an enhanced two-
frequency phase-shifting algorithm for phase unwrapping. Once we obtained the absolute
phase relating to an object’s surface, the 3D shape could be reconstructed by mapping the
phase distribution into the 3D-world coordinates.

2.2. Nonlinear Phase Error Analysis

Projectors and cameras usually to have some overlaps among the spectra of the color
channels to avoid colorblind regions in the spectrum [22]. Color crosstalk is a major phase
error source for color phase-shifting profilometry. In general, a color fringe pattern distorted
by color crosstalk can be described as [23]: I ′′ r(x, y)

I ′′ g(x, y)
I ′′ b(x, y)

 =

κrr κrg κrb
κgr κgg κgb
κbr κbg κbb

 Ir(x, y)
Ig(x, y)
Ib(x, y)

 (9)

where κ represents the color crosstalk matrix. For a color projector, the elements of its
crosstalk matrix κ are constant. For a color camera, the elements of its crosstalk matrix
κ can be also regarded as constant if measuring a monochromatic object. Furthermore,
considering the color crosstalk of both the projector and the camera, the distorted color
fringe pattern can be described as: Ĩr(x, y)

Ĩg(x, y)
Ĩb(x, y)

 =

κc
rr κc

rg κc
rb

κc
gr κc

gg κc
gb

κc
br κc

bg κc
bb


κ

p
rr κ

p
rg κ

p
rb

κ
p
gr κ

p
gg κ

p
gb

κ
p
br κ

p
bg κ

p
bb


 Ir(x, y)

Ig(x, y)
Ib(x, y)

 (10)

where κp and κc are the color crosstalk matrices of the projector and camera, respectively.
For the sake of simplicity, we used φ(x, y) = f1[Ir, Ig, Ib] to substitute for Equation (7) and
[ Ĩr, Ĩg, Ĩb] = f2[Ir, Ig, Ib] to substitute for Equation (11). Therefore, the distorted wrapped
phase can be calculated as:

φ̃(x, y) = f1[ Ĩr, Ĩg, Ĩb] = f1
{

f2[Ir, Ig, Ib]
}

(11)
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Since the parameters of functions f1 and f2 are constant for a fixed CPSP system, there
exists a one-to-one mapping relationship between the distorted φ̃ and the ideal φ. From
Equations (1)–(3), the intensity of the fringe only depends on the x taken into consideration,
and the slight difference caused by the variable y was omitted in this paper. Therefore, the
results shown in Figure 1 only consider x. Figure 1a shows the intensity distributions of
three channels for one ideal color fringe, and the intensity distribution of a distorted pattern
is illustrated in Figure 1b. Figure 1c plots the cross-sections of the ideal φ and the distorted
φ̃. Figure 1d plots the cross-sections of the ideal Φ and the distorted Φ̃. It is obvious that
the distorted φ̃ and the ideal φ had the same period with a slight misalignment, and the
distorted φ̃ with the same phase values at different periods had the same nonlinear error.
Figure 1e plots the cross-sections of the nonlinear error, which can be calculated as:

∆φ̃(x, y) = φ̃(x, y)− φ(x, y) (12)
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Figure 1. Results regarding different patterns. (a,b) Intensity distributions of ideal patterns and
distorted patterns, respectively; (c) wrapped phases of the ideal pattern and the distorted pattern;
(d) absolute phases of the ideal pattern and the distorted pattern; (e) nonlinear error distribution; and
(f) phase probability distribution of the ideal and the distorted patterns.

In addition, the distorted φ̃ stayed monotonic but became nonlinear within each period.
Thus, it could be used to uniquely identify each pixel within one fringe period.

