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Abstract: For the near-infrared emission, Er3+ and Er3+/Yb3+ co-activated borate based glass hosts
were synthesized by the method of melting andquenching. The emission intensity was maximum for
0.5 mol% Er3+ singly activated glass in the near-infrared (NIR) region covering the telecommunication
window. The 2 mol% of Yb3+ co-doping enhanced the emission gain cross-section of the glass by two
times contrast to 0.5 mol% Er3+ loaded glass. This enhancement shifted to lower spectral regions when
P increased from 0 to 1. The effect of Yb3+ loading on the gain cross-section of the Er3+ co-activated
glasses was analyzed using the McCumber theory. The results showed that the 0.5Er2Yb glass has a
flat gain in the range of 1460–1640 nm, this suggest a lower pump threshold is enough to perform the
laser functioning of a 1530 nm band and optical window of telecommunication applications.

Keywords: borate glasses; Er3+/Yb3+ co-doped; Judd-Ofelt theory; photoluminescence;
energy transfer

1. Introduction

In the recent past, investigations on ionized rare earth (RE) ions incorporating glassy
materials have received significant research interest, owing to their down-conversion and
up-conversion (UC) features in infrared and infrared to visible spectral regions, which make
them greatly utilized in optical amplifier, high-density optical storage, infrared converters,
fiber optic communication and 3D display devices [1]. For decades, the preparation,
characterization and property evaluation of REs, such as Nd3+ and Er3+ doped phosphate,
borate and silicate glasses have been continued for optical gain medium application of
solid-state and fiber near infra-red (NIR) lasers at 1064 and 1530 nm wavelengths [2]. These
NIR lasers have been used as NIR light sources for medical as well as sensor equipment,
such as LIDAR [3,4].

In particular, the trivalent erbium (Er3+) doped vitreous systems have received tremen-
dous interest because of the photoluminescence (PL) emission at 1530 nm with the con-
siderable emission cross-section and relatively long metastable time. Therefore, these
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Er3+ activated glasses are found to be best suitable in wavelength division multiplexing
(WDM) systems, microchip lasers, fiber amplifiers (EDFAs), lidar transmitters, eye-safe
laser systems and waveguides [5]. In addition, the tri-valent erbium ions display lumi-
nescence in red, green and blue in the visible regions of the electromagnetic spectrum.
The NIR emission intensity and related parameters of the luminescence transitions of Er3+

can be improved through the enhancement of corresponding transition probability, which
is dependent on the surrounding ligand field of RE ions [6] for the effective utilization
in the aforementioned applications. Further, because of the rapid growth in information
technology, flexible networks are very much needed. To this end, the Er3+ doped glasses are
of significant interest since the glasses can be molded into any flexible shape and size along
with enhanced PL properties [6]. Furthermore, to be specific, the borate-based vitreous
materials or glasses are important, owing to their wide range transparency, less processing
temperatures, great thermal withstanding and excellent solubility of RE ions (reported up
to 20 mol% of solubility in aluminoborate glasses [7]) compared to silicate and phosphate
glasses [6]. Nonetheless, the NIR emission efficiency is highly impacted by the glass host,
i.e., the energy of the phonons present in the glasses [5]. The addition of heavy metal
oxides, such as PbO, Sb2O3, Bi2O3, GeO2, etc., resulted in the decrease of energy of the
phonons of the glass network, thereby causing a reduction in the non-radiative relaxation
rates, which this change leads to the NIR emission mechanism with ease [8]. In general, a
high absorption cross-section of the absorption peaks leads to higher luminescence from
the RE ion.

The weak absorption of Er3+ ions in near-infrared region hinders practical use in the
large bandwidth NIR device fabrications. The tri-valent ytterbium ions (Yb3+) possess
strong absorption in NIR region compared to the Er3+ ion. Hence, it is predicted as a
sensitizer that highly improves the efficiency of the down-conversion process of Er3+ ions
by energy transfer [9]. In the open literature, there are many investigations revealing the
energy transfer mechanisms of Er3+ co-doped Yb3+ diverse glasses, for example [5,6,10–12].
Precisely, therefore, there are many attempts at improving the NIR emission of around
1500 nm by co-doping with Yb3+ ions in different glass hosts [8,9,11,13]. In view of this,
heavy metal borate glass can play a significant role due to its chemical, thermal and
structural versatility [14]. These glasses can be prepared at a low melting temperature and
it offers a high refractive index, which minimizes phonon energy and the dispersion of
light in the NIR region and offer excellent moisture resistance [15]. However, there are very
few reports available on improving the NIR emission efficiency of Er3+ ions by co-doping
of Yb3+ ions in borate-based glasses, particularly heavy metal borate glasses.

