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Abstract: Spatial frequency domain imaging (SFDI) is a powerful, label-free imaging technique capa-
ble of the wide-field quantitative mapping of tissue optical properties and, subsequently, chromophore
concentrations. While SFDI hardware acquisition methods have advanced towards video-rate, the
inverse problem (i.e., the mapping of acquired diffuse reflectance to optical properties) has remained a
bottleneck for real-time data processing and visualization. Deep learning methods are adept at fitting
nonlinear patterns, and may be ideal for rapidly solving the SFDI inverse problem. While current
deep neural networks (DNN) are growing increasingly larger and more complex (e.g., with millions
of parameters or more), our study shows that it can also be beneficial to move in the other direction,
i.e., make DNNs that are smaller and simpler. Here, we propose an ultracompact, two-layer, fully
connected DNN structure (each layer with four and two neurons, respectively) for ultrafast optical
property extractions, which is 30×–600× faster than current methods with a similar or improved
accuracy, allowing for an inversion time of 5.5 ms for 696 × 520 pixels. We further demonstrated the
proposed inverse model in numerical simulations, and comprehensive phantom characterization, as
well as offering in vivo measurements of dynamic physiological processes. We further demonstrated
that the computation time could achieve another 200× improvement with a GPU device. This deep
learning structure will help to enable fast and accurate real-time SFDI measurements, which are
crucial for pre-clinical, clinical, and industrial applications.

Keywords: spatial frequency domain imaging; deep neural network; ultrafast; GPU processing

1. Introduction

Tissue optical properties (OPs), including the absorption coefficient (µa) and the
reduced scattering coefficient (µs

′), carry important physiological information about tissue
structure, composition, and function. The reduced scattering coefficient reflects the size
and size distribution of tissue scattering components on the cellular and sub-cellular
levels. The absorption coefficient is associated with the number of light-absorbing species
in biological tissue. Further, with absorption measured at different wavelengths, the
concentration of primary light-absorbing molecules, such as oxy- and deoxy-hemoglobin,
can be quantitatively resolved by solving a matrix equation (i.e., Beer’s Law) [1].

Spatial Frequency Domain Imaging (SFDI) is an emerging label-free imaging technique
that provides quantitative tissue optical properties (µa and µs

′) on a pixel-by-pixel basis
in a wide-field format [2,3]. SFDI is being applied to an increasing number of biomedical
scenarios, including animal imaging, burn wound monitoring, clinical tissue flap mon-
itoring, and others [4–10]. The details of SFDI image acquisition and data processing
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will be illustrated in the Methods section. In brief, a series of spatially modulated light
patterns are projected onto the tissue, and a camera collects remitted light. The use of two
carefully selected spatial frequencies (such as 0 and 0.1 mm−1) allows for the separation of
tissue absorption and scattering [4]. The collected images are demodulated and calibrated
against a tissue-mimicking phantom with known optical properties (OPs) to obtain diffuse
reflectance at each spatial frequency, denoted as Rd (fx). The Rd pair is then fed into an
inverse model, which is used to extract µa and µs

′ in a pixel-by-pixel manner for each
illumination wavelength. The extracted µa of multiple wavelengths can be used to calculate
tissue chromophore concentrations using Beer’s Law.

A current goal of SFDI method development is the rapid and accurate quantification
of tissue OPs and chromophore components with real-time feedback. This would facilitate
point-of-care decision-making in a wide-variety of clinical settings. Recent improvements in
SFDI hardware acquisition have advanced data capturing towards video-rate [11,12]. After
image acquisition, both demodulation and calibration can be implemented as rapid matrix-
based operations in Matlab. A current data-processing bottleneck lies in the conversion
of the Rd values to optical properties, which must occur for each pixel within the image.
Prior methods have utilized iterative minimization algorithms and look-up-tables (LUTs)
to solve the inverse problem [3,13]. For this work, we explored the use and design of deep
learning inverse models that accept the Rd pair (0 and 0.1 mm−1) as input, and directly
output µa and µs

′. We note that deep neural networks (DNNs) are those that have two or
more layers [14]. This is in contrast to traditional, one-layer, shallow-structure networks.
The power of deep learning partially lies in its ability to fit nonlinear patterns [15], implying
that it may be ideal for SFDI inverse problems.