2.3. Proposed Correction Method with Histogram Equalization

As introduced above, the absolute phase is Φp = 2πxp/T in the projector space, so
the absolute phase is continuous. Since xp is the coordinate of the projector pixel with an
equal sampling interval, the phase probability distribution (PPD) of Φp is uniform. If Φp is
wrapped into [0, 2π] as the wrapped phase φp in the projector space, the PPD of φp is also
uniform because of its periodicity. Ideally, the phase φ retrieved from the captured images
is the same as the phase φp in the projector space. Thus, the PDDs of the phase map in two
different image spaces are equal when the number of sampling intervals is identical. Here,
we define an object function to describe the PPD of the wrapped phase:

p(m) = P
{

2π
m− 1

M
≤ φ < 2π

m
M

}
(13)

where m = 1, 2, · · · , M; M is the number of the sampling intervals from 0 to 2π; p(m)
represents the probability distribution function; and P{·} represents probability. For
example, if M = 100, p(m) should be 1/M = 0.01 for the ideal φ. As illustrated in Figure 1f,
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the ideal PPD curve with M = 100 was parallel to the x-axis because the phase values
within each sampling interval had the same probability. However, the color crosstalk
introduces the phase error ∆φ into the ideal φ in practice. Moreover, the phase error ∆φ̃
increases the probability of some phase values while decreasing that of some other phase
values. As illustrated in Figure 1f, it is apparent that the nonlinearity effects modified
the PDD curve dramatically, and the distorted PPD curve was no longer uniform. It is
natural to correct the nonlinear error by adjusting the distorted PPD so that the corrected
PPD conforms to the ideal PPD. Histogram equalization provides an effective way of PPD
adjustment. Once p(m) is obtained, the cumulative PPD can be calculated as:

q(m) =
m

∑
i=1

p(i) (14)

Note that 0 ≤ q(m) ≤ 1. Then, the number corresponding to the input m is:

r(m) = round[M× q(m)] (15)

where round[•] returns the closest integer, r(m) is a mapping function to determine the
interval of a point after transformation, and 0 ≤ r(m) ≤ M. If the distorted phase φ̃ satisfies
the condition 2π(m− 1)/M ≤ φ̃ < 2πm/M, the corresponding corrected phase after PPD
adjustment is:

φ = r(m)× 2π/M (16)

2.4. Accuracy Optimization with Spline Fitting

To guarantee the accuracy of the nonlinear correction, an optimized algorithm based
on spline fitting was implemented in our proposed method. Since the output numbers
r(m) of Equation (16) are discrete integers, the corrected φ computed by Equation (17) has
some discrete values with a certain interval of 2π/M. However, the ideal φ has continuous
values. This difference leads to a residual error as:

∆φ(x, y) = φ(x, y)− φ(x, y) (17)

Without considering the effects of random noises, the corrected φ is the discrete results
of the ideal φ. Therefore, ∆φ can be regarded as the discretization error, and the maximum
value is:

max
[
∆φ(x, y)

]
= π/M (18)

This equation indicates that the residual error ∆φ can be restrained by increasing the
number M in theory. To eliminate the discretization errors, an algorithm based on spline
fitting is applied:

Vin = spline(Vh, Vm) (19)

where spline[•] denotes the cubic spline interpolation function; Vh = [Vh1, Vh2, . . . , Vhk] and
Vhk are the discrete values of the phases after histogram equalization; Vm = [Vm1, Vm2, . . . , Vmk]
and Vmk are the mean values of the distorted phase corresponding to each discrete value
Vhk; and Vin is the initial accurate phase after spline fitting. Then, the median value Vim
between Vh and Vm is also computed. The final accurate phase can be obtained as:

Vf =

{
Vin, i f |Vin −Vim| ≤ (π/2M)
(Vin + Vim)/2, otherwise

(20)

where Vf is the final accurate phase, and M is the number of the sampling intervals.

3. Simulations

Some simulations were conducted to verify the performance of the proposed nonlinear
error correction method. The simulated color fringe pattern had 400 × 600 pixels with a
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fringe period of T = 200 pixels. Figure 2a shows the ideal pattern without any distortions.
As described above, color crosstalk was regarded as the main factor for inducing nonlinear
error in this paper. Therefore, in the following simulations, the gamma value was set as 1.0,
and the color crosstalk matrix κ of the system was set as [18]:

κ =

0.75 0.15 0.05
0.20 0.7 0.10
0.10 0.20 0.85



Photonics 2022, 9, x FOR PEER REVIEW 7 of 13 
 

 

with random noises led. The corrected phase had very good linearity that was very ap-

proximate to the ideal phase. The minor residual error may be caused by the PPD une-

venness and random noises. The simulation results demonstrated that the proposed 

method can effectively reduce the nonlinear error introduced by color crosstalk. 