2. Experimental and Characterization

The glass batches prepared by melt-quenching method for the present work are
mentioned below:

Batch 1: 15ZnO − 10Bi2O3 − (75 − x)B2O3 − xEr2O3 (where x = 0.1, 0.5, 1 and 2 mol%)

Batch 2: 15ZnO − 10Bi2O3 − (75 − x − y)B2O3 − xEr2O3 − yYb2O3 (where y = 0.5, 1, and 2 mol%).

For the preparation of Er2O3 (0.1, 0.5, 1 and 2 mol%) and Yb2O3 (0.5, 1 and 2 mol%) co-
doped into 0.5 mol% Er3+ doped glasses, the molar percentage of the analytical grade oxides
were weighed according to the glass batch formula mentioned above. Using agate mortar
and pestle, samples were well-grounded for 30 min to homogenize the oxide mixture. Then,
after, the glass mixture was transferred into a porcelain crucible and was placed inside the
electrically heated muffle furnace. Initially, the furnace was set to 400 ◦C and then slowly
raised to 1000 ◦C. For 1 h, the glass batch was heat soaked at 1000 ◦C inside the furnace
to obtain bubble-free molten liquid. Then, after 2 h of melting, the liquid glass batch was
quenched on pre-annealed brass mold to obtain bulk glass pieces. These glasses were then
heat treated at 273 ◦C for 3 h and slowly cooled to standard temperature.. Later, these bulk
glasses were polished to get 2 mm thicknesses and were labeled as 0.1Er, 0.5Er, 1.0Er, and
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2.0Er for 0.1, 0.5, 1 and 2 mol% Er2O3 singly loaded glasses, and co-activated glasses were
labeled as 0.5Er0.5Yb, 0.5Er1.0Yb, 0.5Er2.0Yb for Er3+: 0.5 mol % and Yb3+: 0, 0.5, 1.0, and
2.0 mol% loaded in borate based glasses, respectively. The well-polished glasses were used
for optical measurements, such as absorption, photoluminescence and decay curves. All
physical parameters, are presented in Table 1. The powder form of the same glasses was
used for structural characterization, such as XRD and FT-IR using an X-ray diffractometer
with a 2θ range 5◦ to 80◦ and FT-IR spectra were measured from 4000 to 400 cm−1. The
absorption, photoluminescence and decay curves were collected utilizing a Perkin Elmer
make Lambda-750 S spectrophotometer.

Table 1. The physical parameters of Er3+ singly loaded studied glasses.

Physical Parameters 0.1Er 0.5Er 1.0Er 2.0Er

Density (g/cm3) 3.31 3.45 3.59 3.70
Thickness (cm) 0.152 0.154 0.153 0.151

Refractive index (n) 1.621 1.625 1.628 1.632
Concentration N (Ions/c.c ×1020) 0.156 0.903 1.963 3.938

3. Results and Discussion

The XRD profiles of Er3+ singly loaded glasses are shown in Figure 1. The XRD
profiles of the glasses showed broad humps without any sharp crystallographic peaks. The
absence of such crystallographic peaks insisted that the prepared glass samples possess an
amorphous network in them [16].
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Figure 1. XRD of Er2O3 doped ZBB glasses.

