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Abstract: Metal hybrid perovskites have presented interesting infrared-to-visible up-conversion
light-emitting lasing properties through multi-photon absorption. Here, when the optical pumping
switches between circular and linear polarization, up-conversion amplified spontaneous emission
(ASE) intensity exhibits large and small amplitudes, respectively, leading to a positive up-conversion
∆ASE in the CsPbBr3 perovskite microrods. This observed phenomenon demonstrates that the coher-
ent interaction between coherent light-emitting excitons is indeed established at the up-conversion
ASE regime in the CsPbBr3 perovskite microrods. In addition, the positive up-conversion ∆ASE
indicates the orbital magnetic dipoles between coherent light-emitting excitons are conserved during
up-conversion ASE action. Essentially, the up-conversion ∆ASE results provide evidence that shows
up-conversion ASE can be realized by the orbit−orbit polarization interaction between light-emitting
excitons. Moreover, up-conversion ASE proportionally increased as the pumping fluence increased,
which shows that orbit–orbit polarization interaction can be gradually enhanced between coher-
ent light-emitting excitons by increasing pumping density in the CsPbBr3 perovskite microrods.
Substantially, our studies provide a fundamental understanding of the spin alignment between
coherent light-emitting excitons towards developing spin-dependent nonlinear lasing actions in
metal halide perovskites.

Keywords: light-emitting excitons; ASE; up-conversion; CsPbBr3 microrods

1. Introduction

The metal hybrid perovskites have recently attracted widespread attention as promis-
ing candidates for solution-processed optoelectronic applications such as photovoltaics [1,2],
lasing [3,4], light-emitting diodes [5,6], and photodetectors [7,8], because of the tunable
optical bandgap and remarkable charge transport properties [9,10]. The metal hybrid
perovskite APbX3 (where A = Cs+, CH3NH3+, or HC(NH2)2+; X = Br−, I−, and Cl−) mate-
rials with all of these characteristics have been realized in various forms, including thin
films, single crystals, nanowires, and quantum dots [11–13]. In particular, CsPbBr3 per-
ovskites have demonstrated the capabilities of generating multi-photon up-conversion
amplified spontaneous emission (ASE) through multi-photon absorption under infrared
laser excitation [14,15]. This indicates high power laser excitation is necessary to realize
the simultaneous absorption of multiple photons through the interaction between inci-
dent electromagnetic waves and photo-induced polarizations. In contrast, metal halide
perovskites are formed with s-p orbital hybridization in their band structures, leading to
strong orbital momentum in light-emitting excitons [16,17]. The orbital momentum pro-
vides the precondition to realize the interaction between incident electromagnetic waves
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and photoinduced polarizations when electrons are excited by high-power laser excitation,
leading to multi-photon absorption up-conversion ASE. Furthermore, our previous work
has found that long-range orbital–orbital polarization interactions occur at the generation
of ASE in perovskite, which provides the necessary conditions for coherent interactions
between light-emitting excitons through polarization-dependent ASE studies [18–22].

In this work, we study the coherent interaction between light-emitting excitons in the
up-conversion ASE regime based on CsPbBr3 perovskite microrods upon operating orbital
magnetic dipoles by using circularly polarized optical pumping.

2. Materials and Methods
2.1. Materials

The CsPbBr3 precursor solution was prepared by dissolving 0.1 mmol CsBr (Xi’an
Polymer Light Technology Corp, Xi’an, China) and PbBr2 (Xi’an Polymer Light Technology
Corp, Xi’an, China) into 1 mL dimethylformamide (Sigma-Aldrich, St. Louis, MO, USA).
The solution was then subjected to ultrasonic treatment for 10 min. For CsPbBr3 microrod
growth process, 2 µL solution was dropped on a pre-cleaned glass substrate. The substrate
was then placed into a sealed glass container with an isopropyl alcohol atmosphere for
12 h, in which the CsPbBr3 microrods start to grow. After the growth process was finished,
the substrate was rinsed with toluene solvent and dried with a nitrogen gas blow.