 

Figure 2. Simulated data: (a) ideal pattern; (b) distorted pattern; (c) ideal phase; (d) distorted phase; 

(e) ideal PPD; (f) distorted PPD; (g) adjusted PPD with M = 50; and (h) corrected phase. 

Different objects were considered in the following simulations. The resolution of the 

simulated images was 800 × 800 pixels, and other parameters remained unchanged. Two 

spheres, each with a radius of 150 pixels, were generated, and the distance between the 

two spheres was 100 pixels. The deformed images of the spheres by the ideal color pattern 

and the distorted color pattern are shown in Figure 3a and Figure 3b, respectively. Then, 

we recovered the absolute phase. Figure 4a shows the absolute phase retrieved from the 

distorted image without any corrections. To verify the necessity of spline fitting in the 

proposed method, we recovered the phase map using partial content of the proposed 

method, that is, the histogram equalization and the whole proposed method, respectively. 

Figure 4b shows the phase obtained utilizing only histogram equalization, and Figure 4c 

shows the phase recovered with the whole proposed method. The absolute phase ob-

tained with the ideal image was regarded as the reference; thus, three error maps corre-

sponding to Figure 4a–c, as shown in Figure 4d–f, were calculated. The root mean square 

(RMS) errors of the mentioned results were 0.1554 rad, 0.0704 rad, and 0.0511 rad, respec-

tively. Obviously, the first step of the proposed method, the histogram equalization, was 

to correct the nonlinear error. However, the first step could induce a discretization error. 

To further improve the accuracy, the second step, a spline fitting algorithm, was presented 

to eliminate the discretization error. The error maps shown in Figure 4e–f conclude that 

the spline fitting algorithm was necessary in the proposed method, and the proposed 

method had a good performance for removing nonlinear errors. 

 

Figure 3. Spheres deformed by (a) the ideal pattern and (b) the distorted pattern. 

Figure 2. Simulated data: (a) ideal pattern; (b) distorted pattern; (c) ideal phase; (d) distorted phase;
(e) ideal PPD; (f) distorted PPD; (g) adjusted PPD with M = 50; and (h) corrected phase.

To simulate the random noises, Gaussian white noise with a zero mean and a standard
deviation of 0.02 was added to the simulated patterns. In addition, to simulate the defocus
blur, a Gaussian filter with a size of 5 × 5 pixels and a standard deviation of 2.0 was
also applied to the simulated pattern. Figure 2b shows the distorted pattern with color
crosstalk, random noises, and defocus blur. The wrapped phases of the ideal and distorted
patterns were calculated separately with a three-step phase-shifting algorithm, as shown in
Figure 2c,d. Clearly, the ideal phase presented excellent linearity in contrast to the distorted
phase presenting significant nonlinearity. Then, the PPDs of the ideal and distorted phases
were computed as illustrated in Figure 2e,f. Clearly, the PPD of the ideal phase was
uniform; in contrast, the PPD of the distorted phase was very nonuniform. Finally, we
applied the histeq MATLAB function with M = 50 on the distorted phase to adjust its PPD
and correct the nonlinear error. Figure 2g illustrates the adjusted PPD, and Figure 2h shows
the corrected phase. It is obvious that the adjusted PPD became much more uniform than
the distorted PPD, but still with slight unevenness, to which the combination with random
noises led. The corrected phase had very good linearity that was very approximate to the
ideal phase. The minor residual error may be caused by the PPD unevenness and random
noises. The simulation results demonstrated that the proposed method can effectively
reduce the nonlinear error introduced by color crosstalk.