The features of the FT-IR absorption spectra of the Er2O3 doped 15ZnO, 10Bi2O3,
(75 − x)B2O3, and xEr2O3 were recorded with the resolution of 4 cm−1. The powdered
form of the samples was palletized using KBr as a binder and, then, it was used to measure
the absorption mode of the FT-IR spectra in the infrared region, from 400 to 4000 cm−1.
Figure 2 consists of absorption broad bands of the vitreous network of Er3+ doped glasses.
The demonstrated band in the spectra, around 441 to 579 cm−1, was attributable to the
formation of the octahedral BiO6 group in the vitreous network [17,18]. Additionally, the
formation of the BO3 groups in the borate structure absorbed the energy for its in-plane
bending vibrations at the same wavenumber, 441 to 579 cm−1 [19]. The broad FT-IR band
ranging from 638 to 746 cm−1 is manifested to bending motion of B–O bonds exist in the
BO3 units [19]. The FT-IR signature between 787–1046 cm−1, is caused because of the
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motion of B–O bonds’ in the BO4 motifs [20]. The partial portion of the fourth FT-IR band,
from 1144 to 1286 cm−1, has owed to the B–O bond’s stretch in the (BO3)3− functional
groups [20]. The other half of the band is in the range of 1301 to 1478 cm−1 because of
the stretch of B–O bonds of (BO3)3− groups, which are an integral part of the synthesized
vitreous glass network [20]. The structure of bismuth zinc borate glasses has not been
modified due to the addition of Er3+ concentration.
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Linear absorption spectral results of Er3+ singly activated glasses depicted in Figure 3
for UV-visible region (upper figure) and NIR region (below figure). The Er3+ ions showed
their electronic transitions from their lower energy level (4I15/2) to the different higher
energy levels. All the peaks observed for the singly Er3+ doped glass samples used in the
current study are assigned by referring to the reference [21]. From the spectra, it can be seen
that, the intensity of the bands is enhanced monotonously with respect to Er3+ content in
the composition. Among all transitions, the 4I15/2→ 2H11/2 possess highest intensity and is
hypersensitive transition [HST], whose intensity sensitive to the surrounding structure [22].
Figure 4 displays the optical absorption spectra of 0.5Er (single) and co-doped (Er/Yb)
in UV-vis–NIR (350–1700 nm) regions. Figure 4 shows the additional intense absorption
band at 977 nm and it was ascribed to the Yb3+: 2F7/2 → 2F5/2 transition in all co-doped
glasses [23–25]. Absorption at 977 nm (2F7/2 → 2F5/2) significantly increased with the
increment of Yb3+ ions from 0.5 to 2.0 mol% in the Er/Yb multiple RE ions doped glasses.
Interestingly, the spectra revealed the broader absorption band around 880 to 1070 nm due
to the overlap in the Yb3+ ions 2F7/2 → 2F5/2 transition with the Er3+ ions 4I15/2 → 4I11/2
transition. This specifies the potential of absorption efficiencies in the NIR region than the
singly Er3+ doped glass under NIR excitation (λexc = 980 nm). The presence of co-dopant
Yb3+ in the glass network increased the NIR, and the demonstrated broad bands are due to
light absorption glass around 980 nm.
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Further, oscillator strengths, both fexp and fms of the Er3+ doped glasses were com-
puted using the relations mentioned in the references [23–25] and are tabulated in Table 2.
The Judd-Ofelt (JO) factors viz. Ω2, Ω4 and Ω6 were evaluated be referring to the proce-
dure explained in references [26,27]. Both fexp and fcal, along with their root mean square
deviations (σrms) are furnished in Table 2. It is already proved that the JO factors describe
local ligand environments around the dopants (Er3+ ions), and the strength of covalency
between the ligand bonds. Thus, information about the site symmetry of Er3+ ions can
be determined from Ω2 and it is sensitive to HST, while Ω4 and Ω6 depend on the bulk
property and viscosity of a host glass. The JO factors of singly Er-doped borate glasses are
calculated and tabulated in Table 3. Among all, 0.5Er glass attain the higher values which
suggest the strong covalency nature between Er-O. Further, an increase in doping of Er3+

into host glass reduced the strength of Ω2. This paramount shift is attributed to the decrease
in order of symmetry around the Er3+ ions in in the studied glasses [22–24]. The JO param-
eters of the present borate glasses are comparable with SANSCEr10 [5], PKSAEr10 [22],
fluorotellurite [23], ELB [24], TBA1 [25], TZN [28], BLK1.0Er [29], CaBaPEr20 [30], TBL [31]
and lead phosphate [32] of Er3+ doped different glass materials.

Table 2. Experimental (fexp) and calculated (fcal) oscillator strengths (10−6) of Er3+ loadedin ZBB
glasses.

Transition Energy (cm−1)
0.1Er 0.5Er 1Er 2Er

fexp fcal fexp fcal fexp fcal fexp fcal

4I13/2 6527 5.41 4.67 2.33 2.67 3.22 3.52 2.93 1.05
4I11/2 10,256 2.46 2.72 1.56 1.23 1.17 1.61 1.33 7.17
4I9/2 12,516 - - 2.66 2.70 1.07 0.92 1.30 1.72
4F9/2 15,361 5.65 5.89 2.91 1.11 5.39 5.71 3.53 0.84
4S3/2 18,416 2.25 3.67 - - 2.65 1.35 1.83 1.45

2H11/2 19,231 13.47 14.20 8.33 7.36 16.67 16.37 4.47 4.37
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Table 2. Cont.