Single-layer neural networks have previously been applied to estimations of the
optical properties of two-layer media [16], and several other works have applied deep
neural networks to address the inverse problem for optical properties in the field of diffuse
optics [17–19]. For example, prior deep learning work has used multi- fx (>2 modulation
frequencies) for SFDI, with the intent of identifying a model with maximum accuracy
based on the large collected datasets [17,20]. In contrast, this work is focused on the much
more common scenario of 2- fx SFDI, with optimization directed towards the most compact
structure while maintaining high accuracy. This optimization is potentially beneficial
under two scenarios: 1. in the case of rapid real-time feedback, where speed is of the
utmost importance, and 2. in the case where computing hardware is limited. The simple
network structure here can easily be implemented using standard PC’s, or even on a
microprocessor. This makes it ideal for low-cost applications where higher-end computing
hardware is not available. While current deep learning models tend to grow increasingly
larger and more complex (e.g., millions of parameters or even more for U-Net), here, we
move in the opposite direction, proposing a smaller and simpler deep-learning model that
achieves both high speed and accuracy. The simplicity of our approach also differentiates
the proposed model from other recent work using parallel computing architecture with
graphical processing units (GPUs) [21]. Additionally, we also demonstrate how the network
topology affects the tradeoffs between accuracy and speed, which are little mentioned in
the prior literature.

2. Methods

SFDI image acquisition and data processing are illustrated in Figure 1. Figure 1a
shows the SFDI instrument. A series of spatially modulated light patterns (shifted 120◦

sequentially in phase) were projected onto the sample, and a camera collected the remitted
light. The use of two carefully selected spatial frequencies (such as 0 and 0.1 mm−1)
allows for the separation of tissue absorption and scattering [4]. To obtain the spatial
frequency response of the samples at 0 and 0.1 mm−1, the images collected from the
phantom (with known OPs) and the tissue (with unknown OPs) were demodulated with
Equations (1) and (2), respectively, whereas I1, I2 and I3 denote the raw images of different
phases. The demodulated maps of the tissue were then calibrated against those of the
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phantom using Equation (3) to obtain diffuse reflectance (Rd) maps at the two spatial
frequencies. Rd and I refer to diffuse reflectance and demodulation maps, respectively,
and subscripts tis and ref refer to the tissue and calibration phantom, respectively. Note
that the demodulation and calibration can both be implemented as rapid matrix-based
operations. As shown in Figure 1b, the consequent Rd maps are then fed into an inverse
model, such as the Monte Carlo Look-Up-Table (LUT), which is used to extract µa and µs

′

in a pixel-by-pixel manner for each illumination wavelength (there are two Monte Carlo
LUTs, mapping the Rd values to µa and µs

′ respectively). The Monte Carlo LUTs for µa
and µs

′ are visualized in Figure 1c. The extracted µa of multiple wavelengths can be used
to calculate tissue chromophore concentrations using Beer’s Law. Note that the mapping
from Rd to OPs represents the bottleneck for optical property extraction.

I
(

fx = 0 mm−1
)
=

I1 + I2 + I3

3
(1)

I
(
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)
=

√
2

3
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2
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Figure 1. (a) Diagram of SFDI Instrument, (b) Mapping from diffuse reflectance to optical properties,
and (c) Monte Carlo Look-Up-Tables (LUTs).

To address the bottleneck of OP extraction, we systematically explored the hyperpa-
rameter space as well as three commonly used activation functions, and compared the
speed and accuracy of the corresponding DNNs. Specifically, we investigated the tradeoffs
between speed and accuracy for different numbers of neural layers (number of layers: 1, 2,
4, 6, and 8), and numbers of neurons in each layer (number of neurons: 2, 4, 6, 8, and 10).
The three activation functions that we explored were tanh, sigmoid, and softsign [22–24].
We also tested ReLU activation function, which, as expected, was not able to provide an
accurate OP prediction under small network structures due to its “semi-linear” nature (data
not shown) [15]. The DNNs were trained with different combinations of these hyperparam-
eters and activation functions, and tested for speed and accuracy. The training data were
generated for a wide range of OPs using an established “white” Monte Carlo model [25],
with µa sampled from 0.001 mm−1 to 0.15 mm−1 in 0.001 mm−1 increments, and µs