Different objects were considered in the following simulations. The resolution of
the simulated images was 800 × 800 pixels, and other parameters remained unchanged.
Two spheres, each with a radius of 150 pixels, were generated, and the distance between
the two spheres was 100 pixels. The deformed images of the spheres by the ideal color
pattern and the distorted color pattern are shown in Figures 3a and 3b, respectively. Then,
we recovered the absolute phase. Figure 4a shows the absolute phase retrieved from the
distorted image without any corrections. To verify the necessity of spline fitting in the
proposed method, we recovered the phase map using partial content of the proposed
method, that is, the histogram equalization and the whole proposed method, respectively.
Figure 4b shows the phase obtained utilizing only histogram equalization, and Figure 4c
shows the phase recovered with the whole proposed method. The absolute phase obtained
with the ideal image was regarded as the reference; thus, three error maps corresponding
to Figure 4a–c, as shown in Figure 4d–f, were calculated. The root mean square (RMS)
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errors of the mentioned results were 0.1554 rad, 0.0704 rad, and 0.0511 rad, respectively.
Obviously, the first step of the proposed method, the histogram equalization, was to correct
the nonlinear error. However, the first step could induce a discretization error. To further
improve the accuracy, the second step, a spline fitting algorithm, was presented to eliminate
the discretization error. The error maps shown in Figure 4e–f conclude that the spline fitting
algorithm was necessary in the proposed method, and the proposed method had a good
performance for removing nonlinear errors.

Photonics 2022, 9, x FOR PEER REVIEW 7 of 13 
 

 

with random noises led. The corrected phase had very good linearity that was very ap-

proximate to the ideal phase. The minor residual error may be caused by the PPD une-

venness and random noises. The simulation results demonstrated that the proposed 

method can effectively reduce the nonlinear error introduced by color crosstalk. 

 

Figure 2. Simulated data: (a) ideal pattern; (b) distorted pattern; (c) ideal phase; (d) distorted phase; 

(e) ideal PPD; (f) distorted PPD; (g) adjusted PPD with M = 50; and (h) corrected phase. 

Different objects were considered in the following simulations. The resolution of the 

simulated images was 800 × 800 pixels, and other parameters remained unchanged. Two 

spheres, each with a radius of 150 pixels, were generated, and the distance between the 

two spheres was 100 pixels. The deformed images of the spheres by the ideal color pattern 

and the distorted color pattern are shown in Figure 3a and Figure 3b, respectively. Then, 

we recovered the absolute phase. Figure 4a shows the absolute phase retrieved from the 

distorted image without any corrections. To verify the necessity of spline fitting in the 

proposed method, we recovered the phase map using partial content of the proposed 

method, that is, the histogram equalization and the whole proposed method, respectively. 

Figure 4b shows the phase obtained utilizing only histogram equalization, and Figure 4c 

shows the phase recovered with the whole proposed method. The absolute phase ob-

tained with the ideal image was regarded as the reference; thus, three error maps corre-

sponding to Figure 4a–c, as shown in Figure 4d–f, were calculated. The root mean square 

(RMS) errors of the mentioned results were 0.1554 rad, 0.0704 rad, and 0.0511 rad, respec-

tively. Obviously, the first step of the proposed method, the histogram equalization, was 

to correct the nonlinear error. However, the first step could induce a discretization error. 

To further improve the accuracy, the second step, a spline fitting algorithm, was presented 

to eliminate the discretization error. The error maps shown in Figure 4e–f conclude that 

the spline fitting algorithm was necessary in the proposed method, and the proposed 

method had a good performance for removing nonlinear errors. 

 

Figure 3. Spheres deformed by (a) the ideal pattern and (b) the distorted pattern. Figure 3. Spheres deformed by (a) the ideal pattern and (b) the distorted pattern.

Photonics 2022, 9, x FOR PEER REVIEW 8 of 13 
 

 

 

Figure 4. Results of the simulated spheres: (a) absolute phases recovered without corrections; (b) 

phase map obtained only with the histogram equalization; (c) phase map obtained with the whole 

proposed method; and (d–f) error maps corresponding to (a–c), respectively. Unit: rad. 