Transition Energy (cm−1)
0.1Er 0.5Er 1Er 2Er

fexp fcal fexp fcal fexp fcal fexp fcal

4F7/2 20,492 7.72 8.13 4.74 3.78 7.03 5.49 3.45 4.06
4F5/2 22,173 2.73 4.04 1.86 1.35 2.05 1.64 1.36 1.19
4F3/2 22,573 - - 1.28 0.78 2.11 0.95 1.13 3.73
2G9/2 24,631 1.58 2.49 2.15 1.56 3.08 2.03 2.97 0.47

4G11/2 26,525 3.16 2.85 12.02 13.05 28.77 29.02 6.73 1.23
2G7/2 28,090 - - - - 3.34 1.28 2.08 2.90

σ(N)a ±0.26 × 10−6 ±0.85 × 10−6 ±0.45 × 10−6 ±0.69 × 10−6

σ(N)a shows r.m.s deviation among the fexp to fcal values and ‘N’ tells the number of transitions used in the fitting
procedure.

Table 3. The comparison of Judd-Ofelt parameters Ωλ (λ = 2, 4 and 6 × 10−20 cm2) of Er3+ ions in
different glass networks.

Glass Composition Ω2 Ω4 Ω6

0.1Er (Present work) 7.28 2.76 5.09
0.5Er (Present work) 9.15 4.07 3.31
1.0Er (Present work) 4.49 2.94 2.73
2.0Er (Present work) 1.42 1.99 2.91

SANSCEr10 [5] 7.04 1.71 1.39
PKSAEr10 [22] 6.14 0.61 1.40

Florotellurite [23] 3.60 1.26 0.77
Sodium-boro-Lanthanate (ELB-1) [24] 5.96 1.96 2.04

TBA1 [25] 5.99 2.69 1.05
TZN [28] 5.96 2.42 0.53

BLK1.0Er [29] 3.19 1.38 2.16
CaBaPEr20 [30] 7.44 2.52 4.34

TBL [31] 6.17 1.50 1.10
Lead-Phosphate [32] 4.79 0.79 1.22

The NIR luminescence spectra of (0.1Er–2.0Er) doped zinc borate glasses are depicted
in Figure 5. All samples emitted the broad NIR emission (1440–1680 nm) and a peak at
1529 nm (1529 nm due to electronic motion from 4I13/2 level to 4I15/2 level of Er3+. Thus,
the NIR emission covering C and L bands of the telecommunication window thereby it can
be utilized for optical amplifier applications.. Interestingly, the intensity of NIR emission
enhanced with Er3+ doping into the glass, from 0.1 to 0.5 mol%, and beyond that intensity of
the same band, was decreased. This type of decrement is caused because of agglomeration
of Er3+ ions in the examined glass. Hence, Er3+ ion concentrations increase, resulting in the
reduction of distance among the Er3+ ions and it causing the quenching process.

Further, using the JO factors, the lasing potentials, such as emission maxima (λp),
effective line width (∆λeff), stimulated emission cross-section (σemi), branching ratio (βR)
and quantum efficiency (η) have been computed for the studied glasses by referring the
procedure provided in the reference [23,24]. The resulted calculation shows values for σemi
and AT of 0.5Er glass as superior among the 0.1 to 1Er glasses. Their values are 1.52, 1.14,
0.82, 0.80 (×10−21 cm2) and 281.1, 488.14, 357.76, 304.43 (s−1), respectively, corresponding to
the 0.1Er, 0.5Er, 1.0Er, and 2.0Er glasses. The gain bandwidth (σemi × ∆λeff) and optical gain
for examined glasses are also evaluated and found to be decreased as the Er3+ concentration
elevated to higher levels. Table 4 displays the radiative parameters of prepared glasses
with other reported glasses [5,22,30–32]. The 0.5Er glasses σemi value is higher than that of
reported different glass materials. Interestingly, the resulting other radiative parameters
that use the emission spectra and JO parameters revealed that, the current glasses have
substantial for 1530 nm broadband amplifiers and eye-safe efficient NIR lasers.
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Figure 5. Near-infrared emission spectra of Er3+ doped ZBB glasses.