′ sam-
pled from 0.51 mm−1 to 2 mm−1 with 0.01 mm−1 increments, using 0 and 0.1 mm−1 spatial
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frequencies. The training data had 150 × 150 OP pairs. Hyperparameters were tuned in
Keras with TensorFlow as a backend [26]. The Adam optimization algorithm was used
with an initial learning rate of 0.001 and batch size of 128 [27]. The mean squared error was
minimized as a loss function, and the training took approximately half an hour on the CPU.
The trained models were implemented as a Matlab function to facilitate comparisons of
speed and accuracy. For the test data, 10,000 OP combinations were randomly selected in
the range of [0.001, 0.15] mm−1 for µa and [0.51, 2] mm−1 for µs

′, and the corresponding
Rd values were generated using the MC forward model.

The three different activation functions are shown in Figure 2a. Figure 2b provides a
comparison of the speed and accuracy performance of the DNNs using the tanh activation
function. Note that the accuracy performance was characterized by the standard deviation
of percent errors calculated from both µa and µs

′ simultaneously; errors had minimal
bias. The solid lines in Figure 2b represent the average time cost (repeated 10 times) for
processing the 10,000 optical property inversions in the test data. The plots show that
higher time costs are incurred as more neurons are added to each layer or when the number
of layers is increased. The dashed lines in Figure 2b show optical property inversion
errors. The plot shows that increasing the number of neurons in each layer, or the total
number of layers, both lead to more accurate inversions. Importantly, the plot shows that
there are diminishing returns in accuracy improvements as the number of layers increases
past a certain point. This point is dependent on the number of neurons utilized per layer.
Figure 2c,d show the results for the other activation functions, all of which show similar
trends. When two or more layers were utilized, the three different activation functions had
a similar accuracy performance. However, there was a large difference in speed among the
activation functions, and DNNs utilizing the softsign activation function were faster than
DNNs using the tanh and sigmoid functions. This is because the softsign function can be
implemented as a matrix operation, whereas the tanh and sigmoid both have exponential
terms, which are slower to compute. Overall, the exploration of hyperparameters and
activation functions in Figure 2 demonstrates that DNNs that utilize the softsign activation
function with 2 layers, and 4 neurons in each layer, provide a combination of fast optical
property inversions with high accuracy. Increasing the number of layers or neurons above
these levels provided only marginal improvements in accuracy.
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functions. The three activation functions are visualized in (a). The trained DNNs were compared
for speed and accuracy. The average computational time cost for 100 × 100 datapoints and the
corresponding errors are shown in (b–d), corresponding to tanh, sigmoid, and softsign activation
functions, respectively.

To date, we have demonstrated the identification of the deep neural network for SFDI
inverse problem with exploration of hyperparameters and activation functions as well as
the corresponding tradeoffs regarding speed and accuracy.

Based on these results, we further tuned the DNN structure to be even more efficient,
with a simpler structure of two hidden layers, with 4 neurons in the first layer and 2 neurons
in the second layer. This DNN structure is shown in Figure 3a. The softsign activation
function and its formulation are demonstrated again in Figure 3b. This function is nonlinear
and maps data from (−∞, +∞) to (−1, 1). This model’s code is available in a GitHub
repository [28].
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The optimized DNN structure with softsign activation was compared to two prior
inversion methods based on look-up-tables (LUTs). The first method utilizes interpolation
of the Rd vector within a LUT that maps Rd values to OPs [3]. LUTs using this method are
generated by linearly sampling the OP space. Therefore, we refer this method as the “linear
OP LUT”. For this method, as the sampling density is increased, OP extraction accuracy
increases at the expense of computational time. More recently, a modified method was
developed that rounds measured Rd values to the closest LUT entry, effectively performing
a direct search of the LUT [13]. This improves speed as it avoids interpolation. The LUTs
for this method are generated by linear sampling in the Rd space [13]. Therefore, we will
refer to this method as the “linear Rd LUT”. For this work, all LUTs were generated using
results from a “white” Monte Carlo (MC) forward model [25]. Both the linear OP LUT and
linear Rd LUT were 150 × 150, which is the same dimension as the DNN training data.
The linear OP LUT was constructed using the exact same data that were used to train the
DNN. The linear Rd LUT was constructed by linearly sampling the Rd space in the range of
[0, 1]. The linear OP LUT interpolation was implemented using the “griddata” function in
Matlab [3]. The linear Rd LUT method was also implemented in Matlab, as described in
previous work [13]. The computations of speed and accuracy comparisons were conducted
on a desktop computer with an Intel i9-9900K CPU and 64 GB of RAM.