Secondly, a single, continuous, step height object was generated. The simulated pa-

rameters were the same as mentioned above. The necessity of spline fitting in our method 

was validated in the first simulation. In this simulation, the effectiveness of the proposed 

method in dealing with objects with cliff edges was verified. Similarly, we recovered the 

phase map using the normal unwrapped algorithm and the proposed method. Figure 5a 

shows the absolute phase obtained without nonlinear error elimination, and its surface 

had serious ripple errors. In contrast, the results recovered with the proposed method had 

smooth surfaces, as illustrated in Figure 5b. The ground truth of the step height is shown 

in Figure 5c. Figure 6 illustrates the cross-section of the recovered results and the ideal 

phase of the step height. The line marked in red is the distorted phase, and the information 

is unavailable for comparison to the ideal one. Apparently, nonlinear errors in the CPSP 

influenced the measuring results, and the surface information of the measured object was 

lost in errors. However, for the corrected one marked in green, the results were very close 

to the ideal one, and the surface was clearly presented. It can be seen from Figures 5 and 

6 that the proposed method guaranteed the measuring accuracy of CPSP. 

 

Figure 5. Results of the simulated step heights. (a) absolute phase recovered without corrections; (b) 

absolute phase corrected with the proposed method; and (c) the ground truth of the simulated ob-

ject. Unit: rad. 
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proposed method; and (d–f) error maps corresponding to (a–c), respectively. Unit: rad.

Secondly, a single, continuous, step height object was generated. The simulated
parameters were the same as mentioned above. The necessity of spline fitting in our method
was validated in the first simulation. In this simulation, the effectiveness of the proposed
method in dealing with objects with cliff edges was verified. Similarly, we recovered the
phase map using the normal unwrapped algorithm and the proposed method. Figure 5a
shows the absolute phase obtained without nonlinear error elimination, and its surface
had serious ripple errors. In contrast, the results recovered with the proposed method had
smooth surfaces, as illustrated in Figure 5b. The ground truth of the step height is shown
in Figure 5c. Figure 6 illustrates the cross-section of the recovered results and the ideal
phase of the step height. The line marked in red is the distorted phase, and the information
is unavailable for comparison to the ideal one. Apparently, nonlinear errors in the CPSP
influenced the measuring results, and the surface information of the measured object was
lost in errors. However, for the corrected one marked in green, the results were very close
to the ideal one, and the surface was clearly presented. It can be seen from Figures 5 and 6
that the proposed method guaranteed the measuring accuracy of CPSP.
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To explore the influence of the number M on the correction results, the residual
errors under different M values were computed. Figure 7a illustrates the nonlinear error
before PPD adjustment within one fringe period, and the RMS error was about 0.192 rad.
Figure 7b–f illustrate the residual errors after PPD adjustment with different M values, and
the corresponding RMS errors are also given. Further, Figure 8 plots the RMS error curve of
the residual errors with respect to different M values ranging from 50 to 1000. In particular,
the RMS residual error decreased to 0.061 rad when M = 50, 0.041 rad when M = 100,
0.033 rad when M = 200, 0.032 rad when M = 500, and 0.031 rad when M = 1000. It is
obvious that the RMS residual error was inversely proportional to M. If M ≤ 500, the RMS
residual error degraded quickly from 0.061 to 0.032 rad with the increase of M. If M > 500,
the RMS residual error stayed stable with the increase of M, only having a variation of
0.001 rad. The simulation results confirmed that the residual error can be restrained by
choosing a relatively larger M value. However, a larger M value always requires higher
computation cost; thus, M = 500 was selected in the following experiments.
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4. Experiments

A typical FPP system consisting of a digital-light-processing (DLP) projector and a
complementary metal oxide semiconductor (CMOS) camera was built. The DLP projector
was a Light-Crafter 4500 with a resolution of 912 × 1140 pixels. The camera was a Basler
a2A1920-160ucBAS with a resolution of 1920 × 1200 pixels. The objects were perpendicular
to the camera at a distance of 60 cm. The color-encoded fringes were sequentially projected
onto the measured objects using the projector, and the camera simultaneously captured the
deformed images. The pitch of the stripe was 18 pixels. The wrapped phase was recovered
with the three-step phase-shift algorithm [24].