2.2. Characterizations

The optical microscopy images were captured using the Horiba Xplora Plus system.
The excitation and the photoluminescence (PL) spectra were measured using the Horiba
Fluorolog 3 spectrometer with the Xenon lamp as the excitation source. The ASE spectra
were recorded using the Oceanoptics FLAME-S-XR1-ES spectrograph. The pump beam
was from a pulsed laser beam (1030 nm) generated through a harmonic generator (Ultrafast
Systems LLC, Sarasota, FL, USA, third harmonic) with a Pharos laser (Light Conversion,
25 kHz, 1030 nm, 290 fs). The diameter of the focused laser beam was ~100 µm. All the
ASE measurements were performed in the transmission geometry with the pump beam
and detection direction normal to the sample surface. The time-resolved PL measurements
in the ASE regime were taken using the Horiba Fluorolog 3 time-correlated single-photon
counting system in combination with the pulsed laser beam (1030 nm, 25 kHz). For the
∆PL measurements in the ASE regime, a linear polarizer combined with the zero-order
quarter plate was used to generate a switchable linearly and circularly polarized pump
beam with identical intensity.

3. Results
3.1. Optical Characterizations

For optical characterizations, the CsPbBr3 microrods were prepared by a solution
process (see Experimental Method). Figure 1a shows the optical microscopy images of
the prepared CsPbBr3 microrods. Obviously, CsPbBr3 microrods are rectangular in shape
and measure approximately tenths of a millimeter in size. Figure 1b shows the excitation
and up-conversion PL spectra of the CsPbBr3 microrods. The up-conversion PL spectrum
exhibited a peak at 533 nm with narrow full width at half maximum (FWHM) of 23 nm
under 1030 nm pulse laser with a duration of 290 fs at 8.2 mJ/cm2.
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Figure 1. Optical characteristics of CsPbBr3 perovskite microrods: (a) optical microscopy image; 
(b) excitation spectrum with emission at 533 nm and up-conversion PL spectrum under 1030 pulse 
laser excitation. 

3.2. Up-Conversion ASE Emission Spectra 
Figure 2a shows the up-conversion emission spectra from the CsPbBr3 microrods 

under 1030 nm pulse laser with a duration of 290 fs at different pumping intensities. A 
narrow up-conversion emission peak at 543 nm was observed when the pumping power 
reached 14.3 mJ/cm2. We should note that a narrow up-conversion red-shifted ASE peak 
appearing along with the increased excitation power can be attributed to the waveguid-
ed photons’ reabsorption with the reduced optical loss [23,24]. Figure 2b demonstrates 
the spectral intensity and width as a function of pumping power. The up-conversion 
emission intensity was increased greatly along with the FWHM being decreased to ap-
proximately 14 nm when the pumping power was gradually increased above the 
threshold of 14.3 mJ/cm2. Here, it is observed the power dependence with the slope of 
1.7 indicates that the up-conversion PL undergoes a two-photon process when the exci-
tation power is below the threshold. Figure 2c shows the time-resolved PL lifetimes of 
up-conversion ASE peaked at 543 nm and up-conversion spontaneous emission peaked 
at 533 nm when the pumping power is above the threshold of 14.3 mJ/cm2. It can be seen 
that up-conversion ASE decays much faster than the up-conversion spontaneous emis-
sion. The fast decay shows a stimulated light-emitting process within the ASE region 
when the pumping power exceed a threshold of 14.3 mJ/cm2. Especially, we should note 
that the realization of ASE needs to satisfy two conditions: (i) polarizing the light-
emitting excitons before radiative emission occurs and (ii) initiating the coherent interac-
tion between light-emitting excitons, leading to coherent light-emitting states. Therefore, 
our up-conversion ASE results indicate a coherent interaction between light-emitting ex-
citons is established during up-conversion ASE action in the CsPbBr3 perovskite micro-
rods. 

Figure 1. Optical characteristics of CsPbBr3 perovskite microrods: (a) optical microscopy image;
(b) excitation spectrum with emission at 533 nm and up-conversion PL spectrum under 1030 pulse
laser excitation.