While GPUs have been extensively used to accelerate computations, we further tested
the proposed DNN for optical property inversions on a desktop computer equipped with
a typical GPU device (NVIDIA GeForce RTX 3070). Different sizes of pixel array were
used in the test, ranging from 100 × 100 to 2000 × 2000 pixels. The inversions were
repeated 100 times for each pixel array size to reduce randomness. The inversions were
also conducted using the CPU (Intel i7-7700K) on the same desktop to obtain a sense of the
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differences in speed between CPU and GPU devices. In addition, the time cost with GPU
was recorded using the NVIDIA Nsight environment.

Finally, we demonstrated applications, including in phantom validation and in vivo
measurements of the human hand. In the phantom validation study, a total of nine phan-
toms with a wide range of optical absorption and scattering properties were fabricated using
nigrosin (N814749-100g, Macklin, Shanghai, China), titanium dioxide (TiO2) (PL975541-
500g, Cool Chemistry, Beijing, China), silicone base and its curing agent (#906, Chunlan,
Meizhou, China). For in vivo measurements, human tissue imaging was conducted on the
back of the hand of a healthy volunteer. The experimental procedures were reviewed and
approved by the Beihang University Biological and Medical Ethics Committee.

3. Results

For accuracy comparisons, 10,000 OP combinations were randomly selected in the
range of [0.001, 0.15] mm−1 for µa and [0.51, 2] mm−1 for µs

′, and the corresponding Rd
values were generated using the MC-forward model. Gaussian random noise of zero-mean
and standard deviations of 0%, 1%, and 2% was added to the Rd data, and the optical
property extractions were conducted using the above methods. The mean and standard
deviation of the percent errors for µa and µs

′ are compared in Table 1 for the three methods.
In general, the linear OP LUT method had a lower mean and standard deviation errors
compared to the linear Rd LUT method. This is expected, as the linear OP LUT utilizes
interpolation, whereas the linear Rd LUT method outputs OP values directly from the
pre-computed LUT. The DNN achieved comparable accuracy to the linear OP LUT method
for both µa and µs

′ extractions.

Table 1. Comparison of accuracy of optical property extractions for Look-Up-Table (LUT) and Deep
Neural Network (DNN) inversion models.

Percent Error

Linear OP LUT Linear Rd LUT DNN

µa µs
′ µa µs

′ µa µs
′

0% noise 0.0 ± 1.5% 0.0 ± 0.48% −1.1 ± 2.5% 0.5 ± 1.7% 0.0 ± 1.4% 0.0 ± 0.28%
1% noise 0.0 ± 4.1% 0.0 ± 2.0% −1.1 ± 4.5% 0.5 ± 2.5% 0.1 ± 4.2% 0.0 ± 2.0%
2% noise 0.2 ± 7.6% 0.0 ± 3.8% −1.1 ± 7.8% 0.4 ± 4.1% 0.4 ± 8.0% 0.2 ± 4.1%

The computational speed was compared between the three inversion methods by
generating OP arrays of sizes 100 × 100 and 696 × 520 pixels (full image size after 2 × 2
binning in previously published SFDI systems) [9,10]. OPs were randomly generated as
before. Inversions for each case were repeated 10 times. Table 2 shows speed comparisons.
For the 100× 100 pixels Rd maps (i.e., 10,000 inversions from Rd to OPs), the linear OP LUT
took approximately 125 ms on average, and the linear Rd LUT took approximately 6 ms.
In comparison, the DNN only took 0.2 ms. With a full-sized image of 696 × 520 pixels,
the inversion process took over 1.2 s for the linear OP LUT, and approximately 210 ms for
the linear Rd LUT, respectively. In contrast, the proposed DNN inverse model took only
5.5 ms. In both cases, the DNN was approximately 30–40 times faster than the linear Rd
LUT method, and over 200–600 times faster than the linear OP LUT.