To validate the performance of the proposed method, a sculpture with a simple surface
was measured first. The captured image is shown in Figure 9a. Its corresponding wrapped
phase was calculated using the three-step phase-shift algorithm, and its absolute phase
was obtained utilizing the multifrequency method. The reconstruction results are shown in
Figure 9b. Obviously, severe ripple errors induced by crosstalk occurred on the surface. To
validate the necessity of spline fitting in a real-world scenario, we also recovered the surface
with only the first step of the proposed method, and the results are shown in Figure 9c.
The final result obtained with the whole proposed method is illustrated in Figure 9d. As it
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can be seen in Figure 9b–d, the result obtained with the first step of the proposed method
had some slight ripple errors, and the nonlinearity errors were effectively eliminated in
comparison to the distorted one. Moreover, compared with the former two results, there
were almost no errors on the surface that was recovered by the whole proposed method. We
concluded, the same as the results obtained in the simulation, that spline fitting is necessary
and effective in our method. For the sake of clarity, Figure 10 illustrates the cross-section of
the recovered results of the sculpture. Obviously, the final result was smoother than both
the distorted result and the result obtained with the first step of the proposed method. It is
important to point out that the proposed method capably corrected the nonlinear errors,
and the two steps of the method were indispensable.
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Figure 9. Results of a white sculpture: (a) captured image of the sculpture; (b) the absolute phase
without corrections; (c) the absolute phase obtained using the first step of the proposed method; and
(d) the absolute phase optimized with the whole proposed method. Unit: rad.
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Figure 10. One cross-section of the recovered absolute phases of the sculpture.

In the next experiment, we measured a white fish with slightly complex surfaces.
Figure 11a shows the deformed image of the fish. For normal multifrequency unwrapped
algorithms, the recovered absolute phase had obvious errors, as shown in Figure 11b. The
results illustrated in Figure 11c obtained with our proposed method had smooth surfaces.
Experiments in a real-world scenario showed that the proposed method could improve
the measurement effectiveness of CPSP and could be utilized for more color-encoded
fringe-based applications.
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Figure 11. Results of a white fish: (a) captured image of the fish; (b) the absolute phase without
corrections; and (c) the absolute phase obtained the proposed method. Unit: rad.

5. Discussions and Conclusions

The accuracy of color phase-shifting profilometry (CPSP) is limited because of nonlin-
ear errors caused by color coupling [25]. This paper proposed a simple and efficient method
based on histogram equalization to address this issue. Compared with Refs. [12–14], the
proposed method did not require any precalibrated operations to obtain the relationship
between the distorted pixels and the ideal ones. Compared with Ref. [16], the proposed
method did not need any extra images to obtain more distorted information for correction.
Although the proposed method possesses the aforementioned advantages, it has its own
limitations. The proposed method corrected the nonlinear errors based on histogram
equalization, and its accuracy hinged on the amount of data at a certain degree. The larger
the number of data, the higher the accuracy. Moreover, this limitation can be addressed
by using a phase-shifted wrapped phase [26]. Overall, the proposed method accurately
enhanced the measurement speed of CPSP.

An effective method was presented in this paper for color crosstalk correction. The
proposed method contained two main steps. The first was to correct the crosstalk using
histogram equalization. Second, a spline fitting algorithm was implemented to remove
the discretization error induced by the histogram equalization operation. Obviously,
compared with other compensation methods, the proposed approach did not require any
precalibration information or additional patterns and simplified the correction without
a loss of efficiency. The simulations and experiments clearly showed that this proposed
method efficiently solved the nonlinear error problem. The proposed method expands
applications of CPSP. Meanwhile, the proposed method provides a hint about how to
eliminate errors using the characteristics of fringes on one hand. On the other hand,
it provides a clue to correct errors in other scenarios (e.g., dynamic errors, etc.) with
histogram equalization.
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