3.2. Up-Conversion ASE Emission Spectra

Figure 2a shows the up-conversion emission spectra from the CsPbBr3 microrods un-
der 1030 nm pulse laser with a duration of 290 fs at different pumping intensities. A narrow
up-conversion emission peak at 543 nm was observed when the pumping power reached
14.3 mJ/cm2. We should note that a narrow up-conversion red-shifted ASE peak appearing
along with the increased excitation power can be attributed to the waveguided photons’
reabsorption with the reduced optical loss [23,24]. Figure 2b demonstrates the spectral
intensity and width as a function of pumping power. The up-conversion emission intensity
was increased greatly along with the FWHM being decreased to approximately 14 nm when
the pumping power was gradually increased above the threshold of 14.3 mJ/cm2. Here, it
is observed the power dependence with the slope of 1.7 indicates that the up-conversion
PL undergoes a two-photon process when the excitation power is below the threshold.
Figure 2c shows the time-resolved PL lifetimes of up-conversion ASE peaked at 543 nm
and up-conversion spontaneous emission peaked at 533 nm when the pumping power is
above the threshold of 14.3 mJ/cm2. It can be seen that up-conversion ASE decays much
faster than the up-conversion spontaneous emission. The fast decay shows a stimulated
light-emitting process within the ASE region when the pumping power exceed a threshold
of 14.3 mJ/cm2. Especially, we should note that the realization of ASE needs to satisfy two
conditions: (i) polarizing the light-emitting excitons before radiative emission occurs and
(ii) initiating the coherent interaction between light-emitting excitons, leading to coherent
light-emitting states. Therefore, our up-conversion ASE results indicate a coherent interac-
tion between light-emitting excitons is established during up-conversion ASE action in the
CsPbBr3 perovskite microrods.
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Figure 2. Up-conversion emission spectral characteristics in CsPbBr3 nanorods under 1030 nm 
pulse laser excitation: (a) PL spectra under different pump fluences measured in transmission 
mode; (b) FWHM and up-conversion ASE intensity against pumping power; (c) decay curves. 

4. Discussion 
We now discuss the spin alignment between coherent light-emitting excitons at the 

up-conversion ASE regime in CsPbBr3 perovskite microrods. Figure 3 shows the up-
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when the 1030 nm pumping beam is transitioned between linear and circular polariza-
tion at the same intensity in the CsPbBr3 microrods. Here, the up-conversion ΔASE is de-
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tensities under linearly and circularly polarized photoexcitation, respectively. When in-
creasing pumping fluence above the threshold of 15 mJ/cm2, the positive up-conversion 
ΔASE with the amplitude of 11% can be observed by switching circularly and linearly 
polarized pumping, as shown in Figure 3a. Furthermore, the PL intensity remains virtu-
ally unchanged upon switching the pumping between linear and circular polarization in 
the up-conversion spontaneous emission region. This up-conversion ΔASE phenomenon 
provides three experimental indications. First, the relaxation of aligned orbital magnetic 
dipoles between coherent light-emitting excitons reaches 8 ns at room temperature, 
comparable with the up-conversion ASE. This satisfies the precondition to use the up-
conversion ΔASE phenomenon to identify the spin alignment between coherent light-
emitting excitons. Second, the observed up-conversion ΔASE phenomenon indicates that 
the spin alignment is realized by optically generating the same-directional orbital mag-
netic dipoles under circularly polarized pumping, leading to a coherent interaction be-

Figure 2. Up-conversion emission spectral characteristics in CsPbBr3 nanorods under 1030 nm
pulse laser excitation: (a) PL spectra under different pump fluences measured in transmission mode;
(b) FWHM and up-conversion ASE intensity against pumping power; (c) decay curves.

4. Discussion

We now discuss the spin alignment between coherent light-emitting excitons at the up-
conversion ASE regime in CsPbBr3 perovskite microrods. Figure 3 shows the up-conversion
ASE (peaked at 543 nm) and up-conversion PL (peaked at 533 nm) intensities when the
1030 nm pumping beam is transitioned between linear and circular polarization at the
same intensity in the CsPbBr3 microrods. Here, the up-conversion ∆ASE is defined by
∆ASE = ICircular− ILinear