Table 2. Comparison of speed for the inversions from Rd to OPs.

# Datapoints Linear OP LUT (ms) Linear Rd LUT (ms) DNN (ms)

100 × 100 124.8 ± 2.6 5.7 ± 0.4 0.2 ± 0.03
696 × 520 1249.6 ± 7.2 212.7 ± 4.0 5.5 ± 0.2

In addition to the speed and accuracy comparisons conducted with numerical simula-
tion, the three inversion methods were also compared using experimental data measured
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from a set of nine homogeneous tissue-mimicking optical phantoms over a wide range of
OPs. The optical phantom measurements were conducted using a commercial OxImager
RS SFDI system (Modulated Imaging Inc., Irvine, CA, USA) at 659 nm. The image size
was 696 × 520 pixels. A 100 × 100 pixels region in the center of the field-of-view was
processed by the linear OP LUT, linear Rd LUT, and the DNN, and the results are shown in
Figure 4. The figure shows that the three methods provide visually similar OP maps for
all optical phantoms. Figure 4b shows the mean and standard deviation of the extracted
optical property values. Figure 4c compares percent difference between the OPs values
extracted by the DNN in reference to OPs extracted by the linear OP LUT and the linear
Rd LUT. These data show that the three methods provide very similar OP values, with
differences of less than 5.0% for µa and less than 1.1% for µs

′ when comparing the DNN to
the linear OP LUT.
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The identified DNN was further demonstrated with experimental in vivo measure-
ments on a cuff occlusion. The cuff was applied to the upper arm and the inner arm was
measured with 0 and 0.1 mm−1 spatial frequencies. The SFDI measurements were con-
ducted using the commercial OxImager RS SFDI system at 659 nm and 851 nm. The image
size was 696 × 520 pixels. The SFDI measurements were repeated approximately every
1.85 s for 150 timepoints with the commercial SFDI system. The measurement repetition
rate here was chosen to be sufficient for monitoring the cuff occlusion process. After 1 min
of baseline measurements, cuff pressure was rapidly increased to ~200 mmHg and lasted
for 2 min. The measurement continued another 1.5 min after the cuff was released. The
optical properties were calculated with the DNN, and the chromophore concentrations
were calculated with Beer’s Law. The data processing and visualization were conducted in
real-time, as shown in Supplementary Video S1 (Visualization 1).

We compare the linear OP LUT, linear Rd LUT, and the DNN for chromophore concen-
tration extraction on the cuff occlusion measurements. A large ROI on the tissue (200 × 300)
was selected for processing by the three methods. This ROI is the same with the ROI used
to calculated average chromophore changes in the supplementary video, and is indicated
by the red dashed box in Figure 5a–c as well as in the video chromophore maps. With
linear OP LUT, linear Rd LUT, and DNN, optical properties were first extracted, and then
the HbO2 and Hb concentrations were calculated using Beer’s Law.
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Figure 5. Comparison of the three methods on in vivo measurements. (a–c) compares total
hemoglobin maps estimated by linear OP LUT, linear Rd LUT, and the DNN, respectively. (d,e)
shows changes in oxy- and deoxy-hemoglobin concentrations during the cuff occlusion measure-
ments. Data from three methods in (d,e) are slightly shifted to aid in visualization.

The total hemoglobin maps estimated by the three methods for baseline cuff measure-
ment are compared in Figure 5a–c. The mean and standard deviation results are plotted in
Figure 5d,e below, as average changes in oxy-hemoglobin (HbO2) and deoxy-hemoglobin
(Hb), respectively. The data show that the mean and standard deviation results from
the three methods overlap, indicating a good agreement. The relatively large standard
deviation was due to the relatively large size of selected ROI (200 × 300 pixel).