Table 4. Radiative properties for 4I13/2 → 4I15/2 of Er3+ ions doped ZBB glasses along with other
reported glasses.

Glass Sample AR(s−1) ∆λeff (nm) (βR) σemi
(×10−21 cm2) τRad (ms) (σemi × ∆λeff)

(×10−28 cm3)
(σemi × τRad)
(×10−24 cm2s)

0.1Er (Present work) 281.1 88.98 1 15.200 3.557 1352.50 54.07
0.5Er (Present work) 488.14 86.30 1 11.412 3.284 984.86 37.48
1.0Er (Present work) 357.76 101.28 1 8.246 2.795 835.15 23.05
2.0Er (Present work) 304.43 95.75 1 8.016 2.058 767.53 16.50

SANSCEr10 [5] 193 53 1 9.8 5.18 519.4 50.76
PKSAEr10 [22] 134 34 1 6.03 7.430 204 44.02
BLK1.0Er [30] 141.89 81.21 1 8.215 7.047 667.14 57.89

CaBaPEr20 [31] 183.23 64 1 7.99 2.728 511 21.80
PKAPbNEr10 [32] 144 46 1 6.73 6.910 310 13.86

PL spectra for single (0.5Er) and co-doped samples presented in Figure 6 for an
excitation of 980 nm. The spectra consist of the representative band at 1550 nm due to
electronic motion from 4I13/2 to 4I15/2 levels of Er3+. The amplitude of this peak improved
with elevation of Yb3+ content in the composition. Interestingly, in the co-doped glasses,
Er3+ ions emission intensity was enhanced with the effect of Yb3+ ions sensitization. This
enhancement is due to the strong absorption cross-section of Yb3+ contrast to Er3+ at the
pumped spectral region. The pumping wavelength, energy levels and transitions profile
are displayed in the energy level diagram (Figure 7).
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Further, the absorption spectrum of 0.5Er glass was utilized to compute the absorption
cross-section (σabs), whilst the stimulated emission cross-section (Mσemi) was computed by
following the McCumber theory (MC). The McCumber hypothesis is always referred to
for explaining the overlap between the σabs and Mσemi cross-sections. The factor of Mσemi
influences the operation of a laser and all sets of these properties were realized with the
assistance of the equations provided in the references [5,29].

From McCumber’s theory, the σabs and σabs profiles of 0.5Er and 0.5Er2.0Yb co-doped
glasses are shown in Figure 8a,b, respectively.
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From Figure 8, σabs and σemi magnitudes found to be 3.334 × 10−21 cm2 and
3.713 × 10−21 cm2 respectively at ~1530 nm whereas which for 0.5Er2.0Yb glass the magni-
tudes respectively found to be 5.842 × 10−21 cm2 and 7.283 × 10−21 cm2. The σemi value
is found to be the maximum (7.283 × 10−21 cm2) for 0.5Er2.0Yb co-doped glasses and
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was enhanced ~2 times compared that of 0.5Er glass which is attributed to the resonant
transfer of energy from Yb3+ to Er3+ ions.. These values are comparable with the other re-
ported phosphate (0.5Er/12Yb: σabs = 6.15 × 10−21 cm2, σemi = 7.11 × 10−21 cm2) [33], and
fluorophosphate glasses (3Er4Yb: σabs = 9.53 × 10−21 cm2, σemi = 9.86 × 10−21 cm2) [34].

Optical gain cross-section (G(λ)) has been used to ascertain the laser media perfor-
mance. The G(λ) for ~1530 nm emission transition of 0.5Er glasses was determined by
following equation [29]:

G(λ, N) = P σemi(λ)− (1− P)σabs (λ) (1)

where factor P is the population rate. Figure 9 exhibits the spectra of the gain cross-
section G(λ) of the 0.5Er and 0.5Er2.0Yb glasses. From the spectra, as the values of
G(λ) increase, the gain band shifts toward the short wavelength side when N increases
from 0 to 1. For ~1530 nm emission transition of Er3+:4I13/2–4I15/2, when N reaches
0.4, the G(λ) achieves a magnitude of 10−21 cm2. The maximum G(λ) is found to be
3.713 × 10−21 cm2 for 0.5Er and 7.2836 × 10−21 cm2 for 0.5Er2.0Yb glasses. G(λ) values of
0.5Er2.0Yb glasses increased 2 times compared to 0.5Er glasses and were also related to the
phosphate glasses in the range of 7.11 × 10−21 cm2 [33], and are less than fluorophosphate
glass (9.86 × 10−21 cm2) [34]. Hence, according to Figure 9, the synthesized co-doped
glasses’ flat gain is in the range of 1460–1640 nm. This optimum performance describes
the laser operation of the 1530 nm band at a lesser pump threshold, which is a prerequisite
for laser operation [29]. Hence, the obtained result infers that Er3+ with Yb3+ co-doped
bismuth zinc borate glasses are competing hosts as an optical medium for laser operation
at 1530 nm [31].
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Figure 9. Gain cross-section profile of 4I13/2 → 4I15/2 transition in the range of 1400–1650 nm of 0.5Er
(upper) and 0.5Er2.0Yb (lower) glasses used in the current study.

The metastable lifetime of the Er3+ ions plays a significant role in the EDFA and solid-
state laser gain medium applications. A higher metastable lifetime eases the population
inversion condition of the doped glasses. However, the lifetime of the Er3+ can be decreased
or increased with the change in the composition of glass, doping concentration of Er3+

and the transfer of resonant energy from trivalent ytterbium to trivalent erbium ions [35].
Thus, the decay profiles for 0.5Er and 0.5Er/(0.5, 1.0, and 2.0)Yb co-doped ZBB glasses for
4I13/2→ 4I15/2 transition under the excitation at 976 nm provided in Figure 10. The profiles
of PL decay were well fitted to single-exponential, and the obtained lifetime values are
3.56 ms, 3.60 ms, 3.99 ms, and 4.03 ms for 0.5Er, 0.5Er0.5Yb, 0.5Er1.0Yb, and 0.5Er/2.0Yb
glasses, respectively. The observed behavior analogous to other Er3+/Yb3+ glass matrices
were as such: 65P2O5-13K2CO3-13BaCO3-8Al2O3-2ZnO [33]; 75NaH2PO4-20ZnO-5Li2CO3-
Er2O3 [36]; 44P2O5+23PbO+17K2O+9Al2O3+6Na2O [37]. The closeness between the energy
levels of 4F5/2 (Yb3+) to 5I11/2 (Er3+) ions [36] led to a high population inversion at the
5I11/2 level due to transfer of resonant energy from the Yb3+ to Er3+ ions when excited at
980 nm.
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4. Conclusions

In this study, the absorption spectra of the glass were observed with 12 absorp-
tion lines, with an increase of intensity with respect to Er3+ doping from 0.1 to 2 mol%.
The addition of Yb3+ ion into the glass network added an extra absorption transition
at 980 nm was observed. The JO factors Ω2 = 9.15 × 10−20, Ω4 = 4.07 × 10−20, and
Ω6 = 3.31 × 10−20 cm2, were the highest for 0.5 mol% Er3+ loaded glass; which infers the
bond between Er3+ to O2− was covalent.. The NIR emission of the telecommunication win-
dow was highest in 0.5 mol% of Er3+ doped zinc bismuth borate glass. The obtained radia-
tive transition probability (488.14 s−1), branching ratio (1) stimulated emission cross-section
(11.41 × 10−21 cm2), radiative lifetime (3.2 ms), gain bandwidth (984.86 × 10−28 cm3) and
an optical gain (39.48 × 10−25 cm2−s) of 0.5 mol% Er3+ loaded in borate glass suggest
potential use for the construction of 1.53 µm optical amplifiers and efficient NIR lasers.
Along with emission intensity, 2 mol% of Yb3+ co-doping enhanced the emission gain
cross-section (7.283 × 10−21 cm2) of the glass by two times when compared to the 0.5 mol%
Er3+ singly doped glass network. This increase in gain cross-section shifted the gain band
for lower spectral side when P increased from 0 to 1 and for the Er3+: 4I13/2–4I15/2 emission,
and when P reached 0.4, the gain cross-section achieved a magnitude of 7.283 × 10−21 cm2

in the 2 mol% of Yb3+ co-activated glass. The 0.5Er2Yb glass has a flat gain in the range of
1460–1640 nm and its behavior proved that the lower pump threshold is sufficient for laser
operation within the 1530 nm band and optical window of telecommunication.
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