ILinear
, where ILinear and ICircular are the up-conversion ASE intensities

under linearly and circularly polarized photoexcitation, respectively. When increasing
pumping fluence above the threshold of 15 mJ/cm2, the positive up-conversion ∆ASE
with the amplitude of 11% can be observed by switching circularly and linearly polar-
ized pumping, as shown in Figure 3a. Furthermore, the PL intensity remains virtually
unchanged upon switching the pumping between linear and circular polarization in the up-
conversion spontaneous emission region. This up-conversion ∆ASE phenomenon provides
three experimental indications. First, the relaxation of aligned orbital magnetic dipoles
between coherent light-emitting excitons reaches 8 ns at room temperature, comparable
with the up-conversion ASE. This satisfies the precondition to use the up-conversion ∆ASE
phenomenon to identify the spin alignment between coherent light-emitting excitons. Sec-
ond, the observed up-conversion ∆ASE phenomenon indicates that the spin alignment is
realized by optically generating the same-directional orbital magnetic dipoles under circu-
larly polarized pumping, leading to a coherent interaction between coherent light-emitting
excitons through orbit–orbit polarization interaction. Third, the positive ∆ASE caused by
switching the pumping beam from linear to circular polarization indicates that the spin
alignment indeed introduces an additional coherent interaction between transition dipoles
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through in-phase orbital polarization between coherent light-emitting excitons. Clearly, by
monitoring the up-conversion ASE intensity when the pumping beam switched between
linear and circular polarization, the spin-polarized coherent light-emitting excitons are
indeed established through orbit–orbit polarization interaction during the up-conversion
ASE in CsPbBr3 perovskite microrods. Moreover, up-conversion ∆ASE is proportionally
increased from 14% to 17% when the pumping power is increased from 16 mJ/cm2 to
17 mJ/cm2. In addition, the PL intensity keeps constant upon switching the pumping
between linear and circular polarization in the up-conversion spontaneous emission region.
This indicates that the coherent interaction between coherent light-emitting excitons is
largely increased by increasing pumping density within up-conversion ASE regime in the
CsPbBr3 microrods. It should be noted that establishing coherent transition dipoles and
spin alignment requires different threshold pumping intensities. The coherent transition
dipoles are established at a lower threshold pumping power of 14.7 mJ/cm2, initiating a
spectral narrowing phenomenon (Figure 2b). When the excitation reached a higher thresh-
old pumping power of 15 mJ/cm2, up-conversion ∆ASE can be realized by establishing the
spin alignment between coherent transition dipoles (Figure 3). Clearly, when the density of
coherent transition dipoles is increased, the spin alignment between coherent transition
dipoles can be gradually established by increasing the pumping power of circular polar-
ization, leading to increasing coherent interaction between light-emitting excitons in the
CsPbBr3 microrods.

Here, we monitor the up-conversion ASE amplitude by switching the optical pumping
beam between linear and circular polarization. Clearly, in the CsPbBr3 perovskite micro-
rods, circularly polarized excitation produced higher up-conversion ASE than linearly
polarized excitation with the same pumping power, leading to positive up-conversion
∆ASE phenomenon at room temperature. Furthermore, up-conversion ∆ASE magnitude
proportionally increased with increasing excitation power. This result indicates that spin-
polarized coherent light-emitting excitons are indeed generated and also enhanced with the
increasing excitation power in the CsPbBr3 perovskite microrods, leading to up-conversion
ASE. Essentially, this indicates that under the action of a circularly polarized light pump,
the aligned magnetic dipole can form an in-phase transition dipole between light-emitting
excitons, thus forming spin-polarized coherent optical excitons during nonlinear optical
actions in CsPbBr3 perovskite microrods.
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Figure 3. Up-conversion PL intensities at ASE peak (543 nm) and PL peak (533 nm) under linear and
circular photoexcitation with different excitation power of 1030 nm pulse laser in CsPbBr3 nanorods:
(a) pumping power: 15 mJ/cm2; (b) pumping power: 16 mJ/cm2; (c) pumping power: 17 mJ/cm2.

5. Conclusions

In summary, by monitoring up-conversion ∆ASE when switching the pump beam
between linear and circular polarization, we found that the coherent interaction between
coherent light-emitting excitons is indeed established at the up-conversion ASE regime
in CsPbBr3 perovskite microrods. A positive up-conversion ∆ASE phenomenon in the
CsPbBr3 microrods can be observed when switching from linear to circular polarization
that circularly and linearly polarized with the same pump fluence generate. The positive
up-conversion ∆ASE phenomenon provides evidence that the coherent interaction between
coherent light-emitting excitons generated through the orbit–orbit polarization interaction
within coherent transition dipoles in the CsPbBr3 perovskite microrods. Substantially,
this result shows that the spin lifetime of orbital magnetic dipoles can reach the order of
nanoseconds, which is similar to the lifetime of coherent transition dipoles in up-conversion
ASE. This provides a precondition for the time constant to realize the spin alignment
between coherent light-emitting excitons. Upon satisfying the time-constant precondition,
spin alignment can conserve the in-phase orbital polarization and consequently introduces
an additional cooperative interaction between coherent light-emitting excitons, shown as an
increased up-conversion ASE. Thus, our results demonstrate a fundamental understanding
of the spin alignment between coherent light-emitting excitons during up-conversion ASE
action in metal halide perovskites.
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