Furthermore, while video-rate acquisition has been reported in the literature, the cor-
responding real-time extraction of optical properties remains hindered by the slow speed
of available inversion algorithms [11,12]. Here, we further demonstrate the fast inversion
capability of the proposed DNN, by showing video-rate monitoring of optical properties
for a subject’s free-moving hand. The measurement was conducted in accordance with an
institutionally approved protocol. The subject’s hand was moving upward and downward
freely and repeatedly in a quasi-periodic manner, while being measured at 685 nm with
0 and 0.1 mm−1 spatial frequencies by a custom SFDI system. The measurements were
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conducted for 30 s with a repetition rate of 10 Hz. The data collection, processing and
visualization were conducted in real-time, as shown in Supplementary Video S2 (Visu-
alization 2). Figure 6 shows the last frame of the video. Figure 6a,b correspond to the
extracted optical absorption and reduced scattering maps, respectively. Figure 6c,d cor-
respond to the average changes in absorption and scattering of the tissue area shown by
the red dashed box, respectively, indicating an apparent quasi-periodic change in optical
properties induced by the movement of the subject’s hand. It is noted that the 10 Hz
real-time monitoring of optical properties for a fast-moving object would not be feasible for
previous OP inversion algorithms such as the linear OP LUT and linear Rd LUT methods
due to limited inversion speed.
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absorption corresponding to the red dashed ROI. (d) Time series of changes in average reduced
scattering corresponding to the red dashed ROI.

Finally, since GPUs have been widely used to speed up computations, we conducted
OP inversion experiments using a typical GPU device and compared with a CPU under
different pixel array sizes. The experiment settings are detailed in the Methods section.
As shown in Figure 7, the blue and red curves represent average time costs for CPU and
GPU devices, respectively. It shows that the GPU consistently required significantly less
processing time compared with the CPU. In addition, the GPU has a particular advantage
in terms of computation for large pixel arrays. For instance, with a 2000 × 2000 pixel array,
the CPU required over 80 ms. In contrast, the GPU took less than 0.4 ms, which is over
200 times faster than the CPU.
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4. Conclusions

In summary, this work explored the hyperparameter space, including the tradeoffs
between speed and accuracy for different numbers of neural layers, the numbers of neurons
in each layer and activation functions for DNNs for the SFDI inverse problem. An ultracom-
pact, two-layer, deep learning framework was introduced and provided significantly faster
computational speeds (30×–600×) with similar accuracy when compared to existing linear
OP LUT and linear Rd LUT methods. While our previous deep learning work for optical
property extraction requires 200 ms for an image size of 696 × 520 pixels [17], the DNN
developed in this work is over 30× faster. In addition, the proposed DNN only needs mini-
mal computing power to extract optical properties, and can potentially be implemented on
the micro-processing unit (MPU). In contrast, the traditional methods such as the linear
OP LUT with curve fitting require a significantly higher computing capability. With the
ongoing development of deep learning technologies, one can envision integrating the DNN
developed in this work with low-cost mobile devices, enabling the real-time wide-field
mapping of optical properties, as well as the chromophores that can be used in a bedside
or point-of-care setting.

5. Discussion

We note that since the output space for optical properties is continuous, and that the
Rd-OP structure is essentially curved planes, the ReLU activation function was not suitable
for the compact network structure in our study despite its popularity in pattern recognition
and classification tasks [15]. This is because, by definition, ReLU is “semi-linear”. In other
words, it is linear at (−∞, 0) and (0, +∞) regions, and its non-linearity comes from the
near-zero region, which makes ReLU function not ideal to fit curve lines or planes under
small network structures.

Since the optical property extraction is essentially conducted in a pixel-by-pixel man-
ner, the speed of the calculation can be further enhanced by using specially designed
hardware such as GPU or FPGA. For example, in Figure 7, we show the speed acceleration
with GPU, and the results show that the GPU required less than 0.4 ms to process an
2000 × 2000 pixels image, making it over 200× faster than the CPU.

Going forward, there are several other directions that may further enhance the capa-
bilities of the proposed DNN framework. The DNN can also be trained for other pairs of
spatial frequencies, which may be useful for different tissue types and chromophores [29,30].
Additionally, the DNN demonstrated in this work can be further integrated with fast SFDI
hardware to enable real-time, video-rate, or even kilohertz mapping of chromophore
concentrations for pre-clinical, clinical, and industrial applications [31,32].
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